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interpretation

1

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01                                                                                                                                                                                                                                                                         © P. Cousot,

A very short intuitive and 
informal introduction to 
abstract interpretation
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Semantics
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Sémantique opérationnelle du programme P
x(t)

t
Sémantique�P �
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Safety specification
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Spécification du programme P
x(t)

t
Spécification�P �
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Abstraction
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Abstraction du programme P
x(t)

t
Abstraction(Sémantique�P �)
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Soundness of the abstraction
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L’interprétation abstraite est correcte
x(t)

t
Sémantique�P � „ Abstraction(Sémantique�P �)
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Example of unsound abstraction
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Exemple d’abstraction erronée (7)

x(t)

t

(7) Cette situation est toujours exclue par la théorie de l’interprétation abstraite.
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(1) excluded by abstract interpretation theory

(1)

Spécification du programme P
x(t)

t
Spécification�P �

Pourquoi et comment le monde devient numérique, 22/2/2008J✁✁ ✁ – 27 –? []¨ –✄ ✄✄Iľ P. Cousot

Exemple d’abstraction erronée (7)

x(t)

t

(7) Cette situation est toujours exclue par la théorie de l’interprétation abstraite.

Pourquoi et comment le monde devient numérique, 22/2/2008J✁✁ ✁ – 38 –? []¨ –✄ ✄✄Iľ P. Cousot

Exemple d’abstraction erronée (7)

x(t)

t

(7) Cette situation est toujours exclue par la théorie de l’interprétation abstraite.

Pourquoi et comment le monde devient numérique, 22/2/2008J✁✁ ✁ – 38 –? []¨ –✄ ✄✄Iľ P. Cousot

Exemple d’abstraction erronée (7)

x(t)

t

(7) Cette situation est toujours exclue par la théorie de l’interprétation abstraite.

Pourquoi et comment le monde devient numérique, 22/2/2008J✁✁ ✁ – 38 –? []¨ –✄ ✄✄Iľ P. Cousot

Exemple d’abstraction erronée (7)

x(t)

t

(7) Cette situation est toujours exclue par la théorie de l’interprétation abstraite.

Pourquoi et comment le monde devient numérique, 22/2/2008J✁✁ ✁ – 38 –? []¨ –✄ ✄✄Iľ P. Cousot

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01                                                                                                                                                                                                                                                                         © P. Cousot,

True or false alarm?
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Alarme
x(t)

t
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Spécification du programme P
x(t)

t
Spécification�P �
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Refinement
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Abstraction du programme P
x(t)

t
Abstraction(Sémantique�P �)
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Formal proof in the abstract
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Preuve par abstraction
x(t)

t
Abstraction(Sémantique�P �) „ Spécification�P �
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Formal proof in the abstract is sound
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Abstraction du programme P
x(t)

t
Abstraction(Sémantique�P �)
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Example: inference of an invariant
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Example of static analysis

Example after invariant abstraction:

fy > 0g  hypothesis

x := y
fI(x; y)g  loop invariant

while (x > 0) do
x := x - 1;

od

Abstract fixpoint equation:

I(x; y) = x > 0 ^ (x = y _ I(x+ 1; y)) (i.e. I = F](I) (1))

Equivalent Floyd-Naur-Hoare verification conditions:

(y > 0 ^ x = y) =) I(x; y) initialisation
(I(x; y) ^ x > 0 ^ x0 = x` 1) =) I(x0; y) iteration

(1)
We look for the most precise invariant I, implying all others, that is lfp

=)
F]
.

Airbus, 12/04/2008 — 9 — ľ P. Cousot
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Iterates with widening
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Accelerated Iterates I =
G

n!1
F]
n
(false)

I0(x; y) = false

y

xI1(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I1(x; y) = 0 6 x = y

0

y

xI2(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I2(x; y) = 0 6 x 6 y 6 x+ 1

1

y

x
I3(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I3(x; y) = 0 6 x 6 y 6 x+ 2

2

y

x

I4(x; y) = I2(x; y)
�
I3(x; y) widening

I4(x; y) = 0 6 x 6 y
I5(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I5(x; y) = I4(x; y) fixed point!

