Temporal Abstract Interpretation¹ **Interprétation abstraite temporelle**

Patrick COUSOT DI, École normale supérieure 45 rue d'Ulm, 75230 Paris cedex 05, France

mailto:Patrick.Cousot@ens.fr http://www.di.ens.fr/~cousot

IRISA, Rennes, Salle Michel Métivier — Mardi 11 janvier 2000

¹ Join work with R. Cousot, LIX.

1. Introductory motivations ...

Common believes

 The verification of a temporal specification for a transition system by model-checking is sound and complete²:
A temporal property holds if (soundness) and only if

(completeness) it can be model-checked.

 $^{^2}$ at least for finite state systems.

Common believes

• The verification of a temporal specification for a transition system by model-checking is sound and complete ²:

A temporal property holds if (soundness) and only if (completeness) it can be model-checked.

• The verification of a temporal specification for a program given by its small-step operational semantics by static analysis is sound and <u>incomplete</u>³;

 $^{^2}$ at least for finite state systems.

³ even for finite state systems.

Common believes

• The verification of a temporal specification for a transition system by model-checking is sound and complete ²:

A temporal property holds if (soundness) and only if (completeness) it can be model-checked.

- The verification of a temporal specification for a program given by its small-step operational semantics by static analysis is sound and <u>incomplete</u>³;
- so model-checking is to be preferred to program static analysis.

 $^{^2}$ at least for finite state systems.

³ even for finite state systems.

Both for model-checking and program static analysis:

Both for model-checking and program static analysis:

• Approximations are involved;

Both for model-checking and program static analysis:

- Approximations are involved;
- So (in)completeness is relative (to an implicit reference temporal semantics);

Both for model-checking and program static analysis:

- Approximations are involved;
- So (in)completeness is relative (to an implicit reference temporal semantics);
- Abstract interpretation can help in understanding and comparing the approximations involved in each case.

Both for model-checking and program static analysis:

- Approximations are involved;
- So (in)completeness is relative (to an implicit reference temporal semantics);
- Abstract interpretation can help in understanding and comparing the approximations involved in each case.

Indeed both model-checking and program static analysis are abstract interpretations based on similar approximations.

Yes, but

Yes, but abstract model checking [1]:

 is based on a state-to-state abstraction which is not general enough!

Reference

[1] E. Clarke O. Grumberg & D. Long. Model checking and abstraction. TOPLAS 16 1994.

IRISA, 11 janvier 2000

Yes, but abstract model checking [1]:

- is based on a state-to-state abstraction which is not general enough!
- e.g. it <u>cannot</u> take into account polyhedral model checking of hybrid systems à la Halbwachs et al. [2].

_ Reference

^[1] E. Clarke O. Grumberg & D. Long. Model checking and abstraction. TOPLAS 16 1994.

^[2] N. Halbwachs, J.-É. Proy, & P. Raymond. Verification of linear hybrid systems by means of convex approximations. SAS '94, LNCS 864, 1994.

• We would like to have to have a continuum of techniques ranging from model-checking to static program analysis;

- We would like to have to have a continuum of techniques ranging from model-checking to static program analysis;
- Abstract interpretation can help with this general point of view.

- We would like to have to have a continuum of techniques ranging from model-checking to static program analysis;
- Abstract interpretation can help with this general point of view.

 \implies We consider a very general temporal specification language;

- We would like to have to have a continuum of techniques ranging from model-checking to static program analysis;
- Abstract interpretation can help with this general point of view.
- \implies We consider a very general temporal specification language;
- \implies We study its abstractions.

2. Temporal specification language

Temporal logics and calculi

- Temporal logics:
 - CTL^{\star} ,
 - CTL;
- Temporal calculi:
 - propositional μ -calculus;

are all generalized by the reversible μ^{+} -calculus.

Semantic domain for the reversible $\widehat{\mu}^{*}$ -calculus

- The semantics of a formula of the reversible $\widehat{\mu}^*$ -calculus is a model that is a set of infinite time-symmetric traces;
- An infinite time-symmetric trace $\langle i, \sigma \rangle$:

The reversible $\widehat{\mu}$ -calculus

$S\in \wp(\mathbb{S})$	state predicate
$t\in\wp(\mathbb{S}\times\mathbb{S})$	transition predicate
	next
	reversal
	disjunction
	negation
$X \in \mathbb{X}$	variable
	least fixpoint
	greatest fixpoint
	universal state closure
	$S \in \wp(\mathbb{S})$ $t \in \wp(\mathbb{S} \times \mathbb{S})$ $X \in \mathbb{X}$

State predicates σ_S

• The state predicate σ_S denotes all traces with current state in set S^4 :

⁴ In this talk we identify a reversible $\overset{\curvearrowleft}{\mu^*}$ -calculus formula φ with its semantics/interrpetation $[\![\varphi]\!]$.

