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Abstract
A flight control surface actuation system in avionics is safety critical and complex since it is placed between

the pilot’s controls (sidesticks, rudder pedals) and the control surfaces of the aircraft, whose movement it controls
and monitors. For reliability and dependability, several redundant software and computers are used but each
one must be proved to be correct. With the exponential increase of the power of computers, the flight control
software has become much more powerful hence complex. Since the cost of tests increasing more rapidly that the
size of programs, formal methods become an attractive complement for program verification.

The difficulties with formal methods are that they need a formal specification, a formal semantics of the
programming language and, because of undecidability, have serious limits in the automatic verification that the
program semantics satisfies the specification. A theorem prover needs human assistance while model-checking
requires finite models which, but for hardware, are generally incomplete.

Static analysis offers an interesting completely automatic alternative in that the specification can be
chosen to be implicit. For example the absence of runtime error will not require the user to define a complex
specification. Moreover static analysis considers infinite models of computations that can be directly computed
from the program text so that the end-user does not need to provide a (finite) model of the program computations
and environment. Finally, the reachable states during any program computation are computed approximately
through an overapproximation that omits no possible case. So the delicate questions about the program semantics
can be solved by considering all possible alternatives.

If this overapproximation copes with the undecidability problem, its inconvenience is that it considers
spurious program behaviors, which do not exist in any actual execution, but may be at the origin of alarms,
so-called false alarms”. This approach is sound in that no runtime error will ever be omitted in the diagnostic. It
is incomplete, because of the potential false alarms. In general false alarms have to be solved by manual code
inspection, which is extremely costly.
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The whole problem is therefore to choose abstractions of the program semantics that yield few or no
alarm. To do so, one can restrict the family of programs to be analyzed so as to adapt the abstraction exactly
the domain-specific primitives and algorithmic schema found in this family of programs.

We will present elements of the theory of abstract interpretation on which the soundness of the notion of
overapproximation does rely. Then we will introduce the Astrée static analyzer (www.astree.ens.fr), which is
specialized for the verification of the absence of runtime errors in control-command programs. The analyzer has
general-purpose abstractions (e.g. octagons, control and data partitioning) as well as domain-specific abstractions
(e.g. to handle filters or the potential accumulation of rounding errors). Finally, we will report on the successful
application of Astrée to the proof of absence of runtime errors in recent avionic flight control software.
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1. Motivation
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Bugs Now Show-Up in Everyday Life

– Bugs now appear frequently in everyday life (banks,
cars, telephones, . . . )

– Example (HSBC bank ATM 1 at 19 Boulevard Sébas-
topol in Paris, failure on Nov. 21st 2006 at 8:30 am):

1 cash machine, cash dispenser, automatic teller machine.
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A Strong Need for Software Better Quality

– Poor software quality is not acceptable in safety and
mission critical software applications.

– The present state of the art in software engineering
does not offer sufficient quality garantees
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The Complexity of Software Design

– The design of complex software is difficult and econom-
ically critical

– Example (www.designnews.com/article/CA6475332.html):
Boeing Confirms 787 Delay, Fasteners, Flight Control Software Code Blamed
John Dodge, Editor-in-Chief – Design News, September 5, 2007

Boeing officials confirmed today that a fastener shortage and
problems with flight control software have pushed “first flight” of
the Boeing 787 Dreamliner to sometime between mid-November
and mid-December.
...
The software delays involve Honeywell Aerospace, which is re-
sponsible for flight control software. The work on this part of
the 787 was simply underestimated, said Bair.
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Tool-Based Software Design Methods

– New tool-based software design methods will have to
emerge to face the unprecedented growth and complex-
ification of critical software

– E.g. FCPC (Flight Control Primary Computer)
- A220: 20 000 LOCs,
- A340 (V1): 130 000 LOCS
- A340 (V2): 250 000 LOCS
- A380: 1.000.000 LOCS
- A350: static analysis to be
integrated in the software production
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Static Analysis
A static analyzer is a program that
– takes as input:
- a program P (written in some given programming
language P with a given semantics SP)

- a specification S (implicit SJP K or written in some
specification language S with a given semantics SS)

– always terminates and delivers automatically as out-
put:
- a diagnosis on the validity of the program semantics
with respect the specification semantics
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Difficulties of Static Analysis

– automatic + infinite state + termination =) undecid-
able!

