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Array content 
static analysis 

by segmentation
Patrick Cousot   &   Radhia Cousot
 NYU & ENS           CNRS & ENS

 joint work with  Francesco Logozzo  (MSR)

1



Seminar,  IBM Hawthorn,  April 24,  2010                                                                                                                                          © P. Cousot & R. Cousot (with F. Logozzo)

Abstract

We present a parametric segmentation abstract functor for fully automatic and 
scalable inference of array   content properties. The main idea is to 
automatically divide   arrays into consecutive   non-overlapping   possibly 
empty segments whose content is abstracted uniformly. The array segmentation is 
automatically and semantically inferred  during the static analysis depending 
on the way array elements are modified and accessed. The segment bounds are 
represented by symbolic expressions. The analysis of the segment element 
properties or the relation between the index and array value in segments is a 
parameter of the functor so as to tune the cost/ratio of the analysis.

A prototype analyzer has been implemented to adjust the algorithms and obtain 
the appropriate precision/cost ratio before implementing the analysis in a 
professional static analyzer for object-oriented languages used in an industrial 
context. This has shown the analysis to scale up with satisfactory precision and 
cost contrary to previous attempts which did not scale properly or required more 
user interaction than can be sustained in a typical engineering project.
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Motivation
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The problem of array content analysis

• Statically and fully automatically determine properties 
of array elements in finite reasonable time

• Undecidable problem  abstract interpretation

• Example:          int n = 10;      
          int i, A[n];                        
          i = 0;                                   
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          8 i 2 [0 n): A[i] = 0
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Contribution
• A new simple parametric array segmentation abstract 

domain functor 

• An evaluation prototype for experimentation + an 
implementation in Clousot (I) by Francesco Logozzo

• Example:          int n = 10;     
          int i, A[n];                        
          i = 0;                                   
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */  

p6 = <A: {0} [0,0] {n,10,i}>; [ i: [10,10] n: [10,10] ]
0.000713 s
                                        

(I) This version of Clousot should be available shortly on DevLabs.
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• A basic abstraction usable in compilers and general 
purpose static analyzers

• A bit like intervals for numerical values which 

• is simple to implement

• has low analysis cost and so does scale up

• answers 60 to 95% of questions e.g. in compilers

• Parametrizable (to reuse existing abstractions)

• Fully automatic (no hidden hypotheses or 
dependence on other verification/proof systems)

Self-imposed constraints for solving the array 
content analysis problem
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The array segmentation 
abstraction

7



Seminar,  IBM Hawthorn,  April 24,  2010                                                                                                                                          © P. Cousot & R. Cousot (with F. Logozzo)

Disjunction (case analysis)
    
Array segment
    
Segment bounds related to variables
    

Which kind of invariants do we need?
          int n = 10; 
          int i, A[n];                          
          i = 0;                                   
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

Invariant:
 if i = 0;then
     array A not initialized
 else if i > 0 then
     A[0] = ... = A[i-1] = 0
 else (* i < 0 *)
     Impossible
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The array 
segmentation abstract 

domain functor: 
abstract properties
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Array segmentation

Array 
lower 
bound

Array 
upper 
bound

Segment 
bound

Segment

All elements in a 
segment are 

abstracted uniformely

• Classical array abstractions  elementwise or

• Refinement by segments

Uniform abstraction by smashing
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Array segmentation

Array 
lower 
bound

Array 
upper 
bound

Segment 
bound

Segment

All elements in a 
segment are 

abstracted uniformely

<{0} [0,0] {i+1} [2,+oo] {10,n}>

-oo is min_int  +oo is max_int 14
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• Array segments are 

• in strict increasing order of the array indices

• delimited by sets of expressions known to have 
equal values

<{0} [0,1] {i-1} [2,5] {i} [6,+oo] {n,10}>

so 0 < i-1 < i < n = 10

Symbolic array segment bounds

15
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Symbolic array segment bounds (cont’d)

          int n = 10; 
          int i, A[n];                         
          i = n;                                   
/* 1: */                                          
          while /* 2: */ (0 < i) {                
/* 3: */                                          
             i = i - 1;                           
/* 4: */                                          
             A[i] = 0;                            
/* 5: */                                          
          }                                       
/* 6: */                                          
Analysis with (arrays: interval domain x variables: top domain):
p6 = [ A: <{0} [-oo,+oo] {n,10}?> ] [ i: T n: T ]
0.000212 s

• Refinement of the segmentation: through assignments to array 
elements

• Coarsening of the segmentation: through widening
• Purely symbolic (variables abstract values are not strictly 

necessary to handle segment limits so works for all value 
abstractions!)

Top abstraction 
of simple 

variables and
expressions

The explanation of this question mark ? is forthcoming16
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Symbolic array segment bounds (cont’d)
• symbolic  not numerical  so handles arrays of unknown size

          parameter int n; /* assume n>1 */       
          int i  A[n];                    
          i = n;                              
/* 1: */                                      
          while /* 2: */ (0 < i) {            
/* 3: */                                      
             i = i - 1;                       
/* 4: */                                      
             A[i] = 0;                        
/* 5: */                                      
          }                                   
/* 6: */                                      

Analysis with widening/narrowing and (arrays: interval domain x variables: 
interval domain):
p6 = [ A: <{0,i} [0,0] {n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Array of fixed 
but unknown 

size

Todo: should work with Javascript arrays (& iterators) with -1  +1 bounds and segments with float 
limits (?).

17
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• The classical operational semantics (John 
McCarthy):

Array 2  Set of indices ! Set of values

• Our semantics for segmentation:

Array 2  Values of variables ! Set of indices 
! Set of values

The semantics of arrays (revisited I)

18
John McCarthy: Recursive Functions of Symbolic Expressions and Their Computation by Machine  Part I. C ACM 3(4): 184-195 (1960)
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• The classical operational semantics (John 
McCarthy):

Array 2  Set of indices ! Set of values

• Our semantics for segmentation:

Array 2  Values of variables ! Set of indices 
! Set of values

The semantics of arrays (revisited I)

Segments

John McCarthy: Recursive Functions of Symbolic Expressions and Their Computation by Machine  Part I. C ACM 3(4): 184-195 (1960)
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• The classical operational semantics 
(J. McCarthy):

Array 2  Set of indices ! Set of values

• Our semantics for relational segmentation:

Array 2  Values of variables ! Set of indices 
! Set of (index x values)

The semantics of arrays (revisited II)

Segments

Relation between indexes and values per segment

20
John McCarthy: Recursive Functions of Symbolic Expressions and Their Computation by Machine  Part I. C ACM 3(4): 184-195 (1960)
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• Disjunctions are needed (as shown by the array 
initialization example)

• Disjunctive enumeration of cases leads to 
combinatorial explosion (e.g. because of 
conditionals and/or loops)

• Abstract interpretation offers a standard solution 
through over-approximation (preserves soundness 
but not completeness) 

• A simple & cheap join is needed for any efficient 
array content analysis abstract domain (can over-
approximate the lub/disjunction)

Disjunctions

21
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• Disjunctions are introduced exclusively through 
possibly empty segments

<{0} [0,0] {i}? [-oo,+oo] {n,10}?>

A very simple solution for disjunction: 
possibly empty segments

 if i = 0;then
     block is empty (so array A is
     not initialized)
 else if i > 0 then
     A[0] = ... = A[i-1] = 0
 else (* i < 0 *)
     Impossible
    

22
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The array segmentation abstract domain

<L ... {e1,...,en} A {e’1,...,e’m}[?] ... H>

Segment bounds

Abstraction of array 
element pairs (i  vi) 
within the segment

Possibility of emptiness:
• e1=...=en<e’1=...=e’m
• e1=...=en≤e’1=...=e’m ?

23

_



Seminar,  IBM Hawthorn,  April 24,  2010                                                                                                                                          © P. Cousot & R. Cousot (with F. Logozzo)

• Which symbolic expressions are used in block 
bounds?

• Which array abstraction is used to abstract array 
element values (i, vi) within a segment?

• Which variables abstraction is used to abstract 
variables appearing in expressions?

• Which reductions are performed between symbolic 
block limits and abstractions of variables?

• Which coarseness is chosen for widenings/
narrowings?

Parametrization of the 
array segmentation abstract domain functor

24
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• Symbolic expressions : 
• constant
• variable ± constant

• Array abstraction and variables abstraction  choice 
of

• top
• constant 
• parity
• intervals
• reduced product  (parity x intervals)
• reduced cardinal power  of intervals by parity

• 5699 lines of Ocaml (+6481 for unit tests)

The ARRAYAL prototype

Could be functors!