Transition predicates π_t

• The transition predicate π_t denotes all traces with a transition t from current to next state:

Next \oplus

• Trace next time:

© P. Cousot

Next \oplus

• Trace next time:

• Model next time:

$$\oplus M \stackrel{\triangle}{=} \{ \langle i, \sigma \rangle \mid \oplus \langle i, \sigma \rangle \in M \}$$

A trace of $\oplus M$ will, at next time, be a trace of M.

© P. Cousot

 $\blacktriangleleft \blacktriangleleft \lhd -12 - \triangleright \blacktriangleright \bowtie$

Reversal \curvearrowleft

Reversal \curvearrowleft

• Model reversal:

 $M^{\curvearrowleft} \stackrel{\triangle}{=} \{ \langle i, \sigma \rangle \mid \langle i, \sigma \rangle^{\curvearrowleft} \in M \}$

Universal ∀ and existential ∃ state closures

The universal state closure ∀φ₁ : φ₂ is the set of traces
⟨i, σ⟩ of φ₁ such that all traces in φ₁ with the same current
state σ_i belong to φ₂;

Universal ∀ and existential ∃ state closures

- The universal state closure ∀φ₁ : φ₂ is the set of traces ⟨*i*, σ⟩ of φ₁ such that all traces in φ₁ with the same current state σ_i belong to φ₂;
- The existential state closure ∃φ₁: φ₂ = ¬(∀φ₁: ¬φ₂) is the set of traces ⟨i, σ⟩ of φ₁ such that some trace in φ₁ with the same current state σ_i belongs to φ₂.

Abbreviations (examples)

 $\varphi_1 \mathbf{U} \varphi_2 \stackrel{\triangle}{=} \boldsymbol{\mu} X \cdot (\varphi_2 \vee (\varphi_1 \wedge \oplus X))$ until

Abbreviations (examples)

$$\varphi_1 \mathbf{U} \varphi_2 \stackrel{\triangle}{=} \boldsymbol{\mu} X \cdot (\varphi_2 \vee (\varphi_1 \wedge \oplus X)) \quad \text{until}$$
$$\varphi_1 \mathbf{S} \varphi_2 \stackrel{\triangle}{=} (\varphi_1 \cap \mathbf{U} \varphi_2 \cap) \cap \quad \text{since}$$

Subcalculi

(example: Kozen's propositional μ -calculus)

$$\varphi ::= \boldsymbol{\sigma}_{S} | \varphi_{1} \vee \varphi_{2} | \varphi_{1} \wedge \varphi_{2} | \neg \varphi_{1} | \square \varphi_{1} | \diamondsuit \varphi_{1} |$$
$$X | \boldsymbol{\mu} X \cdot \varphi_{1} | \boldsymbol{\nu} X \cdot \varphi_{1}$$

where:

 $\tau : \text{ transition relation (program SOS semantics);}$ $\Box \varphi_1 \stackrel{\triangle}{=} \forall \pi_{\tau} : \oplus \varphi_1 \quad \text{always} \quad (\text{after next step});$ $\bigotimes \varphi_1 \stackrel{\triangle}{=} \exists \pi_{\tau} : \oplus \varphi_1 \quad \text{sometime (after next step).}$

On the reversible $\widehat{\mu}$ -calculus

- Generalization of previous temporal logics and calculi;
- Contrary to previous propositions:
 - Every logical statement is explicit (e.g. no implicit underlying Kripke structure),
 - A single temporal operator \frown to handle past and future,
 - Completely time-symmetric.

3. An intuitive example of abstraction/ approximation

An example of approximation: a set of sequences of states

can be approximated/abstracted by .../...

An example of approximation (cont'd) a sequence of sets of states

Back to a set of sequences of states

• The concretization contains all original traces:

• The concretization contains all original traces:

plus (unrealistic) additional ones (___, ___, ___, ___);

• The concretization contains all original traces:

plus (unrealistic) additional ones (___, ___, ___, ___);

• This particular approximation is therefore from above;

• The concretization contains all original traces:

plus (unrealistic) additional ones (___, ___, ___, ___);

- This particular approximation is therefore from above;
- It contains more traces than possible.

• The concretization contains all original traces:

plus (unrealistic) additional ones (___, ___, ___, ___);

- This particular approximation is therefore from above;
- It contains more traces than possible. These additional traces would yield the same abstraction anyway!

