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Abstraction Example of unsound abstraction”
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(1) excluded by abstract interpretation theory

Soundness of the abstraction True or false alarm?
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Refinement
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Formal proof in the abstract is sound
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Formal proof in the abstract
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Example: inference of an invariant

{y >0} <« hypothesis

X =y
{I(z,y)} < loop invariant
while (x > 0)do

x :=x-1;
od

Abstract fixpoint equation:
I(z,y) =z>0A(z=yVI(z+1,y)) (i.e. I =FH(I) M)
Equivalent Floyd-Naur-Hoare verification conditions:
(y=0nz=y)= I(z,y) initialisation
(I(z,y) Nz >0nZ =2 —1)= I(z,y) iteration

) We look for the most precise invariant I, implying all others, that is Ifp_ F*.



Iterates with widening

I= |_| F!" (false)|
I%z,y) = false n—0o
I'Nz,y) =z>0A(z=yVI(z+1,y))
= 0 S; Tr = y
P(z,y) =2>0A(z=yVI(z+1y))
=0<z<y<z+1
Bz,y) =z2>20A(z=yVI¥z+1,y))
—0<z<y<T+2
I*(z,y) = I*(z,y)V I}(z,y) + widening

=0<z<y
P(z,y) = 2>0A(z=y VI z+1,9)
= I%(z,y) fixed point!

The invariants are computer representable
with octagons!

13

MCAI 2 expedition, Pittsburah. 2009/10/31—11,

Examples of abstractions not used by Astrée
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(too expensive)
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Zonotopes Support functions ~ Convex sets
(inclusion?) (widening?) (algorithmics?)
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Examples of abstractions used by Astrée
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semantics intervals simple congruences
set of points z € [a,b) z = alb)
t
octagons ellipsoids exponentials

tz+y<a az® +by? + czy < d a:(t)éabt

Example of analysis by Astree

% cat retro.c void main()

typedef enum {FALSE=0, TRUE=1} BOOL; { FIRST = TRUE;

BOOL FIRST; while (TRUE) {

volatile BOOL SWITCH; dev( );

volatile float E; FIRST = FALSE;

float P, X, A, B; __ASTREE_wait_for_clock(());
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void dev( ) % cat retro.config

{ X=E; __ASTREE_volatile_input ((E [-15.0, 15.01));
if (FIRST) { P = X; } __ASTREE_volatile_input ((SWITCH [0,1]));
else __ASTREE_max_clock((3600000)) ;

{P= (P- ((((2.0%P) - A -B)

astree -exec-fn main -config-sem retro.config
* 5.0e-03)); };

retro.c |& grep "IP|" | tail -n 1
B = A; IP| <=1.0000002%((15. +
if (SWITCH) {A = P;} 5.8774718e-39/(1.0000002-1))* (1.0000002) &lock -
else {A = X;} 5.8774718e-39/(1.0000002-1)) + 5.8774718e-39 <=
b 23.039353



Scaling up in static
verification by abstract
Interpretation

Implicit versus explicit specifications

Implicit specifications:

* e.g. absence of runtime errors

* no extra burden on the end-user, cost effective
Explicit specifications:

* e.g. temporal specification

* available specification may not be exploitable
(Simulink model)

* additional cost to maintain both the system, its
specification and a formal specification

Size scalability through specification restriction:

* e.g. verification — bug-finding
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Scalability in verification

Many different measures of scalability of an automatic

verifier:

* size scalability : size of the systems to be verified

* design scalability : required efforts from the verifier
designer

* use scalability : required efforts from the verifier
end-user

* re-use scalability : reproducibility under small
changes (maintenance)

Scalability — can only be measured with respect to
well-specified and often incomparable objectives
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Universal versus domain specific systems

Universal systems:
* e.g.programs in a universal programming language
Domain specific systems:
* e.g. synchronous real-time control command
programs
e excludes e recursive function calls,

e dynamic memory allocations,

e backward gotos,

e long jumps,

e concurrency,

e very complicated data structures,
e or highly nested loops.