Could be more expressive 
but very simple solver for

e  = <  ≤  e’ !

Note: ARRAYAL is an abstract domain functor not a static analyzer so the abstract equations for 
programs of this talk have been established by hand (for lack of time for the equation generator).
(*) Patrick Cousot and Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 
1979: pp. 269-282.

(*)

(*)

25
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• The array segmentation abstract domain will work 
in any analysis context since no other information 
is necessary on simple variables (but for aliasing)  
although it can is exploited if available

• The segmentation and ordering information is 
inferred during the analysis (not given by the user/
or another (pre-)analysis)

• The cost/precision can be balanced by 

• appropriate abstraction of array element and 
variable values

• degree of precision of reductions

• No need for any other external component

The importance of parametrization

26
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Example of reduction of array segments bounds by 
the variable values abstraction

          parameter int n; /* assume n>1 */       
          int i, A[n];                    
          i = n;                              
/* 1: */                                      
          while /* 2: */ (0 < i) {            
/* 3: */                                      
             i = i - 1;                       
/* 4: */                                      
             A[i] = 0;                        
/* 5: */                                      
          }                                   
/* 6: */                                      

Analysis with widening/narrowing and (arrays: interval domain x variables: 
interval domain):

Segmentation reduction ('?' elimination)? (y/n): no
p6 = [ A: <{0} [-oo,+oo] {i}? [0,0] {n}?> ] [ i: [0,0] n: [2,+oo] ]

Segmentation reduction ('?' elimination)? (y/n): yes
p6 = [ A: <{0,i} [0,0] {n}> ] [ i: [0,0] n: [2,+oo] ]
0.001832 s

The fact that 
i=0 is not taken 

into account

Here  it is!
27
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A segmentation analysis 
example

28
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A detailed example (cont’d)
          int n = 10;     
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10;i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]

29
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A detailed example (cont’d)
          int n = 10;      
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]

30
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A detailed example (cont’d)
          int n = 10;    
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]

31
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A detailed example (cont’d)
          int n = 10;      
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]
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A detailed example (cont’d)
          int n = 10;      
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]
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A detailed example (cont’d)
          int n = 10;      
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]
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A detailed example (cont’d)
          int n = 10;      
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]
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A detailed example (cont’d)
          int n = 10;      
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]
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A detailed example (cont’d)
          int n = 10;      
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]
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A detailed example (cont’d)
          int n = 10;      
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]
p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]
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A detailed example (cont’d)
          int n = 10;      
          int i, A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1;                           
/* 5: */                                          
          }                                       
/* 6: */                                          

p1 = A[n][n=10 i=0] = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p2 = ... = p5 = p6  = <>; [ i: _|_ n: _|_ ]
p2 = p2 W (p1 U p5) = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p3 = p2[i<n]        = <{0,i} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0,i} [0,0] {1,i+1} [-oo,+oo] {n,10}>; [ i: [0,0] n: [10,10] ]
p5 = p4[i=i+1]      = <{0 i-1} [0,0] {1,i} [-oo,+oo] {n,10}>; [ i: [1,1] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,+oo] n: [10,10] ]
p3 = p2[i<n]        = <{0} [0,0] {i}? [-oo,+oo] {n,10}>; [ i: [0,9] n: [10,10] ]
p4 = p3[A[i]=0]     = <{0} [0,0] {i}? [0,0] {i+1} [-oo,+oo] {n,10}?>; [ i: [0,9] n: [10,10] ]
p5 = p4[i=i+1]      = <{0} [0,0] {i-1}? [0,0] {i} [-oo,+oo] {n,10}?>; [ i: [1,10] n: [10,10] ]
p2 = p2 W (p1 U p5) = <{0} [0,0] {i}? [-oo,+oo] {n,10}?>; [ i: [0,+oo] n: [10,10] ]

... one more iteration with {n,10}? instead of {n,10} changes nothing

p6 = p2[i>=n]       = <{0} [0,0] {n,10,i}>; [ i: [10 +oo] n: [10,10] ]
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Concretization 
(meaning of abstract 

properties)

40



Seminar,  IBM Hawthorn,  April 24,  2010                                                                                                                                          © P. Cousot & R. Cousot (with F. Logozzo)

• Variable environments            map variable names                                              

           to their values                :

41

Variable environments

would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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Semantics of expressions

• Expressions               have concrete semantics

          so that

• In all examples 
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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•                 is a variable environment
•                        is the symbolic lower bound
•                        is the symbolic upper bound
•  The array value        maps indexes
                                              to value pairs

would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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would be strict), that A[0] = A[1] = . . . = A[i − 1] = 0
when i > 0 and that the values A[i], A[i + 1], . . . , A[n − 1]
are unknown when n > i. So the array is divided into consecutive
non-overlapping segments, which may be empty and are delimited
by symbolic expressions in increasing order. The abstraction of the
array elements within one segment is uniform but different segments
can have different abstract properties.

In order to avoid combinatorial explosion, disjunctions appear in
restricted form only either as possible segment emptiness, or sym-
bolic bounds which may have different values, or in the segment
content analysis (see Sec. 12.1). For example, the post-condition p6
expresses that either the array is empty (i.e. n = i = 0) or else
n = i > 0 and all array elements are initialized to 0.

Please note that the case n < 0 is excluded. This comes from the
initial condition

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

stating that n � 0 since most programming languages like C do not
allow arrays of negative size. The case n < 0 leads to a compile-
time or runtime error in which case execution is assumed to stop. We
handle all such runtime errors including division by zero, index out of
bounds, etc by stopping execution. This is a sound treatment of their
undefined semantics in absence of runtime errors but may otherwise
miss some other possible erroneous executions.

2. A Detailed Example of Analysis
We now consider the details of the analysis of example 1 with con-
stant propagation [16] so that initially

p0 = [ A: <{0},T,{n}?> ] [ i: T n: T ]

since the information n � 0 resulting from the assumption of absence
of error in the array declaration cannot be recorded with the constant
abstract domain and is therefore approximated by�. The assignment
i = 0; changes the value of simple variable i to 0 and the equality
i = 0 valid after the assignment is also recorded in the lower bound
of the array segment. Initially p2 = p3 = . . . = p5 = ⊥ denotes
unreachability of the loop so that the abstract loop invariant is initially
p2 = p1 � p5 = p1 (where � is the join in the constant abstract
domain such that x � ⊥ = ⊥ � x = x, x � � = � � x = �,
i � i = i, and i � j = � when i �= j).

p2 = p1 = p0[i=0] = [ A: <{0,i},T,{n}?> ] [ i: 0 n: T ]

The loop is entered when i < n so that the array, hence its only
segment, cannot be empty.

p3 = p2[i<n] = [ A: <{0,i},T,{n}> ] [ i: 0 n: T ]

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the value
of expression 0 in the constant domain that is 0.

p4 = p3[A[i]=0] = [ A: <{0,i},0,{1,i+1},T,{n}?> ]
[ i: 0 n: T ]

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . n may be empty. The simple variable assignment
i = i + 1; is invertible since the old value of i is the new value
of variable i decremented by 1. So the segment bounds involving
variable i have to be modified accordingly.
p5 = p4[i=i+1] = [ A: <{0,i-1},0,{1,i},T,{n}?> ]

[ i: 1 n: T ]

The next approximation of the loop invariant is p2 = p1 � p5. This
join first involves the unification of the segment {0, i}�{n} of p1
and those {0, i − 1}0{1, i}�{n}? of p5. Keeping only the ex-
pressions appearing in both segmentations, we get {0, i}�{n} and
{0}0{i}�{n}?. Splitting the bound {0, i}we get {0}⊥{i}?�{n}
and {0}0{i}�{n}? so that the union can now be performed
segmentwise in the constant domain {0}⊥ � 0{i}(? � )� �
�{n}( �?) = {0}0{i}?�{n}? since the segments may be empty
in at least one of the cases (that is � = for non-empty segments

and otherwise � ? = ? � = ? � ? = ? for possibly empty ones).
Because 0 � 1 = � in the constant domain, we get

p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [ i: T n: T ]

The next iteration is similar ([ i: T n: T ] everywhere)
p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information
that 0 � i � n.

3. The Semantics of Simple Variables and
Expressions

The operational semantics of simple variables is assumed to be con-
crete variable environments ρ ∈ Rv mapping variables names i ∈ X
to their values ρ(i) ∈ V so that Rv � X �→ V . The program ex-
pressions e ∈ E have a semantics �e�ρ in the concrete variable envi-
ronment ρ so that �e� ∈ Rv �→ V . For simplicity, the values in our
examples are chosen to be integers (V = Z).