Set-based abstraction

Let us call this abstraction the set-based abstraction:

4. Introduction to abstraction soundness/completeness

Intuition for soundness

For a given class of properties, soundness means that:

• Any property of the abstract world (in the given class) must hold in the concrete world;

Intuition for soundness

For a given class of properties, soundness means that:

- Any property (in the given class) of the abstract world must hold in the concrete world;
- For the set-based abstraction:
 - Example: "on any trace, state a can never be immediately followed by state b";

Intuition for soundness

For a given class of properties, soundness means that:

- Any property (in the given class) of the abstract world must hold in the concrete world;
- For the set-based abstraction:
 - Example: "on any trace, state a can never be immediately followed by state b";
 - Counter-example: "all traces are infinite";

Example for unsoundness

All abstract traces are infinite but not the concrete ones!

© P. Cousot

 $\blacktriangleleft \blacktriangleleft \lhd -24 - \triangleright \blacktriangleright \bowtie$

Intuition for completeness

For a given class of properties, completeness means that:

• Any property (in the given class) of the concrete world must hold in the abstract world;

Intuition for completeness

For a given class of properties, completeness means that:

- Any property (in the given class) of the concrete world must hold in the abstract world;
- For the set-based abstraction:
 - Example: "execution from state a must eventually be followed by states b or $c\,{}''$

Intuition for completeness

For a given class of properties, completeness means that:

- Any property (in the given class) of the concrete world must hold in the abstract world;
- For the set-based abstraction:
 - Example: "execution from state $a\,$ must eventually be followed by states $b\,$ or $c\,$ "
 - Counter-example: "all traces are finite";

Example for uncompleteness

All concrete traces are finite but not the abstract ones!

© P. Cousot

 $\blacktriangleleft \blacktriangleleft \lhd -28 - \triangleright \blacktriangleright \bowtie$

4.1 Classical temporal-logics/calculi involve implicit abstractions

Temporal-logics/calculi involve implicit abstractions

 In general, temporal-logic/calculi cannot express <u>all</u> properties of models, but only specific ones (e.g. [3]);

Reference

[3] Emerson, E. & Halpern, J. "Sometimes" and "Not Never" revisited: On branching time versus linear time. TOPLAS 33 (1986), 151-178.

© P. Cousot

Temporal-logics/calculi involve implicit abstractions

- In general, temporal-logic/calculi cannot express <u>all</u> properties of models, but only specific ones (e.g. [3]);
- Some concrete properties of the model can only be approximated in the abstract temporal-logic/calculus;

Reference

[3] Emerson, E. & Halpern, J. "Sometimes" and "Not Never" revisited: On branching time versus linear time. TOPLAS 33 (1986), 151-178.

Temporal-logics/calculi involve implicit abstractions

- In general, temporal-logic/calculi cannot express <u>all</u> properties of models, but only specific ones (e.g. [3]);
- Some concrete properties of the model can only be approximated in the abstract temporal-logic/calculus;
- The semantics of the temporal-logic/calculus can be understood as an abstraction of the concrete semantics (of the models).
- Reference

^[3] Emerson, E. & Halpern, J. "Sometimes" and "Not Never" revisited: On branching time versus linear time. TOPLAS 33 (1986), 151-178.

Abstraction closedness

• A temporal logic/calculus T is closed for an abstraction α_T iff this abstraction leaves all temporal specifications φ of T invariant:

 $\alpha_{\mathcal{T}}(\varphi) = \varphi$

Abstraction closedness

• A temporal logic/calculus T is closed for an abstraction α_T iff this abstraction leaves all temporal specifications φ of T invariant:

 $\alpha_{\mathcal{T}}(\varphi) = \varphi$

• For example Kozen's propositional $\mu\text{-calculus}$ is closed for the set-based abstraction.

Unexpressivity

The concrete properties P such that α_T(P) ≠ P cannot be expressed by the temporal logic/calculus T;

Unexpressivity

- The concrete properties P such that α_T(P) ≠ P cannot be expressed by the temporal logic/calculus T;
- So e.g. the propositional μ -calculus is not expressive enough to capture all concrete models (as expressible e.g. by the reversible $\widehat{\mu}^*$ -calculus);

5. Is model checking a complete temporal abstract interpretation?

Current state abstraction

• The model-checking algorithms for the propositional μ -calculus can be derived by classical abstract interpretation techniques ⁵ with the *current state abstraction* ⁶:

$$\begin{array}{l} \alpha^{\bullet}(M) \stackrel{\triangle}{=} \{\sigma_i \mid \langle i, \ \sigma \rangle \in M\} \\ \gamma^{\bullet}(S) \stackrel{\triangle}{=} \{\langle i, \ \sigma \rangle \mid \sigma_i \in S\} \ = \ \boldsymbol{\sigma}_S \end{array}$$

⁵ Galois connections, fixpoint transfert(/approximations), chaotic iterations, etc.