The invariants are computer representable
with octagons!

Airbus, 12/04/2008 — 9 — ľ P. Cousot

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01                                                                                                                                                                                                                                                                         © P. Cousot,

14

Examples of abstractions used by AstréeExamples of abstractions used by Astrée

semantics intervals simple congruences
set of points x 2 [a; b] x ” a[b]

octagons ellipsoids exponentials

˚x˚ y 6 a ax2 + by2 + cxy 6 d x(t) 6 abt
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Examples of abstractions not used by Astrée

Polyhedra (too 
expensive)

Signs (too 
imprecise)

Linear 
congruences 

(too expensive)

Zonotopes 
(inclusion?)

Support functions 
(widening?)

Convex sets 
(algorithmics?)
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Example of analysis by Astrée
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Example of analysis by Astrée (suite)
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev( )
{ X=E;

if (FIRST) { P = X; }
else
{ P = (P - ((((2.0 * P) - A) - B)

* 5.0e-03)); };
B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev( );
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

astree –exec-fn main –config-sem retro.config
retro.c |& grep "|P|" | tail -n 1
|P| <=1.0000002*((15. +
5.8774718e-39/(1.0000002-1))*(1.0000002)ĉlock -
5.8774718e-39/(1.0000002-1)) + 5.8774718e-39 <=
23.039353

CS, NYU, 11/21/2008 J✁✁ ✁ – 60 –? []¨ –✄ ✄✄I ľ P. Cousot
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Scaling up in static 
verification by abstract 

interpretation
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Scalability in verification

18

Many different measures of scalability of an automatic 
verifier:
• size scalability : size of the systems to be verified
• design scalability : required efforts from the verifier 

designer
• use scalability : required efforts from the verifier 

end-user
• re-use scalability : reproducibility under small 

changes (maintenance)

Scalability ! can only be measured with respect to 
well-specified and often incomparable objectives
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Implicit versus explicit specifications

19

Implicit specifications:

Explicit specifications:

• e.g.  absence of runtime errors
• no extra burden on the end-user, cost effective

• e.g.  temporal specification
• available specification may not be exploitable 

(Simulink model)
• additional cost to maintain both the system, its 

specification and a formal specification

Size scalability through specification restriction:

• e.g.  verification ! bug-finding
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Universal versus domain specific systems

20

Universal systems:
• e.g. programs in a universal programming language

Domain specific systems:
• e.g. synchronous real-time control command 

programs
• excludes 

% cbmc falsealarm.c --overflow-check | tail -6 | fmt -s -w 62

Violated property:

file falsealarm.c line 3 arithmetic overflow on * -4681 < y

&& y < 4681 && x < 32767 && -32767 < x => !overflow("*", 7,

y)

VERIFICATION FAILED

%

Figure 3: An example where CBMC is incomplete.

most two nested loops. It follows that Astrée was not designed to support:

• recursive function calls,

• dynamic memory allocations,

• backward gotos,

• long jumps,

• concurrency,

• very complicated data structures,

• or highly nested loops.

There were of course also difficult points in that family, such as the size of the

programs (up to a million lines of C), with one big loop interrelating nearly all

variables (so that we cannot slice programs and analyse each part in isolation),

pointers on functions, or floating-point computations.

2.1.4 Scalability versus Analysis in the Small

Experience has shown that Astrée does scale up for the family of programs

for which it was designed which are typically of a few hundred thousands to a

million lines of C code. This does not mean that Astrée does scale up on all

programs (with any parameterization and analysis directives). Fig. 4 shows an

example which essentially consists in exhaustively exploring each execution trace

in the program separately (due to the option --partition-all specified by the

user). However, with the appropriate abstraction (i.e. limiting the amount

of case analysis performed on execution traces, which is the default when no

--partition-all option is specified by the user), we immediately get:

% (time astree --exec-fn main explode.c) |& egrep

"error:|WARN|pf"

0.436u 0.066s 0:00.74 66.2% 0+0k 0+0io 0pf+0w

%

Note that CBMC [7] is also sensitive to an appropriate choice of options. We

have

% time cbmc explode.c

...