4. The Semantics of Arrays
The operational semantics of array variables (such as A ∈ A) are
concrete array environments θ ∈ Ra mapping array names A ∈ A to
their values θ(A) ∈ A so that Ra � A �→ A .

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A where ρ ∈ Rv is a variable
environment, A.low ∈ E is the integer lower bound (0 in our
examples), A.high ∈ E is the integer upper bound, and A maps
an index i ∈ [�A.low�ρ, �A.high�ρ) to a pair (i, A(i)) of the
index i and the corresponding array element value A(i). So A �
Rv × E× E× (Z �→ (Z× V)).

This is in contrast with the classical semantics a ∈ [�, h) �→ V
of arrays mapping indexes in [�, h) to array element values in V . The
explicit inclusion of the array bounds is useful to handle arrays of
variable length (although all examples of the paper consider arrays
of fixed length, maybe unknown, with A.low = 0). The inclusion
of the concrete variable environment is also necessary to explain
segments (which are sub-arrays whose bounds may symbolically
coincide at different program points although they have different
concrete values, so that the length of the segment can vary during
execution as shown e.g. in Sec. 2 by p1 and p5). The enriched
semantics of arrays makes explicit the fact that arrays relate indexes
to indexed element values by considering array elements to be a pair
of an index and an array element value. So if an array variable A
has array value a = (ρ, A.low, A.high, A) where ρ is the concrete
variable environment then A[i] denotes the pair (i, A(i)) where
i = �i�ρ is the index value. It is a “buffer overrun” runtime error
if i < �A.low�ρ or �A.high�ρ � i, in which case the value of
A[i] is undefined so that program execution is assumed to stop.

For example, let us assume that in the following program
parameter int n; /* assume n>1 */
int i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = i;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */

(2)

the initial value of n is n > 1. At program point 6 the final values of
the simple variables are given by ρ6 such that ρ6(i) = ρ6(n) = n.
The final value of A is a6 = (ρ6, 0, n, A6) with A6(i) = (i, i) for
all i ∈ [0, n). Because ρ6, 0, and n are easily understood from the
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context, we write A[i] = (i, i) by abuse of notation where the value

i of i is assumed to be within the bounds.

In the analysis of example (1) in Sec. 2, the pair (i, A[i]) was first

abstracted in A[i], which is the case for all non-relational abstract

domains such as constant propagation.

Array properties are sets of concrete array values and so belong

to ℘ (Rv × E× E× (Z �→ (Z× V))) where Z ⊆ E.

5. Abstract Domains and Abstract Domain

Functors

An abstract domain D is a set D of elements representing abstract

properties (e.g. intervals) together with abstract operations D.op ab-

stracting the property transformers involved in the definition of the

semantics of the programming language (e.g. interval sum). An ab-

stract domain functor D(D1, . . . ,Dn) composes abstract proper-

ties D1, . . . ,Dn to build a new class of abstract properties D (e.g.

abstract environments mapping program numerical variables to inter-

vals) and operations (e.g. assignment of an interval to a variable). For

short, we can omit the parameters writing D or op.

6. The Variable Abstract Domain

We let X be an abstract domain encoding program variables includ-

ing a special variable v0 which value is assumed to be always zero

so X = X ∪ {v0} where v0 �∈ X. Operations include the equality

comparison of variables.

7. The Variable Environment Abstract Domain

Properties and property transformers of concrete variable environ-

ments in ℘(Rv) are abstracted by the variable environment abstract

domain R(X) which depends on the variable abstract domain X.

The abstract properties ρ ∈ R are called abstract variable en-

vironments. The concretization γv(ρ) denotes the set of concrete

variable environments having this abstract property. It follows that

γv ∈ R �→ ℘(Rv).

The static analysis of simple variables may be relational or not, in

which case ℘(Rv) is first abstracted to X �→ ℘(V) andR � X �→ V
where the abstract domain V abstracts properties of values in V with

concretization γv ∈ V �→ ℘(V).

In both cases, the abstract operations include a.o. the partial order

(�), join (�), meet (�), widening (
�

), narrowing (
�

), the abstract

evaluation of program arithmetic and Boolean expressions, the as-

signment to simple variables, etc [6].

8. Expression Abstract Domain

The symbolic expressions appearing in segment bounds are assumed

to belong to the expression abstract domain E(X). The abstract

properties E consist in a set of symbolic expressions depending on the

variables in X restricted to a canonical normal form plus the bottom

expression⊥ corresponding to unreachability and the top expression

� abstracting all symbolic expressions which cannot be put in the

considered normal form. The array bound expressions are assumed

to be convertible in canonical normal form.

Different canonical forms of expressions correspond to different

expressions abstract domains E which can be passed as a parameter

to instantiate the segment bounds abstract domain functor B.

8.1 Expressions in simple normal form

In our examples, the abstract expressions E are restricted to the

normal form v+c where v ∈ X is an integer variable plus an integer

constant c ∈ Z (so that an integer constant c can be represented by

v0 + c since v0 is always zero).

An alternative example of convenient normal form would be

linear expressions a.v+ b where v is a variable and a, b ∈ Z (a = 0
for constants).

8.2 Concretization of expressions in normal form

Given an abstract domain for simple variables with concretization

γv ∈ R �→ ℘(X �→ Z), the concretization γe(e)ρ of expressions

e ∈ E depends on the abstract value ρ ∈ R of the simple variables

in X and is the set of possible concrete values of the expression. So

γe ∈ E �→ R �→ ℘(V) such that γe(⊥)ρ � ∅, γe(�)ρ � V ,

γe(v0 + i)ρ � {i}, and otherwise γe(v + i)ρ � {ρ(v) + i | ρ ∈
γv(ρ)}.

8.3 Operations on expressions in normal form

Simple operations are defined on symbolic expressions in normal

form such as the check that an expression depends or not on a given

variable, or the substitution of an expression for a variable in an

expression followed by its reduction in normal form, returning � if

impossible.

Given two expressions in normal form, we must be able to answer

the question of their equality and inequality, which in the abstract is

always true, false or unknown. These abstract equality and inequality

tests of expressions may be more or less sophisticated. We consider

below three cases, which one is chosen can be a parameter of the

analysis.

8.3.1 Syntactic comparisons

In their simplest form the comparisons can be purely syntactic. For

example v+i = v’+j is true if and only if v = v’ and i = j, false if

v = v’ and i �= j and unknown otherwise. Similarly v+ i < v’+ j
is true if and only if v = v’ and i < j, false if v = v’ and i � j and

unknown otherwise. The comparison of i and v + j where v �= v0

always has an unknown result. This is very simple, rapid, but rather

imprecise.

8.3.2 Variable comparisons

An immediate refinement consists in using the abstract information

ρ ∈ R available on simple variables. This is always possible since

the corresponding abstract domains, whether relational or not, do

have primitives to handle program conditional expressions.

For example assume that R is an interval analysis [6], ρ(v) =
[a, b], and ρ(v’) = [a�, b�]. The comparison v + i < v’ + j is true

when v = v’ and i < j or v �= v’ but (using the abstract variable

environment) b + i < a� + j, false when v = v’ and i � j or

v �= v’ but (using the abstract variable environment) b� + j � a + j
and unkown otherwise. Of course relational domains such as DBM

[8] and octagons [20] can directly answer such questions.

In that case the expression abstract domain E is an abstract do-

main functor E(X,R) depending on the variable abstract domain X
and the variable environment abstract domain R.

Please note that comparison of expressions e, e� ∈ E must be

done for all possible variable abstract domains R which requires all

of them to share a common abstract interface for expression compar-

ison. A reasonable choice is to translate the comparison of normal

expressions in E to that of program expressions which anyway have

to be evaluated in the abstract using R.

8.3.3 Segmentation-based comparisons

An array segmentation {e1
1, . . . , e

1
m1} . . . {e2

1, . . . , e
2
m2}[?2] . . .

{en
1 , . . . , en

mn}[?n] maintains the information that e1
1 = . . . =

e1
m1 � e2

1 = . . . = e2
m2 � . . . � en

1 = . . . = en
mn (where

the i-th inequality is strict when [?i+1] is empty). This information

can also be used to compare expressions symbolically.

In its simplest form, two expressions are known to be equal if they

appear in the same segment bound, inequal if they appear in different

segment bounds of the same array (strictly when separated by at least

one ), and otherwise their comparison is unknown.