⁶ or the corresponding boolean characteristic functions represented e.g. as BDDs.

Current state abstraction

• The model-checking algorithms for the propositional μ -calculus can be derived by classical abstract interpretation techniques ⁵ with the *current state abstraction* ⁶:

$$\begin{array}{l} \alpha^{{}}(M) \stackrel{\triangle}{=} \{\sigma_i \mid \langle i, \ \sigma \rangle \in M\} \\ \gamma^{{}}(S) \stackrel{\triangle}{=} \{\langle i, \ \sigma \rangle \mid \sigma_i \in S\} \ = \ \pmb{\sigma}_S \end{array}$$

 \implies Model-checking is a sound and complete abstract interpretation.

⁵ Galois connections, fixpoint transfert(/approximations), chaotic iterations, etc.

⁶ or the corresponding boolean characteristic functions represented e.g. as BDDs.

• The completeness result is relative to the set-based abstraction closed semantics of the propositional μ -calculus!

- The completeness result is relative to the set-based abstraction closed semantics of the propositional μ -calculus!
- The completeness is relative to the abstract world not to the concrete world!

- The completeness result is relative to the set-based abstraction closed semantics of the propositional μ -calculus!
- The completeness is relative to the abstract world not to the concrete world!
- This set-based abstraction is itself incomplete (e.g. for the the reversible $\widehat{\mu}^*$ -calculus);

- The completeness result is relative to the set-based abstraction closed semantics of the propositional μ -calculus!
- The completeness is relative to the abstract world not to the concrete world!
- This set-based abstraction is itself incomplete (e.g. for the the reversible $\widehat{\mu}^*$ -calculus);
- Intuition: with general temporal specifications, model-checking algorithms could not only deal with sets of states only and would have to handle sets of traces (which would be too costly).

6. Model checking is an <u>in</u>complete temporal abstract interpretation!

Universal checking abstraction

• State projection:

$$M_{\downarrow s} \stackrel{\triangle}{=} \{ \langle i, \sigma \rangle \in M \mid \sigma_i = s \}$$

• Universal checking abstraction:

 $\alpha_M^{\forall}(\phi) \stackrel{\triangle}{=} \{s \mid M_{\downarrow s} \subseteq \phi\}$

• Universal checking concretization:

$$\gamma_M^{\forall}(S) \stackrel{\triangle}{=} \{ \langle i, \sigma \rangle \mid \langle i, \sigma \rangle \in M \land \sigma_i \in S \}$$

• Galois connection:

$$\langle \mathbb{M}, \supseteq \rangle \xleftarrow{\gamma_M^{\forall}}_{\alpha_M^{\forall}} \langle \wp(\mathbb{S}), \supseteq \rangle$$

Existential checking abstraction

• Dual existential checking abstraction:

$$\begin{array}{l} \alpha_{M}^{\exists}(\phi) \ \stackrel{\bigtriangleup}{=} \ \neg \alpha_{M}^{\forall}(\neg \phi) \\ \\ = \ \{s \mid (M_{\downarrow s} \cap \phi) \neq \emptyset\} \end{array}$$

• Existential checking concretization:

$$\begin{split} \gamma_M^{\exists}(\phi) &\stackrel{\triangle}{=} \neg \gamma_M^{\forall}(\neg \phi) \\ &= \{ \langle i, \sigma \rangle \mid (\langle i, \sigma \rangle \in M) \Longrightarrow (\sigma_i \in S) \} \end{split}$$

• Galois connection:

$$\langle \mathbb{M}, \subseteq \rangle \xleftarrow[]{\gamma_M^{\exists}}{\underset{\alpha_M^{\exists}}{\overset{\rightarrow}{\longleftarrow}}} \langle \wp(\mathbb{S}), \subseteq \rangle$$

Model checking (algorithms)

• Fix the model *M* to be generated by a transition relation (Kripke structure)⁷:

 $M = \pm \boldsymbol{\pi}_t$

⁷ may be with fairness conditions also expressible with the reversible $\widehat{\mu^*}$ -calculus.
Model checking (algorithms)

• Fix the model *M* to be generated by a transition relation (Kripke structure)⁷:

 $M = \pm \boldsymbol{\pi}_t$

- Define the abstraction by structural inductively on formulae:
 - Basic temporal operators are defined by universal/existential abstraction of concrete ones ;

 $^{^7\,}$ may be with fairness conditions also expressible with the reversible $\stackrel{\curvearrowleft}{\mu^{\star}}$ -calculus.

