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1. Introductory motivations …
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Common believes

• The verification of a temporal specification for a transition
system by model-checking is sound and complete 2:

A temporal property holds if (soundness) and only if
(completeness) it can be model-checked.

• The verification of a temporal specification for a program
given by its small-step operational semantics by static analysis
is sound and incomplete ;
• so model-checking is to be preferred to program static analy­

sis.
2 at least for finite state systems.

2 even for finite state systems.
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Our point of view

Both for model-checking and program static analysis:

• Approximations are involved;

• So (in)completeness is relative (to an implicit reference tem­
poral semantics);

• Abstract interpretation can help in understanding and com­
paring the approximations involved in each case.

Indeed both model-checking and program static anal­
ysis are abstract interpretations based on similar ap­
proximations.
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Why bother? we already have
“abstract model checking”!

Yes, but abstract model checking :

• is based on a state-to-state abstraction which is not general
enough!

• e.g. it cannot take into account polyhedral model checking
of hybrid systems à la Halbwachs et al. .

Reference

[1] E. Clarke O. Grumberg & D. Long. Model checking and abstraction. TOPLAS 16 1994.

[2] N. Halbwachs, J.-É. Proy, & P. Raymond. Verification of linear hybrid systems by means of convex approximations. SAS ’ 94 , LNCS 864, 1994.
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A more general point of view is needed…

• We would like to have to have a continuum of techniques
ranging from model-checking to static program analysis;
• Abstract interpretation can help with this general point of

view.
=⇒ We consider a very general temporal specification language;

=⇒ We study its abstractions.
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2. Temporal specification language
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Temporal logics and calculi

• Temporal logics:
-- CTL� ,
-- CTL;
• Temporal calculi:
-- propositional µ-calculus;

are all generalized by the reversible �
µ�-calculus.

© P. Cousot ✁✁ � ✁ — 7 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



Semantic domain for the reversible
�
µ�-calculus

• The semantics of a formula of the reversible �
µ�-calculus is a

model that is a set of infinite time-symmetric traces;
• An infinite time-symmetric trace 〈i, σ〉:

… … ……

time origin present time

0 1 2 3 4-1-2 i

states

σ σ σ σ σσ- σ- σi

past future
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The reversible �
µ�-calculus

ϕ ::= σS S ∈ ℘(S) state predicate
| πt t ∈ ℘(S× S) transition predicate
| ⊕ϕ1 next
| ϕ1

� reversal
| ϕ1 ∨ ϕ2 disjunction
| ¬ϕ1 negation
| X X ∈ X variable
| µX · ϕ1 least fixpoint
| νX · ϕ1 greatest fixpoint
| ∀ϕ1 : ϕ2 universal state closure
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State predicates σS

• The state predicate σS denotes all traces with current state
in set S 4:

… ……

∈

S

current state

? ? ? ? ? ? ? ? ? ? ? ?

4 In this talk we identify a reversible
�

µ�-calculus formula ϕ with its semantics/interrpetation �ϕ�.
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Transition predicates πt

• The transition predicate πt denotes all traces with a transi­
tion t from current to next state:

… ……

current state

t

next state

? ? ? ? ? ? ? ? ? ? ?

© P. Cousot ✁✁ � ✁ — 11 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



Next ⊕

• Trace next time:

… ……
0 1 2 3 4-1-2 i

σ σ σ σ σσ- σ- σi( )

= … ……
0 1 2 3 4-1-2 i+

σ σ σ σ σσ- σ- σi

σi+

σi+

⊕
current state

• Model next time:

⊕M 	= {〈i, σ〉 | ⊕〈i, σ〉 ∈M}

A trace of ⊕M will, at next time, be a trace of M .
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Reversal �

• Trace reversal:

-i

σi σσσσσ σ-σ-

…… …

0 1 2-3-4 -1-2

… ……
0 1 2 3 4-1-2 i

σ σ σ σ σσ- σ- σi( )

=

• Model reversal:

M� 	= {〈i, σ〉 | 〈i, σ〉� ∈M}
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Universal ∀ and existential ∃ state closures

• The universal state closure ∀ϕ1 : ϕ2 is the set of traces
〈i, σ〉 of ϕ1 such that all traces in ϕ1 with the same current
state σi belong to ϕ2;

• The existential state closure ∃ϕ1 : ϕ2 = ¬(∀ϕ1 : ¬ϕ2) is
the set of traces 〈i, σ〉 of ϕ1 such that some trace in ϕ1 with
the same current state σi belongs to ϕ2.
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Abbreviations (examples)

ϕ1 U ϕ2
	= µX · (ϕ2 ∨ (ϕ1 ∧⊕X)) until

ϕ1 S ϕ2
	= (ϕ1

�Uϕ2
�)� since
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Subcalculi
(example: Kozen’s propositional µ-calculus)

ϕ ::= σS | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ1 |✷ϕ1 |♦ϕ1 |
X | µX · ϕ1 | νX · ϕ1

where:
τ : transition relation (program SOS semantics);

✷ϕ1
	= ∀ πτ : ⊕ϕ1 always (after next step);

♦ϕ1
	= ∃ πτ : ⊕ϕ1 sometime (after next step).
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On the reversible �
µ�-calculus

• Generalization of previous temporal logics and calculi;
• Contrary to previous propositions:
-- Every logical statement is explicit (e.g. no implicit under­
lying Kripke structure),
-- A single temporal operator � to handle past and future,
-- Completely time-symmetric.