– for a programming (and a specification) language, not
for a given model of a given program:

8P 2 P : 8S 2 S : SPJP K „ SSJP; SK?

or, more simply for an implicit specification SJP K:

8P 2 P : SPJP K „ SJP K?
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Soundness and Completeness

– Soundness: for all P 2 P, if the answer is yes (no) then
SPJP K „ SJP K (resp. SPJP K * SJP K)

– Completeness: for all P 2 P, if SPJP K „ SJP K (SPJP K *
SJP K) then the answer is yes (resp. no)

We always require Soundness!

Undecidability =) no completeness
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Problems with Formal Methods

– Formal specifications (abstract machines, temporal logic,
. . . ) are costly, complex, error-prone, difficult to main-
tain, not mastered by casual programmers

– Formal semantics of the specification and program-
ming language are inexistant, informal, irrealistic or
complex

– Formal proofs are partial (static analysis), do not scale
up (model checking) or need human assistance (theo-
rem proving & proof assistants)
) High costs (for specification, proof assistance, etc).
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Avantages of Static Analysis

– Formal specifications are implicit (no need for explicit,
user-provided specifications)

– Formal semantics are approximated by the static ana-
lyzer (no user-provided models of the program)

– Formal proofs are automatic (no required user-interaction)
– Costs are low (no modification of the software produc-
tion methodology)

– Scales up to 100.000 to 1.000.000 LOCS
– Rapid and large diffusion in embedded software pro-
duction industries
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Disadvantages of Static Analysis

– Imprecision (acceptable in some applications like WCET
or program optimization)

– Incomplete for program verification
– False alarms are due to unsuccessful automatic proofs
in 5 to 15% of the cases

For example, 1% of 500.000 potential (true or false) alarms is
5.000, too much to be handled by hand!
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Remedies to False Alarms in Astrée

– Astrée is specialized to specific program properties 2

– Astrée is specialized to real-time synchronous con-
trol/command programs written in C

– Astrée offers possibilities of refinement 3

The cost of adapting Astrée to a specific program,
should be a small fraction of the cost to test the
specific program properties verified by Astrée.

2 proof of absence of runtime errors
3 parametrizations and analysis directives
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2. Informal Introduction to Ab-
stract Interpretation
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Abstract Interpretation
There are two fundamental concepts in computer science
(and in sciences in general) :

– Abstraction : to reason on complex systems
– Approximation : to make effective undecidable com-
putations

These concepts are formalized by abstract interpretation
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Principle of Abstraction
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Operational semantics

x(t)

t
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Safety property

x(t)

t
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Test/Debugging is Unsafe

x(t)

t
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Bounded Model Checking is Unsafe

x(t)

t
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Over-Approximation (Cont’d)

x(t)

t
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Abstract Interpretation is Sound

x(t)

t
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Soundness and Incompleteness
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Soundness Requirement: Erroneous Abstraction 4

x(t)

t
4 This situation is always excluded in static analysis by abstract interpretation.
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Soundness Requirement: Erroneous Abstraction 5

x(t)

t
5 This situation is always excluded in static analysis by abstract interpretation.
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Imprecision ) False Alarms

x(t)

t
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Design by Refinement

ISoLA 2007, LISI, Poitiers, 12/12/2007 — 30 — ľ P. Cousot



Global Interval Abstraction ! False Alarms

x(t)

t
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Local Interval Abstraction ! False Alarms

x(t)

t
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Refinement by Partitionning

x(t)

t
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Intervals with Partitionning

x(t)

t
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State-based versus Trace-based Partitioning
State-based partitionning at control points:

Trace-based partitionning at control points:

Delaying abstract unions in tests and loops is more precise for non-distributive

abstract domains (and much less expensive than disjunctive completion).
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Trace Partitioning
Principle:

– Semantic equivalence:
if (B) { C1 } else { C2 }; C3

+
if (B) { C1; C3 } else { C2; C3 };

– More precise in the abstract: concrete execution
paths are merged later.