More sophisticated algorithms can be used depending on the

allowed syntactic form of normal expressions.

For example, in the case of expressions of the restricted form

v + i, i ∈ Z where constant expressions are represented by the

distinguished variable v0 which value is assumed to always be zero,

we can use Pratt’s algorithm [21] to compare their symbolic values.

A graph matrix is constructed with an edge (v, v’) labelled i − j
whenever v+i � v’+j (respectively i−j+1 when v+i < v’+j) is
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Concretization (cont’d)

• Concretization of variables:

• Concretization of bound expressions:

• Concretization of segment bounds:

• Concretization of segment abstract values:
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form

{e1
1, . . . , e

1
m1} P1 {e2

1, . . . , e
2
m2}[?2] P2 . . . (4)

Pn−1 {en
1 , . . . , en

mn}[?n]
where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form

{e1
1, . . . , e

1
m1} P1 {e2

1, . . . , e
2
m2}[?2] P2 . . . (4)

Pn−1 {en
1 , . . . , en

mn}[?n]
where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form
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1
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2
m2}[?2] P2 . . . (4)

Pn−1 {en
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where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form

{e1
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Pn−1 {en
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where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form
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• the segment bounds {ei
1, . . . , e
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mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form

{e1
1, . . . , e

1
m1} P1 {e2

1, . . . , e
2
m2}[?2] P2 . . . (4)

Pn−1 {en
1 , . . . , en

mn}[?n]
where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):

5 2010/3/13



Seminar,  IBM Hawthorn,  April 24,  2010                                                                                                                                          © P. Cousot & R. Cousot (with F. Logozzo)

• Concretization of a segment                  :

47

Concretization (cont’d)

yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form

{e1
1, . . . , e

1
m1} P1 {e2

1, . . . , e
2
m2}[?2] P2 . . . (4)

Pn−1 {en
1 , . . . , en

mn}[?n]
where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form
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where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form

{e1
1, . . . , e

1
m1} P1 {e2

1, . . . , e
2
m2}[?2] P2 . . . (4)

Pn−1 {en
1 , . . . , en

mn}[?n]
where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form

{e1
1, . . . , e

1
m1} P1 {e2

1, . . . , e
2
m2}[?2] P2 . . . (4)

Pn−1 {en
1 , . . . , en

mn}[?n]
where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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γ�s(B P B�
[?])ρ � {(ρ, �, h, A) | ρ ∈ γv(ρ) ∧ ∀e1, e2 ∈ B : ∀e�1, e�2 ∈ B�

:

���ρ ≤ �e1�ρ = �e2�ρ <[?] �e�1�ρ = �e�2�ρ ≤ �h�ρ
∧ ∀i ∈ [ �e1�ρ, �e�1�ρ ) : A(i) ∈ γa(P )}

The concretization of an array segmentation B1P1B2[?
2]P2 . . . Pn−1Bn[?n] is

the set of arrays whose elements in all segments [Bi, Bi+1), i = 1, . . . , n − 1

satisfy abstract property Pi and whose lower and upper bounds are respectively

given by B1 and Bn.

γs(B1P1B2[?
2
]P2 . . . Pn−1Bn[?

n
])ρ �

{(ρ, �, h, A) ∈
n−1�

i=1

γ�s(BiPiBi+1[?
i+1

])ρ |

∀e1 ∈ B1 : �e1�ρ = ���ρ ∧ ∀en ∈ Bn : �en�ρ = �h�ρ}

and γs(⊥) = ∅.

11.4 Array segmentation abstract operations

11.4.1 Abstract value of an indexed array element

Assume that we have to evaluate �A[e]�ρ for the array A abstracted by the

segmentation B1P1B2[?
2]P2 . . . Pn−1Bn[?n]. The expression B1 � e � Bn is

evaluated in the abstract and a warning is emitted if the result is unreachable

(dead code), false (definite error) or unknown (potential error). Let B� be the

largest segment bound such that B� � e is true (B1 otherwise) and Bh be the

smallest segment bound such that e < Bh is true (Bn otherwise, assuming that

execution goes on only in absence of buffer overrun). The value of �A[e]�ρ is

then
�h−1

k=� Pk where � is the join in the domain A abstracting (index, value of

indexed array element) pairs. A call to a conversion function of C is necessary

if this abstract value in A must be converted to a variable abstract value in R.

11.4.2 Assignment to an array element

In an array element assignment A[i] = e with abstract variable environment ρ
where the array A is abstracted by the segmentation B1P1B2[?

2]P2 . . . Pn−1Bn[?n],

we first determine the range of segments such that B� � i < Bh is definitely

true as explained in Sec. 11.4.1. The segmentation of A can be thought of as

being abstracted to B1P1 . . . B�[?
�](

�h−1
k=� Pk)Bh[?�]Ph . . . Pn−1Bn[?n] where [?�]

is ? if all the [?�+1], . . . , [?h] are ? (so that the block B� . . . Bh can then be empty)

and otherwise. Of course it may happen that h = �+1 in which case only one

segment is concerned or � = 1 and h = n in which case all segments are smashed.

In all cases, the assignment is definitely in the segment B� . . . Bh (may be at its

borders). This segment is split. Let P ∈ A be the abstraction of the pair (i, e)
in A. After the array element assignment, the array segmentation of A becomes
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• Concretization of an array:

48

Concretization (cont’d)

yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form

{e1
1, . . . , e
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m1} P1 {e2

1, . . . , e
2
m2}[?2] P2 . . . (4)

Pn−1 {en
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mn}[?n]
where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):
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yields the post-condition

p6 = [ A: <{0,i},[0,0],{n}> ] [ i: [0,0] n: [2,+oo] ]
0.001854 s

Example 3: To illustrate the possibility of relating the value of

array elements to their index, consider the static analysis of

int n = 10, i, A[n];
i = 0;

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

This example is typical of data transfer protocols where even and odd

numbered packets contain data of different types e.g. [10, Sec. 6.6.3],

[19], [25, Sec. IV, Item 3].

We will combine parity (where | (i.e. ⊥) is unreachable, o is

odd, e is even, T (i.e. �) is unknown) and intervals (where | is

unreachable while [a,b] with a � b means included between a and

b where -oo (resp. +oo for +∞) is the minimal (resp. maximal)

machine-representable integer).

Example 3.1: The first abstraction is the reduced product [7] of

parity and intervals where pairs of a parity and an interval denote

the conjunction of both properties (with a reduction e.g. of bounds

by parity (such as (e,[0,9]) → (e,[0,8])) and parity for con-

stant intervals (such as (T,[1,1])→ (o,[1,1]))). In the follow-

ing analysis of (3) this abstraction is used both for variables and

array elements (hence ignoring their relationship to indexes since

�(i, e)�ρ = (parity(�e�ρ), interval(�e�ρ))).

p1 = [ A: <{0,i},(T, [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(e, [-16,0]),{i}?,(T, [-oo,+oo]),{n,10}?> ]
[ i: (e, [0,10]) n: (e, [10,10]) ]

p8 = [ A: <{0},(e, [-16,0]),{n,10,i}>]
[ i: (e, [10,10]) n: (e, [10,10]) ]

0.000832 s

The analysis of i starts with the initial value (e,[0,0]) and is

(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where n
in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by reduction

through evenness. After one more iteration we get back (e,[0,10])
to narrow (e,[0,+oo]) which is (e,[0,10]) and is a fixpoint.

Example 3.2: The second abstraction is the reduced cardinal power

[7] of intervals by parity which abstract properties have the form

(o -> io,e -> ie) meaning that the interval is io (resp. ie) when

the parity is o (odd, resp. e, even). In the following non-relational

analysis of (3), we use the reduced product of parity and intervals

for simple variables and the power of parity by interval for array

elements (hence ignoring their relationship to indexes since �(i, e)�ρ
maps parity(�e�ρ) to interval(�e�ρ)). For example (o -> | ,e
-> [-16,0]) means that the indexed array elements must be even

with value included between −16 and 0.

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> _|_,e -> [-16,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> _|_,e -> [-16,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.00088 s

Observe that the abstraction is more powerful but the result is exactly

the same as in the previous analysis in Ex. 3.1 using the reduced prod-

uct since (o -> | ,e -> [-16,0]) is exactly (e, [-16,0])
on array elements.