© P. Cousot ✁✁ � ✁ — 17 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



3. An intuitive example of abstraction/
approximation
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An example of approximation: (cont’d)
a sequence of sets of statesa set of sequences of states

…… ……
……
……

……
……
……
……
……

……

……

can be approximated/abstracted by …/…
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An example of approximation: (cont’d)
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Back to a set of sequences of states (cont’d)
• The concretization contains all original traces:

…… ……
……
……

……
……
……
……
……

……

……

(unrealistic) additional ones ( , ..., , , );
• This approximation is therefore from above;
• It contains more traces than possible. These additional traces

would yield the same abstraction anyway!
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Set-based abstraction

Let us call this abstraction the set-based abstraction:

…… ……
……
……

……
……
……
……
……

……

……

— α → …………

…… ……
……
……

……
……
……
……
……

……

……

← γ — …………
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4. Introduction to abstraction sound-
ness/completeness
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Intuition for soundness

For a given class of properties, soundness means that:
• Any property of the abstract world (in the given class) must

hold in the concrete world;
• For the set-based abstraction:
-- Example: “on any trace, state a can never be immediately
followed by state b ”;
-- Counter-example: “all traces are infinite”;

© P. Cousot ✁✁ � ✁ — 23 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



Intuition for soundness

For a given class of properties, soundness means that:
• Any property (in the given class) of the abstract world must

hold in the concrete world;
• For the set-based abstraction:
-- Example: “on any trace, state a can never be immediately
followed by state b ”;
-- Counter-example: “all traces are infinite”;

© P. Cousot ✁✁ � ✁ — 23 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



Intuition for soundness

For a given class of properties, soundness means that:
• Any property (in the given class) of the abstract world must

hold in the concrete world;
• For the set-based abstraction:
-- Example: “on any trace, state a can never be immediately
followed by state b ”;
-- Counter-example: “all traces are infinite”;

© P. Cousot ✁✁ � ✁ — 23 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



Example for unsoundness

…………
……

……

…… …… ……

……

All abstract traces are infinite but not the concrete ones!
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Intuition for completeness

For a given class of properties, completeness means that:
• Any property (in the given class) of the concrete world must

hold in the abstract world;
• For the set-based abstraction:
-- Example: “execution from state a must eventually be fol­
lowed by states b or c ”
-- Counter-example: “all traces are finite”;
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Example for uncompleteness

…………
……

……

…… …… ……

……

All concrete traces are finite but not the abstract ones!
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4.1 Classical temporal-logics/calculi in­
volve implicit abstractions
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Temporal-logics/calculi involve implicit
abstractions

• In general, temporal-logic/calculi cannot express all proper­
ties of models , but only specific ones (e.g. [3]);

• Some concrete properties of the model can only be approx­
imated in the abstract temporal-logic/calculus;

• The semantics of the temporal-logic/calculus can be under­
stood as an abstraction of the concrete semantics (of the
models).

Reference

[3] Emerson, E. & Halpern, J. “Sometimes” and “Not Never” revisited: On branching time versus linear time. TOPLAS 33 (1986), 151–178.

© P. Cousot ✁✁ � ✁ — 30 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



Temporal-logics/calculi involve implicit
abstractions

• In general, temporal-logic/calculi cannot express all proper­
ties of models , but only specific ones (e.g. [3]);

• Some concrete properties of the model can only be approx­
imated in the abstract temporal-logic/calculus;

• The semantics of the temporal-logic/calculus can be under­
stood as an abstraction of the concrete semantics (of the
models).

Reference

[3] Emerson, E. & Halpern, J. “Sometimes” and “Not Never” revisited: On branching time versus linear time. TOPLAS 33 (1986), 151–178.

© P. Cousot ✁✁ � ✁ — 31 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



Temporal-logics/calculi involve implicit
abstractions

• In general, temporal-logic/calculi cannot express all proper­
ties of models , but only specific ones (e.g. [3]);

• Some concrete properties of the model can only be approx­
imated in the abstract temporal-logic/calculus;

• The semantics of the temporal-logic/calculus can be under­
stood as an abstraction of the concrete semantics (of the
models).

Reference

[3] Emerson, E. & Halpern, J. “Sometimes” and “Not Never” revisited: On branching time versus linear time. TOPLAS 33 (1986), 151–178.