Size scalability through application domain restriction
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Precision versus incompleteness

Precise abstractions:
* always exist for a given system (but not an infinite

family of systems)
* very hard to find

General abstractions:

* universal use (e.g. intervals)
* hard to avoid false alarms

Size-scalability through abstraction — how to get rid of
false alarms?
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Models versus properties (cont'd)

Model abstraction:
e Concrete model
e.g. transition system

Abstract model
abstract transition system

The same tools can be used in the concrete and the
abstract
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System modelization

Abstract model generation:

e System Model
e.g. C program transition system

Abstract model generator:

* System generator
e.g. C language

Model generator
C program —— abstract
model

Use-scalability through automatic model generation —
more burden is put on the static analyzer designer
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Models versus properties (cont’d)

Property abstraction:

* Concrete properties Abstract properties
generator generator
e.g. trace collecting polyhedral analysis
semantics

Use-scalability through more general abstractions —
more burden is put on the static analyzer designer
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Universal versus domain specific abstractions

Universal abstractions:

® e.g.invariance
* hard to automatize

Domain-specific abstractions:

* e.g filters, integrators in system control
* domain-specific knowledge can be incorporated in
the verification process

Scalability by domain-specific abstractions — helpful
(essential?), more burden on the static analyzer
designer
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Global versus local abstractions (cont’d)

Local abstractions:

* e.g.invariance through local trace abstraction
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Scalability through local abstraction — much more
powerful in the abstract, more burden of the static
analyzer designer
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Global versus local abstractions

Global abstractions:

* e.g.invariance through reachability
* the same abstraction everywhere in time and space
* provably sound and complete (Cook proved relative

completeness of Hoare logic)
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Finite versus infinite abstractions

Finite abstractions:

* Universal representations/algorithms
* No approximation in the abstract

Infinite abstractions:

* No universal representations/algorithms
* Require further approximation in the abstract to
ensure termination (widening/narrowing)

Equivalent for the static analysis of a given system,
provably more powerful for an infinite family of
systems

Scalability through infinite abstractions — more
burden of the static analyzer designer

28



Unique versus multiple abstraction encoding
Universal representation of abstractions:

* e.g.terms for provers, BDDs, etc

Abstraction-specific representations:

* e.g. no efficient universal representation of
geometric objects

Scalability through multiple abstraction representations
— more burden on the analyzer designer but very
efficient algorithms require specific data structures
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Refinement

* Refinement is necessary (very hard to find good

abstractions)

* Automatic abstraction-refinement is costly and may

not terminate

* Manual refinement by end-user &| static analyzer

designer

e.g.in Astrée:
¢ Parameterized abstract domains
* Parameterized widenings
* (Automated) analysis directives
* Local improvements of the abstract predicate transformers
* Inclusion of new abstract domains

Scalability through manual refinement — more
burden of the analyzer designer (& user)
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Handling disjunction with multiple abstractions

Unique abstraction representation:
* embeds conjunction

Multiple abstraction-specific representations:

* conjunction of multiple abstractions with different
abstractions is not immediate

* reduced product (optimal in precision)

* partial reduction is cheaper (although sub-optimal)

e.g. Astrée:

¢ fixed reduction order among abstract domains

e some domains broadcast information to all domains
¢ some domains ask questions to others, in turn
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Conclusion
Finding the appropriate abstraction is undecidable

and extremely difficult

Universal/all purpose tools with automatic
refinement only have the program as guidelines for
automatic refinement, this is hardly sufficient (e.g.
linear program — ellipsoidal abstraction for
programs)

Human guided parametrization/directives/choice of
combinations of domain specific abstractions is an
alternative which proved successfull but ...
Ultimately new abstractions (hence computer
property representations & manipulation
algorithms) must be designed manually but are

reusable ”