Example 3.3: The third abstraction also uses the reduced cardinal

power of intervals by parity, but this time in a relational way for

arrays thus relating the parity of an index to the interval of possible

variation of the corresponding element (so �(i, e)�ρ is a map of

parity(�i�ρ) to interval(�e�ρ)). We get

p1 = [ A: <{0,i},(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}> ]
[ i: (e, [0,0]) n: (e, [10,10]) ]

p2 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{i}?,
(o -> [-oo,+oo],e -> [-oo,+oo]),{n,10}?> ]

[ i: (e, [0,10]) n: (e, [10,10]) ]
p8 = [ A: <{0},(o -> [-16,-16],e -> [0,0]),{n,10,i}> ]

[ i: (e, [10,10]) n: (e, [10,10]) ]
0.001274 s

so that the array elements with odd index are shown to be equal to

-16 while those of even index are zero.

12.2 Array Segmentation Abstract Predicates
The array segmentation abstract predicates belong to S � {(B ×
A)× (B×A× { , ?})k × (B× { , ?}) | k � 0}∪ {⊥} and have

the form

{e1
1, . . . , e

1
m1} P1 {e2

1, . . . , e
2
m2}[?2] P2 . . . (4)

Pn−1 {en
1 , . . . , en

mn}[?n]
where

• the segment bounds {ei
1, . . . , e

i
mi} ∈ B, i ∈ [1, n], n > 1,

are finite non-empty sets of symbolic expressions in normal form

ei
j ∈ E as respectively considered in Sec. 9 and Sec. 8,

• the Pi∈ A are abstract predicates chosen in an abstract domain A
denoting possible values of pairs (index, indexed array element) in

a segment, and

• The optional question mark [?i] follows the upper bound of a

segment. Its presence ? means that the segment might be empty.

Its absence means that the segment cannot be empty. Because

this information is attached to the segment upper bound (which

is also the lower bound of the next segment), the lower bound

{e1
1, . . . , e

1
m1} of the first segment never has a question mark.

({ , ?}, �, �, �) is a complete lattice with ≺ ?.

The symbolic expressions ek
i ∈ E in a given segment bound de-

pend on simple variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary variable

x can appear in a segment bound for array A. The consecutive seg-

ment bounds are in strictly increasing order in the concrete except

when followed by a question mark meaning that the preceding block

may be empty. There is no hole between segments (since this hole

can always be viewed as another segment whose properties are un-

known). The first block limit always contains an expression in normal

form denoting the array lower bound while the last block always con-

tains an expression in normal form denoting the array upper bound.

Within one block the abstraction is uniform (but can be relational,

since the array semantics of Sec. 4 can relate the array value A[i]
to the index i). A possible refinement would be to introduce rela-

tionships between segment emptiness marks (so as to express that

in <{0},0,{i}?,T,{n}?> both segments cannot be simultaneously

empty), which we don’t do for the sake of efficiency.

12.3 Array segmentation concretization
Given the concretizations γv ∈ R �→ ℘(Rv) for the variable

abstract domain, γe ∈ E �→ R �→ ℘(V) for expressions in

normal form, γb ∈ B �→ R �→ ℘(Rv) for segment bounds,

γa ∈ A �→ ℘(Z × V) for the array elements abstract domain, the

concretization γs of an abstract array segmentation (4) is an array

property so γs ∈ S �→ R �→ ℘ (Rv × Z× Z× (Z �→ (Z× V)))
with γs(⊥) � ∅.

The concretization of a segment B P B� [?] is the set of arrays

whose elements in the segment [B, B�) satisfy the abstract property

P (< stands for < while <? stands for �):

5 2010/3/13

γ�s(B P B�
[?])ρ � {(ρ, �, h, A) | ρ ∈ γv(ρ) ∧ ∀e1, e2 ∈ B : ∀e�1, e�2 ∈ B�

:

� ≤ �e1�ρ = �e2�ρ <[?] �e�1�ρ = �e�2�ρ ≤ h

∧ ∀i ∈ [ �e1�ρ, �e�1�ρ ) : A(i) ∈ γa(P )}

The concretization of an array segmentation B1P1B2[?
2]P2 . . . Pn−1Bn[?n] is

the set of arrays whose elements in all segments [Bi, Bi+1), i = 1, . . . , n − 1

satisfy abstract property Pi and whose lower and upper bounds are respectively

given by B1 and Bn.

γs(B1P1B2[?
2
]P2 . . . Pn−1Bn[?

n
])ρ �

{(ρ, �, h, A) ∈
n−1�

i=1

γ�s(BiPiBi+1[?
i+1

])ρ |

∀e1 ∈ B1 : �e1�ρ = ���ρ ∧ ∀en ∈ Bn : �en�ρ = �h�ρ}

and γs(⊥) = ∅.

11.4 Array segmentation abstract operations

11.4.1 Abstract value of an indexed array element

Assume that we have to evaluate �A[e]�ρ for the array A abstracted by the

segmentation B1P1B2[?
2]P2 . . . Pn−1Bn[?n]. The expression B1 � e � Bn is

evaluated in the abstract and a warning is emitted if the result is unreachable

(dead code), false (definite error) or unknown (potential error). Let B� be the

largest segment bound such that B� � e is true (B1 otherwise) and Bh be the

smallest segment bound such that e < Bh is true (Bn otherwise, assuming that

execution goes on only in absence of buffer overrun). The value of �A[e]�ρ is

then
�h−1

k=� Pk where � is the join in the domain A abstracting (index, value of

indexed array element) pairs. A call to a conversion function of C is necessary

if this abstract value in A must be converted to a variable abstract value in R.

11.4.2 Assignment to an array element

In an array element assignment A[i] = e with abstract variable environment ρ
where the array A is abstracted by the segmentation B1P1B2[?

2]P2 . . . Pn−1Bn[?n],

we first determine the range of segments such that B� � i < Bh is definitely

true as explained in Sec. 11.4.1. The segmentation of A can be thought of as

being abstracted to B1P1 . . . B�[?
�](

�h−1
k=� Pk)Bh[?�]Ph . . . Pn−1Bn[?n] where [?�]

is ? if all the [?�+1], . . . , [?h] are ? (so that the block B� . . . Bh can then be empty)

and otherwise. Of course it may happen that h = �+1 in which case only one

segment is concerned or � = 1 and h = n in which case all segments are smashed.

In all cases, the assignment is definitely in the segment B� . . . Bh (may be at its

borders). This segment is split. Let P ∈ A be the abstraction of the pair (i, e)
in A. After the array element assignment, the array segmentation of A becomes
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The array segmentation 
abstract domain 
functor: abstract 

operations
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Abstract value of an array element

1. Determine to which segment(s) of A the index e 
may belong

2. If none signal an array overrun

3. Select the corresponding abstract value of array 
elements (their join if more than one)

Value of A[e]: 

a1 a2 a3 a4 a5

e

A[e] := a2        a3        a4  tt
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Assignment to an array element
Assignment to A[e] := v    (continued)

1. Determine to which segment(s) the index e may 
belong

2. If none signal a array overrun

3. If more than one  join these segments (using the 
array elements join)

a1 a2 a3 a4 a5

e

a1 a5

e

a2        a3        a4  tt
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4. Split the segment to insert abstract value v of 
assigned element (with special cases for assignments 
to segment bounds positions)

Assignment to an array element

Assignment to A[e] := v    (continued)

5. Adjust emptiness of resulting segments

a1 a5

{e}

a2        a3        a4  tt a2        a3        a4  tt

{e+1}

v
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Assignment to a simple variable

• Invertible assignment inew = e(iold) so iold  = e-1(inew)
• Replace i by e-1(inew) in all expressions in array 

segment bounds where i does appear

• Non-invertible assignment to i = e
• Eliminate all expressions in array segment bounds 

where i does appear
• If a block limit becomes empty, join adjacent 

blocks
• Add i to all block limits containing e

[ A: <{0} [-oo,+oo] {i} [1 +oo-1] {n}?> ] [ i: [1 +oo] n: [2,+oo] ]
i=i-1;
[ A: <{0} [-oo,+oo] {i+1} [1 +oo-1] {n}?> ] [ i: [0 +oo-1] n: [2,+oo] ]
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• Test e = e’
• Add e/e’ in segment bounds with e’/e

• Test e < e’
• Adjust emptiness (and reduce block bounds)

Conditionals on simple variables

Conditionals on array elements

• Access + restriction by test + assignment
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Segmentwise comparison,  join,  meet,  
widening,  narrowing

• For identical segmentations  binary operations are 
performed segmentwise

• Example: join

<{0}  [0,0]   {i}  [0,2]    {n}> 
<{0}  [1,1]   {i}  [-1,0]   {n}> 
<{0}  [0,1]   {i}  [-1,2]   {n}>

t
=
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Segmentation unification