© P. Cousot ✁✁ � ✁ — 32 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



Abstraction closedness

• A temporal logic/calculus T is closed for an abstraction αT
iff this abstraction leaves all temporal specifications ϕ of T
invariant:

αT (ϕ) = ϕ

• For example Kozen’s propositional µ-calculus is closed for the
set-based abstraction.
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Unexpressivity

• The concrete properties P such that αT (P ) �= P cannot be
expressed by the temporal logic/calculus T ;
• So e.g. the propositional µ-calculus is not expressive enough

to capture all concrete models (as expressible e.g. by the
reversible �

µ�-calculus);
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5. Is model checking a complete tempo­
ral abstract interpretation?
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Current state abstraction

• The model-checking algorithms for the propositional µ-calculus
can be derived by classical abstract interpretation techniques 5

with the current state abstraction 6:

α•(M) 	= {σi | 〈i, σ〉 ∈M}
γ •(S) 	= {〈i, σ〉 | σi ∈ S} = σS

=⇒ Model-checking is a sound and complete abstract interpreta­
tion.

5 Galois connections, fixpoint transfert(/approximations), chaotic iterations, etc.
6 or the corresponding boolean characteristic functions represented e.g. as BDDs.
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Not convincing (continued)!!

• The completeness result is relative to the set-based abstrac­
tion closed semantics of the propositional µ-calculus!
• The completeness is relative to the abstract world not to the

concrete world!
• This set-based abstraction is itself incomplete (e.g. for the

the reversible �
µ�-calculus);

• Intuition: with general temporal specifications, model-checking
algorithms could not only deal with sets of states only and
would have to handle sets of traces (which would be too
costly).
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6. Model checking is an incomplete tem­
poral abstract interpretation!
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Universal checking abstraction
• State projection:

M↓s
	= {〈i, σ〉 ∈M | σi = s}

• Universal checking abstraction:

α∀M(φ) 	= {s |M↓s ⊆ φ}
• Universal checking concretization:

γ∀M(S) 	= {〈i, σ〉 | 〈i, σ〉 ∈M ∧ σi ∈ S}
• Galois connection:

〈M, ⊇〉 −−−−→−→←−−−−−
α∀M

γ∀M 〈℘(S), ⊇〉
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Existential checking abstraction
• Dual existential checking abstraction:

α∃M(φ) 	= ¬α∀M(¬φ)
= {s | (M↓s ∩ φ) �= ∅}

• Existential checking concretization:

γ∃M(φ) 	= ¬γ∀M(¬φ)
= {〈i, σ〉 | (〈i, σ〉 ∈M) =⇒ (σi ∈ S)}

• Galois connection:

〈M, ⊆〉 −−−−→−→←−−−−−
α∃M

γ∃M 〈℘(S), ⊆〉
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Model checking (algorithms)

• Fix the model M to be generated by a transition relation
(Kripke structure) 7:

M = +✷πt

• Define the abstraction by structural inductively on formulae:
-- Basic temporal operators are defined by universal/existential
abstraction of concrete ones ;
-- Inductive combination with abstraction closed operations
(e.g. join, meet, complement, fixpoints, etc.).

7 may be with fairness conditions also expressible with the reversible
�

µ� -calculus.
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Example: propositional µ-calculus

• α∀πt
(σS) = α∃πt

(σS) = S;

• If ϕ1 and ϕ2 are α∀πt
or α∃πt

abstraction closed, i.e.:
απt(ϕi) = ϕi , i = 1, . . . , 2

then so are:
ϕ1 ∨ ϕ2 , ϕ1 ∧ ϕ2 , ¬ϕ1 , ✷ϕ1 , ♦ϕ1 , µX · ϕ1 ,
νX · ϕ1.

© P. Cousot ✁✁ � ✁ — 42 — ✄ � ✄✄ IRISA , 11 janvier 2000 []�



7. Abstraction completeness for sub-
logics and calculi
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Model checking algorithms incompleteness

• The classical model-checking algorithms are set of states
based (but not set of traces based);
• In general, this abstraction is incomplete (e.g. for the full

complete reversible �
µ�-calculus);

• We can identify sub-calculi (whence logics) for which the
model-checking abstractions are complete;
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Example: µ∀
+
-calculus

ψ ::=σS | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ¬ψ1 | ∀ϕ state formulae
ϕ ::=ψ | πt | ⊕ϕ1 | ϕ1 ∧ ϕ2 | path formulae

ψ1 ∨ ϕ2 | ϕ1 ∨ ψ2 | X | µX · ϕ1 | νX · ϕ1

(with ∀ϕ 	= ∀ +✷πt : ϕ) is such that:

�ϕ�∀ = ��α∀Mτ
(�ϕ�)

• This covers ∀CTL (but not ∀CTL�);
• Same for ∃CTL (but not ∃CTL�) and inductive combination

with joins, … to get completeness for CTL (but not CTL�).
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8. Conclusion
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More in the forthcoming POPL’00 paper …

• Compositional abstract interpretation of generic µ-calculi (in­
dependently of a particular semantics, including for non-monotone
operators);
• Study of the model-checking abstractions;
• Study of (sufficient) abstraction completeness conditions;
• Applications to:
-- Abstract model checking;
-- Dataflow analysis (and the soundness of live variables).
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Perspectives

• Anyway, model-checking is an incomplete abstract interpre­
tation;
• So for infinite state systems:
-- other abstractions can be used (e.g. as in abstract testing);

-- because of incompleteness, other algorithms should be used
(the common model-checking algorithms are not the

most precise ones).
Reference

[4] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. Journal of Logic Programming , 13(2–3):103–179, 1992.
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