Application: if (B)
{ X=0; Y=1; }

else
{ X=1; Y=0; }

R = 1 / (X-Y);

cannot result in a
division by zero
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Case analysis with loop unrolling
– Code Sample:
/* trace_partitionning.c */
void main() {

float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};
float c[4] = {0.0, 2.0, 2.0, 0.0};
float d[4] = {-20.0, -20.0, 0.0, 20.0};
float x, r;
int i = 0;
__ASTREE_known_fact(((-30.0 <= x) && (x <= 30.0)));
while ((i < 3) && (x >= t[i+1])) {

i = i + 1;
}
r = (x - t[i]) * c[i] + d[i];
__ASTREE_log_vars((r));

}

% astree –exec-fn main –no-trace –no-relational trace-partitioning.c |& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-20, 20] >
%
% astree –exec-fn main –no-partition –no-trace –no-relational trace-partitioning.c \

|& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-100, 100] >
%
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3. The Astrée static analyzer

http://www.astree.ens.fr/
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Project Members

Bruno Blanchet 6 Patrick Cousot Radhia Cousot Jérôme Feret

Laurent Mauborgne Antoine Miné David Monniaux 7 Xavier Rival

6 Nov. 2001 —– Nov. 2003.
7 Nov. 2001 —– Aug. 2007.
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Programs Analyzed by Astrée
and their Semantics
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Programs analysed by Astrée

– Application Domain: large safety critical embedded
real-time synchronous software for non-linear control
of very complex control/command systems.

– C programs:
- with
´ basic numeric datatypes, structures and arrays
´ pointers (including on functions),
´ floating point computations
´ tests, loops and function calls
´ limited branching (forward goto, break, continue)
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– with (cont’d)
- union ù NEW [Min06a]
- pointer arithmetics & casts [Min06a]

– without
- dynamic memory allocation
- recursive function calls
- unstructured/backward branching
- conflicting side effects
- C libraries, system calls (parallelism)

Such limitations are quite common for embedded safety-critical software.
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The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever

- read volatile input variables,
- compute output and state variables,
- write to output variables;
__ASTREE_wait_for_clock ();

end loop

Task scheduling is static:
– Requirements: the only interrupts are clock ticks;
– Execution time of loop body less than a clock tick,
as verified by the aiT WCET Analyzers [FHL+01].
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Concrete Operational Semantics

– International norm of C (ISO/IEC 9899:1999)
– restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representa-
tion and size of integers, IEEE 754-1985 norm for floats
and doubles)

– restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even
though this might be the hardware choice)

– restricted by program specific user requirements (e.g.
assert, execution stops on first runtime error 8)

8 semantics of C unclear after an error, equivalent if no alarm
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Different Classes of Run-time Errors

1. Errors terminating the execution 9. Astrée warns and
continues by taking into account only the executions that
did not trigger the error.

2. Errors not terminating the execution with predictable outcome 10.
Astrée warns and continues with worst-case assumptions.

3. Errors not terminating the execution with unpredictable
outcome 11. Astrée warns and continues by taking into
account only the executions that did not trigger the error.

) Astrée is sound with respect to C standard, unsound with
respect to C implementation, unless no false alarm.

9 floating-point exceptions e.g. (invalid operations, overflows, etc.) when traps are activated
10 e.g. overflows over signed integers resulting in some signed integer.
11 e.g. memory corruptionss.
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Specification Proved by Astrée
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Implicit Specification: Absence of Runtime Errors

– No violation of the norm of C (e.g. array index out of
bounds, division by zero)

– No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767, NaN)

– No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

– No violation of the programmer assertions (must all
be statically verified).
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Modular Arithmetic
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Modular arithmetics is not very intuitive
In C:
% cat -n modulo-c.c