Model checking (algorithms)

• Fix the model *M* to be generated by a transition relation (Kripke structure)⁷:

 $M = \pm \boldsymbol{\pi}_t$

- Define the abstraction by structural inductively on formulae:
 - Basic temporal operators are defined by universal/existential abstraction of concrete ones ;
 - Inductive combination with abstraction closed operations (e.g. join, meet, complement, fixpoints, etc.).

⁷ may be with fairness conditions also expressible with the reversible $\stackrel{\curvearrowleft}{\mu^{\star}}$ -calculus.

Example: propositional μ -calculus

•
$$\alpha_{\boldsymbol{\pi}_t}^{\forall}(\boldsymbol{\sigma}_S) = \alpha_{\boldsymbol{\pi}_t}^{\exists}(\boldsymbol{\sigma}_S) = S;$$

• If
$$\varphi_1$$
 and φ_2 are $\alpha_{\pi_t}^{\forall}$ or $\alpha_{\pi_t}^{\exists}$ abstraction closed, i.e.:
 $\alpha_{\pi_t}(\varphi_i) = \varphi_i$, $i = 1, \dots, 2$

then so are:

$$\varphi_1 \lor \varphi_2, \varphi_1 \land \varphi_2, \neg \varphi_1, \Box \varphi_1, \Diamond \varphi_1, \mu X \cdot \varphi_1, \nu X \cdot \varphi_1,$$

7. Abstraction completeness for sublogics and calculi

Model checking algorithms incompleteness

• The classical model-checking algorithms are set of states based (but not set of traces based);

Model checking algorithms incompleteness

- The classical model-checking algorithms are set of states based (but not set of traces based);
- In general, this abstraction is incomplete (e.g. for the full complete reversible $\widehat{\mu^*}$ -calculus);

Model checking algorithms incompleteness

- The classical model-checking algorithms are set of states based (but not set of traces based);
- In general, this abstraction is incomplete (e.g. for the full complete reversible $\widehat{\mu^*}$ -calculus);
- We can identify sub-calculi (whence logics) for which the model-checking abstractions are complete;

Example: $\mu_{_{+}}^{\forall}$ -calculus

$$\begin{split} \psi &::= \boldsymbol{\sigma}_{S} \mid \psi_{1} \lor \psi_{2} \mid \psi_{1} \land \psi_{2} \mid \neg \psi_{1} \mid \forall \varphi & \text{state formulae} \\ \varphi &::= \psi \mid \boldsymbol{\pi}_{t} \mid \oplus \varphi_{1} \mid \varphi_{1} \land \varphi_{2} \mid & \text{path formulae} \\ \psi_{1} \lor \varphi_{2} \mid \varphi_{1} \lor \psi_{2} \mid X \mid \boldsymbol{\mu} X \cdot \varphi_{1} \mid \boldsymbol{\nu} X \cdot \varphi_{1} \\ \text{(with } \forall \varphi \stackrel{\triangle}{=} \forall \boxplus \boldsymbol{\pi}_{t} : \varphi \text{) is such that:} \\ & [\![\varphi]\!]^{\forall} = \vec{\alpha}_{\mathcal{M}_{\tau}}^{\forall} ([\![\varphi]\!]) \end{split}$$

- This covers $\forall CTL$ (but not $\forall CTL^*$);
- Same for ∃CTL (but not ∃CTL*) and inductive combination with joins, ... to get completeness for CTL (but not CTL*).

8. Conclusion

More in the forthcoming POPL'00 paper ...

- Compositional abstract interpretation of generic μ-calculi (independently of a particular semantics, including for non-monotone operators);
- Study of the model-checking abstractions;
- Study of (sufficient) abstraction completeness conditions;
- Applications to:
 - Abstract model checking;
 - Dataflow analysis (and the soundness of live variables).

Perspectives

- Anyway, model-checking is an incomplete abstract interpretation;
- So for infinite state systems:

Perspectives

- Anyway, model-checking is an incomplete abstract interpretation;
- So for infinite state systems:
 - other abstractions can be used (e.g. as in abstract testing);

Perspectives

- Anyway, model-checking is an incomplete abstract interpretation;
- So for infinite state systems:
 - other abstractions can be used (e.g. as in abstract testing);
 - because of incompleteness, other algorithms should be used
 [4] (the common model-checking algorithms are not the most precise ones).

_ Reference

^[4] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. *Journal of Logic Programming*, 13(2–3):103–179, 1992.