7

Size scalability through application domain restriction
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Precision versus incompleteness
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Size-scalability through abstraction ! how to get rid of 
false alarms?

Precise abstractions:

General abstractions:

• always exist for a given system (but not an infinite 
family of systems)

• very hard to find

• universal use (e.g. intervals)
• hard to avoid false alarms
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System modelization
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• System                                 Model
e.g. C program                       transition system

• System generator                  Model generator
e.g. C language                   C program          abstract
                                                                   model

Abstract model generator:

Abstract model generation:

Use-scalability through automatic model generation ! 
more burden is put on the static analyzer designer
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Models versus properties (cont’d)
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• Concrete model                 Abstract model
e.g. transition system          abstract transition system

Model abstraction:

... ....

.

The same tools can be used in the concrete and the 
abstract

.../...
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• Concrete properties           Abstract properties
    generator                          generator

e.g. trace collecting             polyhedral analysis
semantics

Property abstraction:

Models versus properties (cont’d)

Use-scalability through more general abstractions ! 
more burden is put on the static analyzer designer
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Universal versus domain specific abstractions
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Universal abstractions:

• e.g. invariance
• hard to automatize

Domain-specific abstractions:
• e.g. filters, integrators in system control
• domain-specific knowledge can be incorporated in 

the verification process

Scalability by domain-specific abstractions ! helpful 
(essential?), more burden on the static analyzer 
designer
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Global versus local abstractions (cont’d)
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Global abstractions:

• e.g. invariance through reachability 
• the same abstraction everywhere in time and space
• provably sound and complete (Cook proved relative 

completeness of Hoare logic)

collecting semantics [8, 24]. These extreme solutions are too costly and so do
not scale up in the large. For infinitary abstractions, the merge-over-all-paths
is not computable but portions of paths can be abstracted together to make the
analysis feasible [9, 41].

Weaker, but scalable, alternatives are discussed below. Note that disjunc-
tive completion as well as the weaker alternatives discussed below cannot solve
all false alarms and so the abstraction may ultimately have to be refined as
discussed in later sections.

3.1 Trace Partitioning versus Local Invariance Analysis
A non-distributive abstraction is an abstraction that may lose information when-
ever unions are performed. This is quite a frequent case. For example, intervals
are a non-distributive abstraction (e.g. [1, 2] ∪ [5, 6] ⊂ [1, 6] = [1, 2] � [5, 6]). To
gain precision in such cases, Astrée proves that all program execution traces
satisfy an invariance property by partitioning the set of all traces into sets of
trace portions abstracted separately [48, 58].

In the classic state partitioning by program points [10, 11], all reachable
states corresponding to a given program point are over-approximated by a local
invariant on memory states attached to this program point. The two figures be-
low illustrate graphically this partitioning on two examples. Both cases present
six traces (horizontal lines) composed of eight program states (dots) each. (1)
to (8) denote program points, while #1 to #4 denote loop iterations. Each gray
zone denotes a set of program states that are abstracted together. The left fig-
ure corresponds to an if-then-else statement, where program points (2a)–(3a)
above are in the then branch, program points (2b)–(3b) below are in the else
branch, and program points (1) and (4)–(8) are statements before and after
the conditional. The right figure corresponds to a loop with four iterations #1
to #4 of a body consisting of two statements (1)–(2). In both cases, Astrée
collects together program states from all traces at each program point, even for
program executions that reach several times the same point (as in the loop ex-
ample). Thus, the left example results in ten abstract memory states computed
and the right example results two abstract memory states.

(1) (4) (5) (6) (7) (8)(2b) (3b)

(3a)(2a)

#3 #4#3#1#1 #2 #2 #4
(1) (1) (1) (1)

(2) (2) (2) (2)

Conversely, when employing trace partitioning, program states at the same

12
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Global versus local abstractions (cont’d)
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Local abstractions:

• e.g. invariance through local trace abstraction 

program point but belonging to different traces may be collected separately.
Consider the two figures below, corresponding to the two same programs as
before. On the left figure, tests cases are prolonged beyond the end of the
if, so that we abstract separately the set of states at program points (4)–
(7) depending on whether the then or else branch was taken. Moreover, it
is possible to perform case analysis to distinguish traces based on the value
some variable takes at some program point. Indeed, at program points (5)–(6),
traces that come from the then branch are further partitioned into two sets
depending on the value some variable takes at point (5). To ensure efficiency,
the case analysis can be terminated by (partially) merging trace partitions at
some program point, as shown in (7) and (8). The right figure corresponds to
unrolling the loop body once, so that program states at both program points
in the first iteration are abstracted separately from those in the following three
iterations.