1 #include <stdio.h>
2 int main () {
3 int x,y;
4 x = -2147483647 / -1;
5 y = ((-x) -1) / -1;
6 printf("x = %i, y = %i\n",x,y);
7 }
8

% gcc modulo-c.c
% ./a.out
x = 2147483647, y = -2147483648
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Static Analysis with Astrée
% cat -n modulo.c

1 int main () {
2 int x,y;
3 x = -2147483647 / -1;
4 y = ((-x) -1) / -1;
5 __ASTREE_log_vars((x,y));
6 }
7

% astree –exec-fn main –unroll 0 modulo.c\
|& egrep -A 1 "(<integers)|(WARN)"
modulo.c:4.4-18::[call#main@1:]: WARN: signed int arithmetic range

{2147483648} not included in [-2147483648, 2147483647]
<integers (intv+cong+bitfield+set): y in [-2147483648, 2147483647] /\ Top,
x in {2147483647} /\ {2147483647} >

Astrée signals the overflow and goes on with an unkown value.

ISoLA 2007, LISI, Poitiers, 12/12/2007 — 50 — ľ P. Cousot



Float Overflow

ISoLA 2007, LISI, Poitiers, 12/12/2007 — 51 — ľ P. Cousot



Float Arithmetics does Overflow

In C:
% cat -n overflow.c
1 void main () {
2 double x,y;
3 x = 1.0e+256 * 1.0e+256;
4 y = 1.0e+256 * -1.0e+256;
5 __ASTREE_log_vars((x,y));
6 }

% gcc overflow.c
% ./a.out
x = inf, y = -inf

% astree –exec-fn main
overflow.c |& grep "WARN"
overflow.c:3.4-23::[call#main1:]:
WARN: double arithmetic range
[1.79769e+308, inf] not
included in [-1.79769e+308,
1.79769e+308]
overflow.c:4.4-24::[call#main1:]:
WARN: double arithmetic range
[-inf, -1.79769e+308] not
included in [-1.79769e+308,
1.79769e+308]
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The Ariane 5.01 maiden flight failure

– June 4th, 1996 was the
maiden flight of Ariane 5

– The launcher self-
detroyed after 42 seconds
of flight because of a
software overflow

A 16 bits piece of code of Ariane 4 had been reused within the new 32 bits code for Ariane 5.
This caused an uncaught overflow, ultimately making the launcher uncontrolable.
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The Ariane 5.01 maiden flight failure

– June 4th, 1996 was the
maiden flight of Ariane 5

– The launcher was de-
troyed after 40 seconds
of flight because of a
software overflow 12

12 A 16 bit piece of code of Ariane 4 had been reused within the new 32 bit code for Ariane 5.
This caused an uncaught overflow, making the launcher uncontrolable.
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Rounding
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Example of rounding error

/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951488.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
134217728.000000
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Example of rounding error

/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951487.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
0.000000
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Explanation of the huge rounding error

(1)

(2)
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Static analysis with Astrée 13

% cat -n double-error.c
2 int main () {
3 double x; float y, z, r;;
4 /* x = ldexp(1.,50)+ldexp(1.,26); */
5 x = 1125899973951488.0;
6 y = x + 1;
7 z = x - 1;
8 r = y - z;
9 __ASTREE_log_vars((r));

10 }
% gcc double-error.c
% ./a.out
134217728.000000
% astree –exec-fn main –print-float-digits 10 double-error.c |& grep "r in "
direct = <float-interval: r in [-134217728, 134217728] >
13 Astrée makes a worst-case assumption on the rounding (+1, `1, 0, nearest) hence the possibility to get

-134217728.
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Example of accumulation of small rounding errors

% cat -n rounding-c.c
1 #include <stdio.h>
2 int main () {
3 int i; double x; x = 0.0;
4 for (i=1; i<=1000000000; i++) {
5 x = x + 1.0/10.0;
6 }
7 printf("x = %f\n", x);
8 }

% gcc rounding-c.c
% ./a.out
x = 99999998.745418
%

since (0:1)10 = (0:0001100110011001100 : : :)2
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Static analysis with Astrée
% cat -n rounding.c