• For non-identical segmentations  a segment unification 
must be performed first:

• By splitting segments when possible

<{0} a {i} b {n}>           <{0} a {i} b {j} b {n}>

<{0} a’ {i} b’ {j} c’ {n}>          <{0} a’ {i} b’ {j} c’ {n}>

• Otherwise  by joining adjacent segments

<{0} a {i} b {n}>          <{0} a    b  {n}>

<{0} a’ {j} b’ {n}>        <{0} a‘    b’  {n}>

    (assuming i and j are incomparable with their variable abstractions and in the other array segmentations)

t
t

56



Seminar,  IBM Hawthorn,  April 24,  2010                                                                                                                                          © P. Cousot & R. Cousot (with F. Logozzo)

Example of segmentation unification in a union

one inew as iold = (inew - 1). So the old value iold is replaced in 6:: by
its expression in terms of the new one inew - 1, which, after simplification
(i - 1) + 1 = i, yields

7:: A : {0, i-1}0{1, i}�{10, n}, i : [1, 1], n : [10, 10]

at the beginning of the next iterate. At that point we have to compute the
join of the invariants at points 3 and 7 to get

4:: A : {0, i}�{10, n}, i : [0, 0], n : [10, 10]
� A : {0, i-1}0{1, i}�{10, n}, i : [1, 1], n : [10, 10]

The join first refines the segments of the array segmentations to make them
identical and then makes a pointwise join for array elements in the segments
of the segmentation, which yields

4:: A : {0}0{i}?�{10, n}, i : [0, 0], n : [10, 10]
� A : {0}0{i}�{10, n}, i : [1, 1], n : [10, 10]
= A : {0}0{i}?�{10, n}, i : [0, 1], n : [10, 10] (4)

Then a widening of the previous loop invariant (3) with the next one (5)
yields (by superposition and componentwise widening)

4:: A : {0, i}�{10, n}, i : [0, 0], n : [10, 10]
�

A : {0, i-1}0{i}?�{10, n}, i : [0, 1], n : [10, 10]
= A : {0}0{i}?�{10, n}, i : [0, 0], n : [10, 10]
�

A : {0, i-1}0{i}?�{10, n}, i : [0, 1], n : [10, 10]
= A : {0}0{i}?�{10, n}?, i : [0,+∞], n : [10, 10] . (5)

since the widening of the upper bound of i to +∞ now falsifies emptiness
of [0, i− 1] (holding only for i = 0) and the equality i-1 = 0 (holding only
for i = 1) as well as the assumption i < n 3. The loop test (i < n) now
yields

5:: A : {0}0{i}?�{10, n}, i : [0, 9], n : [10, 10] .

since definitely i < n. Next the array assignment to A[i], i ∈ [0, 9] yields
no out of bounds error and we get

6:: A : {0}0{i}0{i+1}�{10, n}?, i : [0, 9], n : [10, 10]
= A : {0}0{i+1}�{10, n}?, i : [0, 9], n : [10, 10]

3Note that the same phenomenon may happen with inexact interval unions.
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Comparison of expressions e =/≤/< e’ 
in segment bounds

• Purely symbolically (Pratt’s graphalgorithm with 
Roy/Warshall-Floyd transitive closure)

     e.g.   x + i < y + j   since   x = y & i < j

• Using non-relational information on variables
     e.g.   x + 1 < y   since   x:[-∞ ,3] & y: [5,+ ∞]

• Using information on (other) array segment 
ordering

     e.g.   x+1 < y   since   ...{x}?...{...}...{y+1}...

• Using information provided by a relational abstract 
domain (e.g. pentagons, DBM, octagons, sub-
polyhedra  polyhedra  ...)
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A few more examples
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Array partitioning
           parameter int n  /* assume n>1 */      
           var int a  b  c  A[n];                  
           assume A: {0}[-100 +100]{n}             
           a = 0; b = 0; c = 0;                    
/*  1: */                                          
           while /* 2: */ (a < n) {                
/*  3: */                                          
              if A[a] >= 0 then {                  
/*  4: */                                          
                  B[b] = A[a]; b = b + 1;          
/*  5: */                                          
              } else {                             
/*  6: */                                          
                  C[c] = A[a]; c = c + 1;          
/*  7: */                                          
              }                                    
/*  8: */                                          
              a = a + 1;                           
/*  9: */                                          
           }                                       
/* 10: */                                          

p10 = [ A: <{0} [-100,100] {n}?> B: <{0} [0,100] {b}? [-oo,+oo] {n}?> C: <{0} 
[-100,-1] {c}? [-oo,+oo] {n}?> ] [ a: [2,+oo] b: [0,+oo] c: [0,+oo] n: 
[2,+oo] ]
0.003711 s

60
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In situ array partitioning
           parameter int n; /* assume n>1 */        
           var int a  b  x  A[n];                    
           assume A: {0}[-100 +100]{n}               
           a = 0; b = n;                             
/*  1: */                                            
           while /* 2: */ (a < b) {                  
/*  3: */                                            
              if A[a] >= 0 then {                    
/*  4: */                                            
                  a = a + 1;                         
/*  5: */                                            
              } else {                               
/*  6: */                                            
                  b = b - 1;                         
/*  7: */                                            
                  x = A[a]; A[a] = A[b]; A[b] := x; 
/*  8: */                                            
              }                                      
/*  9: */                                            
           }                                         
/* 10: */                                            
Analysis with widening/narrowing and (interval domain x interval domain):
p1  = [ A: <{0,a} [-100,100] {n,b}> ] [a: [0,0] b: [2,+oo] n: [2,+oo] x: [-oo,+oo]]
p2  = [ A: <{0} [0,100] {a}? [-100,100] {b}? [-100,-1] {n}?> ] [a: [0,+oo] b: 
[0,+oo] n: [2,+oo] x: [-oo,+oo]]
p10 = [ A: <{0} [0,100] {b,a}? [-100,-1] {n}?> ] [a: [0,+oo] b: [0,+oo] n: [2,+oo] 
x: [-oo,+oo]]
0.015378 s

a b0 n

[0,100] [-100,100] [-100,-1]
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Partial initialization

62

p3 = p2[i<n] = [ A: <{0},0,{i}?,T,{n}> ] [...]
p4 = p3[A[i]=0] = [ A: <{0},0,{i}?,0,{i+1},T,{n}?> ] [...]
p5 = p4[i=i+1] = [ A: <{0},0,{i-1}?,0,{i},T,{n}?> ] [...]
p2 = p1 U p5 = [ A: <{0},0,{i}?,T,{n}?> ] [...]

so that we have reached a fixpoint. It remains to compute

p6 = p2[i>=n] = [ A: <{0},0,{n,i}?> ] [ i: T n: T ]

where n = i since the segmentation of p2 provides the information that 0 �
i � n.

The array content analysis always terminate since the only two reasons for
non-termination are impossible.

1. The array might have infinitely many symbolic segments as in <{0},...,
{n-3},...,{n-2},...,{n-1},...,{n}> which is prevented by segmenta-
tion unification and widening;

2. A segment might take successive strictly increasing abstract values which
is prevented by the use of a widening/narrowing convergence acceleration
for segment content analysis [11].

2.3 Example of Partial Initialization

Let us consider the code snippet

int a[100], c[100], i, j;

i = 0, j = 0;

while (i < 100) {
if (P(a[i])) { // For some predicate P

c[j] = i;
j = j + 1;

}
i = i + 1;

}

abstracting a pattern that we found very often in practice: traversing all the
array elements, saving into an auxiliary array c the indexes of those which
satisfy a property P (side-effects free). The partial array initialization of [20] is
a particular case of the pattern above. The abstract state at the end of the loop
should encode the fact that c may be empty (when P holds for no element of a);
may be partially initialized (when P holds for some elements of a); or it may be
fully initialized (when P holds for all the elements of a). At the end of the loop,
our analysis (instantiated with intervals [11], extension to symbolic invariants
is trivial) infers the following segmentation for c:

11

[ c: <{0},[0,99],{j}?, [-oo, +oo] ,{i,100}?> ] [ ... ]

which exactly and compactly encodes what said above. As a comparison, in

the partition-based approaches [20, 22] the abstract state at the end of the

loop contains four disjuncts (called slices in [22]): one representing the concrete

state when none of the c elements is initialized (j = 0), two representing the

partial initialization of c distinguishing when j+1 < 100 or j < 100, and one

representing the total initialization (j == 100). We tried this example using

our early implementation of [22] and we got a 2× slow-down with respect to a

normal run of Clousot (it is worth noting that the experimental results reported

in [20] and those in [21] are even worse than our first implementation). For this

example, Clousot lifted with the functor abstract domain was so fast that we

were unable to measure its impact on the performances: the additional cost is in

the order of magnitude the noise of the virtual machine (JIT, garbage collector,

. . . ) i.e. few milliseconds.