(1) (4) (5) (6) (7) (8)

(2a) (3a)

(2b) (3b) #3 #4#3#1#1 #2 #2 #4
(1) (1) (1) (1)

(2)(2) (2)(2)

It follows that trace partitioning abstract interpretation [48, 58] combines the
effects of case analysis and symbolic execution as in Burstall’s intermittent as-
sertion method [6, 19] as opposed to state partitioning as found in Floyd /
Naur / Hoare invariant assertion proof method [17, 32, 43, 55]. It can be im-
plemented easily by on-the-fly program transformation/code generation in the
abstract interpreter. Trace partitioning is then much more efficient than the
merge-over-all-paths or disjunctive completion since it is applied locally, not
globally on the whole program: the case analysis always ends with an explicit
merge of the cases (an implicit merge is performed at the end of functions).

For example, the analysis of the clip.c program (Fig. 6) by Astrée pro-
duces no false alarm:

% astree --exec-fn main clip.c |& grep WARN
%

This precision is obtained after automatic inclusion of partitioning directives by
a preliminary analysis [48]. The result of such inclusion on the clip program is
shown on Fig. 7. The effect of these directives is to distinguish, when analysing
the second test, traces that come from the then and from the implicit else
branch of the first test. Without the partitioning directives, the abstractions

13

Scalability through local abstraction ! much more 
powerful in the abstract, more burden of the static 
analyzer designer
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Finite versus infinite abstractions
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Finite abstractions:

Infinite abstractions:

• Universal representations/algorithms
• No approximation in the abstract

• No universal representations/algorithms
• Require further approximation in the abstract to 

ensure termination (widening/narrowing)
Equivalent for the static analysis of a given system, 
provably more powerful for an infinite family of 
systems
Scalability through infinite abstractions ! more 
burden of the static analyzer designer
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Unique versus multiple abstraction encoding
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Universal representation of abstractions:

Abstraction-specific representations:

• e.g. terms for provers, BDDs, etc

• e.g. no efficient universal representation of 
geometric objects

Scalability through multiple abstraction representations 
! more burden on the analyzer designer but very 
efficient algorithms require specific data structures
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Handling disjunction with multiple abstractions

30

Unique abstraction representation:

• embeds conjunction

Multiple abstraction-specific representations:

• conjunction of multiple abstractions with different 
abstractions is not immediate

• reduced product (optimal in precision)
• partial reduction is cheaper (although sub-optimal)

e.g.  Astrée:
• fixed reduction order among abstract domains
• some domains broadcast information to all domains
• some domains ask questions to others, in turn
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Refinement
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• Refinement is necessary (very hard to find good 
abstractions)

• Automatic abstraction-refinement is costly and may 
not terminate

• Manual refinement by end-user &| static analyzer 
designer
e.g. in Astrée:

• Parameterized abstract domains
• Parameterized widenings
• (Automated) analysis directives
• Local improvements of the abstract predicate transformers
• Inclusion of new abstract domains

Scalability through manual refinement ! more 
burden of the analyzer designer (& user)
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Conclusion

32

• Finding the appropriate abstraction is undecidable 
and extremely difficult

• Universal/all purpose tools with automatic 
refinement only have the program as guidelines for 
automatic refinement, this is hardly sufficient (e.g. 
linear program → ellipsoïdal abstraction for 
programs)

• Human guided parametrization/directives/choice of 
combinations of domain specific abstractions is an 
alternative which proved successfull but ...

• Ultimately new abstractions (hence computer 
property representat ions & manipulat ion 
algorithms) must be designed manually but are 
reusable