1 int main () {
2 double x; x = 0.0;
3 while (1) {
4 x = x + 1.0/10.0;
5 __ASTREE_log_vars((x));
6 __ASTREE_wait_for_clock(());
7 }
8 }

% cat rounding.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem rounding.config –unroll 0 rounding.c\
|& egrep "(x in)|(\|x\|)|(WARN)" | tail -2
direct = <float-interval: x in [0.1, 200000040.938] >

|x| <= 1.*((0. + 0.1/(1.-1))*(1.)^clock - 0.1/(1.-1)) + 0.1
<= 200000040.938
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The Patriot missile failure

– “On February 25th, 1991, a Patriot
missile . . . failed to track and inter-
cept an incoming Scud (˜).”

– The software failure was due to accu-
mulated rounding error (y)

(˜) This Scud subsequently hit an Army barracks, killing 28 Americans.
(y)– “Time is kept continuously by the system’s internal clock in

tenths of seconds”

– “The system had been in operation for over 100 consecutive
hours”

– “Because the system had been on so long, the resulting inac-
curacy in the time calculation caused the range gate to shift
so much that the system could not track the incoming Scud”
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Scaling
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Static Analysis of Scaling with Astrée

% cat -n scale.c
1 int main () {
2 float x; x = 0.70000001;
3 while (1) {
4 x = x / 3.0;
5 x = x * 3.0;
6 __ASTREE_log_vars((x));
7 __ASTREE_wait_for_clock(());
8 }
9 }

% gcc scale.c
% ./a.out
x = 0.699999988079071

% cat scale.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem scale.config –unroll 0 scale.c\
|& grep "x in" | tail -1
direct = <float-interval: x in [0.69999986887, 0.700000047684] >
%
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Filtering
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Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

– Computes Xn =


¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid
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Filter Example [Fer04]
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}
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Time Dependence
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Arithmetic-Geometric Progressions (Example 1)
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {

R = 0;
while (TRUE) {

__ASTREE_log_vars((R));
if (I) { R = R + 1; }
else { R = 0; }
T = (R >= 100);
__ASTREE_wait_for_clock(());

}}

% cat count.config
__ASTREE_volatile_input((I [0,1]));
__ASTREE_max_clock((3600000));
% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!
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Arithmetic-Geometric Progressions: Example 2
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev( )
{ X=E;

if (FIRST) { P = X; }
else

{ P = (P - ((((2.0 * P) - A) - B)
* 4.491048e-03)); };

B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev( );
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1
+ 1.19209290217e-07)ˆclock
- 5.87747175411e-39 /
1.19209290217e-07 <= 23.0393526881
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Overapproximation with an Arithmetic-Geometric Progression
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Arithmetic-geometric progressions 14 [Fer05]

– Abstract domain: (R+)5

– Concretization:
‚ 2 (R+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“
λx . ax+ b ‹ (λx . a0x+ b0)k

”
(M)g

i.e. any function bounded by the arithmetic-geometric
progression.

References

[1] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–58, Springer, 2005.14 here in R
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4. The industrial use of Astrée

References

[2] D. Delmas and J. Souyris. Astrée: from Research to Industry. Proc. 14th Int. Symp. SAS ’07, G. Filé and H. Riis-Nielson (eds),
22–24 Aug. 2007, Kongens Lyngby, DK, LNCS 4634, pp. 437–451, Springer.
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Example application

– Primary flight control software of the Airbus A340 fam-
ily/A380 fly-by-wire system

– C program, automatically generated from a propri-
etary high-level specification (à la Simulink/Scade)

– A340 family: 132,000 lines, 75,000 LOCs after prepro-
cessing, 10,000 global variables, over 21,000 after ex-
pansion of small arrays, now ˆ 2

– A380: ˆ 3/7
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Digital Fly-by-Wire Avionics 15

15 The electrical flight control system is placed between the pilot’s controls (sidesticks, rudder pedals) and the
control surfaces of the aircraft, whose movement they control and monitor.
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Benchmarks (Airbus A340 Primary Flight Control Software)

– V1 16, 132,000 lines, 75,000 LOCs after preprocessing
– Comparative results (commercial software):

4,200 (false?) alarms, 3.5 days;

– Our results:
0 alarms,
40mn on 2.8 GHz PC, 300 Megabytes
!̀ A world première in Nov. 2003!