2.4 Partition

The following partitioning algorithm is an in-situ version of the algorithm con-

sidered as main example in [25] (at its turn taken from [7]). The copy version

is easy to analyze since it is not very different from initialization examples such

as (1), (2), or (3). The in-situ version is more complex to analyze.

parameter int n /* assume n>1 */
int a, b, x, A[n];
assume A: {0}[-100,+100]{n}
a = 0; b = n;

/* 1: */ while /* 2: */ (a < b) {
/* 3: */ if A[a] >= 0 then {
/* 4: */ a = a + 1;
/* 5: */ } else {
/* 6: */ b = b - 1;
/* 7: */ x = A[a]; A[a] = A[b]; A[b] := x;
/* 8: */ }
/* 9: */ }
/* 10: */

This in-situ partitioning algorithm maintains an invariant

[0,100] [-100,100] [-100,-1]

0 a b n

where positive numbers are on the left of a, the negative numbers are on the

right, from b included, and in the middle, between a and b − 1 the numbers

remain to be handled. If A[a] is positive, the limit a is moved to the right.

Otherwise, A[a] is exchanged with A[b-1] and b is moved to the left. The

algorithm terminates when the central zone is empty.

12
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I – Non-relational analysis on values (I)

          int n = 10;      
          int i  A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1:                           
/* 5: */                                          
             A[i] = -16;                          
/* 6: */                                          
             i = i + 1:                           
/* 7: */                                          
          }                                       
/* 8: */                                          

p1 = <{0,i} (T  [-oo,+oo]) {n,10}>; [ i: (e, [0,0]) n: (e, [10,10]) ]
p2 = <{0} (e, [-16,0]) {i}? (T  [-oo,+oo]) {n,10}?>; [ i: (e, [0 +oo-1]) n: (e, [10,10]) ]
p8 = <{0} (e, [-16,0]) {n,10,i}>; [ i: (e, [10,+oo-1]) n: (e, [10,10]) ]

0.000832 s

Array: reduced product of parity and 
intervals – i.e. semantics A[i] := vi

Variables: reduced product of parity 
and intervals
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          int n = 10;      
          int i  A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1:                           
/* 5: */                                          
             A[i] = -16;                          
/* 6: */                                          
             i = i + 1:                           
/* 7: */                                          
          }                                       
/* 8: */                                          

p1 = <{0,i} (o -> [-oo,+oo] e -> [-oo,+oo]) {n,10}>; [ i: (e, [0,0]) n: (e, [10,10]) ]
p2 = <{0} (o -> _|_ e -> [-16,0]) {i}? (o -> [-oo,+oo] e -> [-oo,+oo]) {n,10}?>; 
                                                 [ i: (e, [0,+oo-1]) n: (e, [10,10]) ]
p8 = <{0} (o -> _|_ e -> [-16,0]) {n,10,i}>; [ i: (e, [10,+oo-1]) n: (e, [10,10]) ]

0.00088 s

II – Non-relational analysis on values (II)

Array: interval power parity on array 
elements – i.e. semantics A[i] := vi

Variables: reduced product of parity 
and intervals
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III – Relational analysis on (indexes x values)

          int n = 10;      
          int i  A[n];                        
          i = 0;                                  
/* 1: */                                          
          while /* 2: */ (i < n) {                
/* 3: */                                          
             A[i] = 0;                            
/* 4: */                                          
             i = i + 1:                           
/* 5: */                                          
             A[i] = -16;                          
/* 6: */                                          
             i = i + 1:                           
/* 7: */                                          
          }                                       
/* 8: */                                          

p1 = <{0,i} (o -> [-oo,+oo] e -> [-oo,+oo]) {n,10}>; [ i: (e, [0,0]) n: (e, [10,10]) ]
p2 = <{0} (o -> [-16 -16] e -> [0,0]) {i}? (o -> [-oo,+oo] e -> [-oo,+oo]) {n,10}?>; [ i: 
(e, [0 +oo-1]) n: (e, [10,10]) ]
p8 = <{0} (o -> [-16 -16] e -> [0,0]) {n,10,i}>; [ i: (e, [10,+oo-1]) n: (e, [10,10]) ]

0.001274 s

Array: interval power parity on array 
elements – i.e.  semantics A[i] := (i  vi)

Variables: reduced product of parity 
and intervals
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The segmentation abstract domain functor

Variable
abstract 
domain

Expressions
abstract 
domain

Array elements
abstract 
domain

Segmentation
abstract
domain

• Our semantics for relational segmentation:

Array 2  Values of variables ! Set of indices 
! Set of (index x values)

• The abstraction functor: 
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          parameter int n; /* assume n>1 */       
          int i  A[n];                    
          i = n;                              
/* 1: */                                      
          while /* 2: */ (0 < i) {            
/* 3: */                                      
             i = i - 1;                       
/* 4: */                                      
             A[i] = i;                        
/* 5: */                                      
          }                                   
/* 6: */                                      

Analysis with widening/narrowing without thresholds and (interval 
domain x interval domain):
[ -oo +oo ]

p6 = [ A: <{0,i} [-oo,+oo-1] {n}> ] [ i: [0,0] n: [2,+oo] ]
0.003486 s

Sound  automatic  terminating but incomplete...

i: [2,+oo] initial
i: [1 +oo-1] decrementation
i: [-oo,+oo]  widening
i: [0,+oo]  test & narrowing
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Sound  automatic  terminating but incomplete...

          parameter int n; /* assume n>1 */       
          int i  A[n];                    
          i = n;                              
/* 1: */                                      
          while /* 2: */ (0 < i) {            
/* 3: */                                      
             i = i - 1;                       
/* 4: */                                      
             A[i] = i;                        
/* 5: */                                      
          }                                   
/* 6: */                                      

Analysis with widening/narrowing without thresholds and (interval 
domain x interval domain):
[ -oo +oo ]

p6 = [ A: <{0,i} [-oo +oo-1] {n}> ] [ i: [0,0] n: [2,+oo] ]
0.003486 s

i: [2,+oo] initial
i: [1 +oo-1] decrementation
i: [-oo,+oo]  widening
i: [0,+oo]  test & narrowing
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Improvement ... 1st solution
• Widening/narrowing with thresholds

          parameter int n; /* assume n>1 */       
          int i  A[n];                    
          i = n;                              
/* 1: */                                      
          while /* 2: */ (0 < i) {            
/* 3: */                                      
             i = i - 1;                       
/* 4: */                                      
             A[i] = i;                        
/* 5: */                                      
          }                                   
/* 6: */                                      

Analysis with widening/narrowing with following thresholds and 
(interval domain x interval domain):
[ -oo -1 0 1 +oo ]

p6 = [ A: <{0,i} [0 +oo-1] {n}> ] [ i: [0,0] n: [2,+oo] ]
0.001868 s
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Improvement ... 2nd solution

• Recurrent reanalysis
          parameter int n; /* assume n>1 */       
          int i  A[n];                    
          i = n;                              
/* 1: */                                      
          while /* 2: */ (0 < i) {            
/* 3: */                                      
             i = i - 1;                       
/* 4: */                                      
             A[i] = i;                        
/* 5: */                                      
          }                                   
/* 6: */                                      

Analysis with widening/narrowing without thresholds but with 
reiteration for arrays on stabilized simple variables and (interval 
domain x interval domain):
[ -oo +oo ]

p6 = [ A: <{0,i} [0 +oo-1] {n}> ] [ i: [0,0] n: [2,+oo] ]
0.002766 s 70



Seminar,  IBM Hawthorn,  April 24,  2010                                                                                                                                          © P. Cousot & R. Cousot (with F. Logozzo)

Principle of recurrent reanalysis

A0,V0 = lfp?, ?  λx, x’. x, x’ (5 × 5 ) F(x, x’)
A1,V1 = gfp       λx, x’.x, x’ ( 4 × 4) F(x, x’)
A2,V2 = lfp?,  V1  λx, x’. x, x’ (5 × t ) F(x, x’)
A3,V3 = gfp       λx, x’. x, x’ (4 × u ) F(x, x’)
...