16 “Flight Control and Guidance Unit” (FCGU) running on the “Flight Control Primary Computers” (FCPC).
The three primary computers (FCPC) and two secondary computers (FCSC) which form the A340 and
A330 electrical flight control system are placed between the pilot’s controls (sidesticks, rudder pedals) and
the control surfaces of the aircraft, whose movement they control and monitor.
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The main loop invariant for the A340 V1
A textual file over 4.5 Mb with
– 6,900 boolean interval assertions (x 2 [0; 1])
– 9,600 interval assertions (x 2 [a; b])
– 25,400 clock assertions (x+clk 2 [a; b]^x`clk 2 [a; b])
– 19,100 additive octagonal assertions (a » x+ y » b)
– 19,200 subtractive octagonal assertions (a » x`y » b)
– 100 decision trees
– 60 ellipse invariants, etc . . .
involving over 16,000 floating point constants (only 550
appearing in the program text) ˆ 75,000 LOCs.
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(Airbus A380 Primary Flight Control Software)

– 0 alarms (Nov. 2004), after some additional parametriza-
tion and simple abstract domains developments

– Now at 1,000,000 lines!
34h,
8 Gigabyte
!̀ A world grand première!
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Possible origins of imprecision and how to fix it

In case of false alarm, the imprecision can come from:
– Abstract transformers (not best possible) !̀ improve
algorithm;

– Automatized parametrization (e.g. variable packing)
!̀ improve pattern-matched program schemata;

– Iteration strategy for fixpoints !̀ fix widening 17;
– Inexpressivity i.e. indispensable local inductive invari-
ant are inexpressible in the abstract !̀ add a new
abstract domain to the reduced product (e.g. filters).

17 This can be very hard since at the limit only a precise infinite iteration might be able to compute the proper
abstract invariant. In that case, it might be better to design a more refined abstract domain.
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5. Conclusion
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Characteristics of the Astrée Analyzer (Cont’d)

Sound: – Astrée is a bug eradicator: finds all bugs

in a well-defined class (runtime errors)
– Astrée is not a bug hunter: finding some bugs in a
well-defined class (e.g. by bug pattern detection like
FindBugsŮ, PREfast or PMD)

– Astrée is exhaustive: covers the whole state space (6=
MAGIC, CBMC)

– Astrée is comprehensive: never omits potential er-
rors (6= UNO, CMC from coverity.com) or sort most
probable ones to avoid overwhelming messages (6= Splint)
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Characteristics of the Astrée Analyzer (Cont’d)

Static: compile time analysis ( 6= run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs (6= PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed ( 6= ESC Java,
ESC Java 2), or PREfast (annotate functions with
intended use)
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Characteristics of the Astrée Analyzer (Cont’d)

Multiabstraction: uses many numerical/symbolic abstract
domains (6= symbolic constraints in Bane or the
canonical abstraction of TVLA)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (6= model checking based
analyzers such as Bandera, Bogor, Java PathFinder,
Spin, VeriSoft)

Efficient: always terminate (6= counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)
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Characteristics of the Astrée Analyzer (Cont’d)

Extensible/Specializable: can easily incorporate new abstrac-
tions (and reduction with already existing abstract
domains) (6= general-purpose analyzers PolySpace
Verifier)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code
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Characteristics of the Astrée Analyzer (Cont’d)

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: very few or no false alarm when adapted to an
application domain !̀ it is a VERIFIER!
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The Future of the Astrée Analyzer

– Astrée has shown usable and useful in one industrial
context (electric flight control):

- as a R & D tool for A340 V2 and A380,
- as a production tool for the A350;

– More applications are forthcoming (ES_PASS project);
– Industrialization is simultaneously under consideration.
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THE END, THANK YOU
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