A0,V0

A2 n V2

arrays variables×
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Segmentation relational 
analyzes 

(not yet implemented)
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Relational analyses
• Inter-segments

• Intra/inter-segment

• Can also relate to variables appearing in sets of 
expressions delimiting segment bounds

x y z r(x y z)

r(x x’ y y’ z z’)

r(x x’ y y’ z z’ v1 ... vn)

{e(v1 ... vn) ...} .........

x   x’ y   y’ z    z’
< < <

x   x’ y   y’ z    z’
< < <
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Extensions
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q   y

Existential instead of universal intra-
segment properties

A:<L ... {e1 ... en} a {e’1 ... e’m}[?] ... H>
• Universal: 

e1  = ... = en = l <[≤]  e’1  = ... = e’ m = h ^

8i: (l ≤ i ≤ h)  )   (A[i] 2 ‚(a))

• Existential:
e1  = ... = en = l <[≤]  e’1  = ... = e’ m = h ^

9i: (l ≤ i ≤ h)  )   (A[i] 2 ‚(a))

q   y

q    y q     yq   y

q   y q    y q     y
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Multi-dimentional arrays

• Consider matrices as an array of arrays of elements 
and instanciate the functor twice;

• More complex tilings (e.g. region quadtrees) are also 
conceivable
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Related work
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Related work (cotn’d)

• Of course there are many static analyzes related to 
bounds of array indexes starting from

• including for non-uniform alias analysis

• vectorization parallelization ...

Arnaud Venet: Nonuniform Alias Analysis of Recursive Data Structures and Arrays. SAS 
2002: 36-51

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of 
Programs. IProceedings of the second international symposium on Programming, Paris, 
106—130, 1976, Dunod, Paris.

Stephen J. Fink, Kathleen Knobe, Vivek Sarkar: Unified Analysis of Array and Object 
References in Strongly Typed Languages. SAS 2000: 155-174

• etc, etc.

Gerald Roth, Ken Kennedy: Dependence Analysis of Fortran90 Array Syntax. PDPTA 1996: 
1225-1235
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Related work (cont’d)

• Our basic inspiration: parametric predicate abstraction
P. Cousot:, Verification by Abstract Interpretation. Verification: Theory and Practice. 
LNCS 2772, 2003: 243-26 

used in many automatic abstract-interpretation-based array 
analyzes (often using partitions)

Denis Gopan, Thomas W. Reps, Shmuel Sagiv: A framework for numeric analysis of 
array operations. POPL 2005: 338-350

Nicolas Halbwachs, Mathias Péron: Discovering properties about arrays in simple 
programs. PLDI 2008: 339-348

Xavier Allamigeon: Non-disjunctive Numerical Domain for Array Predicate 
Abstraction. ESOP 2008: 163-177
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Related work (cont’d)

• Predicate abstraction with refinement and/or more arbitrary 
forms of predicates

Shuvendu K. Lahiri, Randal E. Bryant: Predicate abstraction with indexed predicates. ACM 
Trans. Comput. Log. 9(1): (2007)

Shuvendu K. Lahiri, Randal E. Bryant: Indexed Predicate Discovery for Unbounded System 
Verification. CAV 2004: 135-147

Shuvendu K. Lahiri, Randal E. Bryant: Constructing Quantified Invariants via Predicate 
Abstraction. VMCAI 2004: 267-281

Mohamed Nassim Seghir, Andreas Podelski, Thomas Wies: Abstraction Refinement for 
Quantified Array Assertions. SAS 2009: 3-18

Cormac Flanagan, Shaz Qadeer: Predicate abstraction for software verification. POPL 2002: 
191-202

Alessandro Armando, Massimo Benerecetti, Jacopo Mantovani: Abstraction Refinement of 
Linear Programs with Arrays. TACAS 2007: 373-388
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Ranjit Jhala, Kenneth L. McMillan: Array Abstractions from Proofs. CAV 2007: 193-206

Sumit Gulwani, Bill McCloskey, Ashish Tiwari: Lifting abstract interpreters to quantified 
logical domains. POPL 2008: 235-246 

Laura Kovács, Andrei Voronkov: Finding Loop Invariants for Programs over Arrays Using 
a Theorem Prover. FASE 2009: 470-485

• Theorem prover-based with refinement and/or arbitrary 
forms of predicates

Related work (con’d)
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Important evaluation criteria not always very clear from 
the array content analysis literature: 

• without program restrictions ?, 

• fully automatic without user-given specifications and 
inductive invariants ??, 

• scales up ???, 

• used/usable in production-quality static analysis 
tools ????

Evaluation criteria
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Conclusion
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The array segmentation abstract domain functor

• Fully automatic analysis (no hidden hypotheses)

• Simple

• Efficient (does scale up)

• Autonomous (no required dependencies on index 
abstractions or other analyzes)

• Parametric (precision can be gained by precise array 
element/index analyzes)

• The  abstract domain functor has been integrated in 
a production-quality static analyzer (Clousot by 
Francesco Logozzo at MSR)

• Found useful by end-users to checks contracts.
84
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public Random(int Seed) {
Contract.Requires(Seed != Int32.MinValue);

int num2 = 161803398 - Math.Abs(Seed);

this.SeedArray = new int[56];
this.SeedArray[55] = num2;

int num3 = 1;

// Loop 1
for (int i = 1; i < 55; i++) {

int index = (21 * i) % 55;
this.SeedArray[index] = num3; // (*)
num3 = num2 - num3;
if (num3 < 0) {
num3 += 2147483647;

}
num2 = this.SeedArray[index];

}

Contract.Assert(
Contract.Forall(0, this.SeedArray.Length - 1, i => a[i] >= -1)); // (**)

// Loop 2
for (int j = 1; j < 5; j++) {

// Loop 3
for (int k = 1; k < 56; k++) {
this.SeedArray[k] -= this.SeedArray[1 + ((k + 30) % 55)];
if (this.SeedArray[k] < 0) {

this.SeedArray[k] += 2147483647;
}

}
}

Contract.Assert(
Contract.Forall(0, this.SeedArray.Length, i => a[i] >= -1)); // (***)

}

Figure 1: A motivating example taken from the core library of .NET.
Contract.{Requires, Assert, ForAll} is the CodeContracts terminology
(adopted in .NET from v4.0) to express preconditions, assertions and bounded
universal quantifications [4].

4

Lib # func. # instr. time

time
with
arr. ∆ # invariants

mscorlib.dll 21 475 4 550 656 4:06 4:15 0:09 2 430
System.dll 15 489 3 178 496 3:40 3:46 0:06 1 385

System.data.dll 12 408 2 933 248 4:49 4:55 0:06 1 325
System.Drawings.dll 3 123 626 688 0:28 0:29 0:01 289

System.Web.dll 23 647 5 242 880 4:56 5:02 0:06 840
System.Xml.dll 10 510 2 048 000 3:59 4:16 0:17 807

Table 1: The execution time with and without the array analysis, and the

number of non-trivial array invariants. Time is in minutes.

erating XML (System.Xml.dll). For each library, we report the number of

functions, the number of CIL instructions, the analysis time without the ar-

ray analysis, the analysis time with the array analysis, the slowdown, and the

number of inferred non-trivial array invariants in function postconditions. By

default, Clousot without the array analysis performs a non-null and a numerical

analysis. The array segmentation functor introduces a negligible analysis slow-

down (less than 1%) whereas it discovers precise invariants, in particular the

proper initialization of arrays. It is worth noting that unlike previous published

similar techniques, we did not hurt any corner case in which the analysis time

blew up. In all the examples (thousands of methods) we considered, the cost of

the analysis always turned out to be extremely low.

We randomly inspected some of the analysis traces of System.Drawings.dll,
and we found the analysis to infer the invariants one may expect to hold, even

for complex patterns potentially involving disjunctions (e.g. initialization using

multiple loops, conditional initialization of an array prefix (or postfix) followed

(or not) by the initialization of the a remaining array segment (or a sub-segment)

. . . ). We were glad to discover that the analysis could figure out the right invari-

ants for methods as the one in Fig. 1, quite different from academic examples.

As far as precision is concerned, our experience is mostly based on the feed-

back from our end-users (in most of the cases we do not even have access to

their code), who used it to prove contracts (mainly postconditions) and data

structures invariants (aka object-invariants) in their code (e.g. that an object

field only contains upper-cases letters).

Overall, in our experience, the analysis seems to be robust enough to infer

non-trivial invariants on large and complex code bases with a negligible cost. To

the best of our knowledge, this is the first analysis of this kind applied to such

a large scale. The inferred invariants are routinely used to check postconditions

and object invariants.

34

Clousot 
(I)

) 

(I) This version of Clousot should be available shortly on DevLabs.
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The End

86


