MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01

Scaling up in static
verification by abstract
interpretation

Patrick Cousot

pcousot(@cs.nyu.edu
http://cs.nyu.edu/~pcousot

October 7,2009

Semantics

A very short intuitive and
informal introduction to
abstract interpretation

Abstraction Example of unsound abstraction”

z(t) z(t)

v
~+

(1) excluded by abstract interpretation theory

Soundness of the abstraction True or false alarm?

z(t)

Refinement

z(t)

Formal proof in the abstract is sound

z(t)

Formal proof in the abstract
z(t)

Example: inference of an invariant

{y >0} <« hypothesis

X =y
{I(z,y)} < loop invariant
while (x > 0)do

x :=x-1;
od

Abstract fixpoint equation:
I(z,y) =z>0A(z=yVI(z+1,y)) (i.e. I =FH(I) M)
Equivalent Floyd-Naur-Hoare verification conditions:
(y=0nz=y)= I(z,y) initialisation
(I(z,y) Nz >0nZ =2 —1)= I(z,y) iteration

) We look for the most precise invariant I, implying all others, that is Ifp_ F*.

Iterates with widening

I= |_| F!" (false)|
I%z,y) = false n—0o
I'Nz,y) =z>0A(z=yVI(z+1,y))
= 0 S; Tr = y
P(z,y) =2>0A(z=yVI(z+1y))
=0<z<y<z+1
Bz,y) =z2>20A(z=yVI¥z+1,y))
—0<z<y<T+2
I*(z,y) = I*(z,y)V I}(z,y) + widening

=0<z<y
P(z,y) = 2>0A(z=y VI z+1,9)
= I%(z,y) fixed point!

The invariants are computer representable
with octagons!

13

MCAI 2 expedition, Pittsburah. 2009/10/31—11,

Examples of abstractions not used by Astrée

e o °

A . o ® °

° : %o o o ° °

o

..°. 2o o © :

> o
Polyhedra (too Signs (too Linear
- . . congruences
expensive) imprecise) 8

(too expensive)

2

Zonotopes Support functions ~ Convex sets
(inclusion?) (widening?) (algorithmics?)

I5

Examples of abstractions used by Astrée

e o o o

o o

semantics intervals simple congruences
set of points z € [a,b) z = alb)
t
octagons ellipsoids exponentials

tz+y<a az® +by? + czy < d a:(t)éabt

Example of analysis by Astree

% cat retro.c void main()

typedef enum {FALSE=0, TRUE=1} BOOL; { FIRST = TRUE;

BOOL FIRST; while (TRUE) {

volatile BOOL SWITCH; dev();

volatile float E; FIRST = FALSE;

float P, X, A, B; __ASTREE_wait_for_clock(());

3

void dev() % cat retro.config

{ X=E; __ASTREE_volatile_input ((E [-15.0, 15.01));
if (FIRST) { P = X; } __ASTREE_volatile_input ((SWITCH [0,1]));
else __ASTREE_max_clock((3600000)) ;

{P= (P- ((((2.0%P) - A -B)

astree -exec-fn main -config-sem retro.config
* 5.0e-03)); };

retro.c |& grep "IP|" | tail -n 1
B = A; IP| <=1.0000002%((15. +
if (SWITCH) {A = P;} 5.8774718e-39/(1.0000002-1))* (1.0000002) &lock -
else {A = X;} 5.8774718e-39/(1.0000002-1)) + 5.8774718e-39 <=
b 23.039353

Scaling up in static
verification by abstract
Interpretation

Implicit versus explicit specifications

Implicit specifications:

* e.g. absence of runtime errors

* no extra burden on the end-user, cost effective
Explicit specifications:

* e.g. temporal specification

* available specification may not be exploitable
(Simulink model)

* additional cost to maintain both the system, its
specification and a formal specification

Size scalability through specification restriction:

* e.g. verification — bug-finding

19

Scalability in verification

Many different measures of scalability of an automatic

verifier:

* size scalability : size of the systems to be verified

* design scalability : required efforts from the verifier
designer

* use scalability : required efforts from the verifier
end-user

* re-use scalability : reproducibility under small
changes (maintenance)

Scalability — can only be measured with respect to
well-specified and often incomparable objectives

18

Universal versus domain specific systems

Universal systems:
* e.g.programs in a universal programming language
Domain specific systems:
* e.g. synchronous real-time control command
programs
e excludes e recursive function calls,

e dynamic memory allocations,

e backward gotos,

e long jumps,

e concurrency,

e very complicated data structures,
e or highly nested loops.

Size scalability through application domain restriction

20

Precision versus incompleteness

Precise abstractions:
* always exist for a given system (but not an infinite

family of systems)
* very hard to find

General abstractions:

* universal use (e.g. intervals)
* hard to avoid false alarms

Size-scalability through abstraction — how to get rid of
false alarms?

21

Models versus properties (cont'd)

Model abstraction:
e Concrete model
e.g. transition system

Abstract model
abstract transition system

The same tools can be used in the concrete and the
abstract

23

System modelization

Abstract model generation:

e System Model
e.g. C program transition system

Abstract model generator:

* System generator
e.g. C language

Model generator
C program —— abstract
model

Use-scalability through automatic model generation —
more burden is put on the static analyzer designer
22

Models versus properties (cont’d)

Property abstraction:

* Concrete properties Abstract properties
generator generator
e.g. trace collecting polyhedral analysis
semantics

Use-scalability through more general abstractions —
more burden is put on the static analyzer designer

24

Universal versus domain specific abstractions

Universal abstractions:

® e.g.invariance
* hard to automatize

Domain-specific abstractions:

* e.g filters, integrators in system control
* domain-specific knowledge can be incorporated in
the verification process

Scalability by domain-specific abstractions — helpful
(essential?), more burden on the static analyzer
designer

25

Global versus local abstractions (cont’d)

Local abstractions:

* e.g.invariance through local trace abstraction
) 2) 2) 2)

(2a) G A)

YN

)
)

N

D O(
D O(

[N —/
Y Y o

(ARG O
OO) 0 0 0

1 @2b) B @ &) ©) ©® #1 #1 #2 #2 #3 #3 #4 #4

Scalability through local abstraction — much more
powerful in the abstract, more burden of the static
analyzer designer

27

Global versus local abstractions

Global abstractions:

* e.g.invariance through reachability
* the same abstraction everywhere in time and space
* provably sound and complete (Cook proved relative

completeness of Hoare logic)

2) G @ @ o) @
(2a) (3a)) r — — ~
R WA W WA WA W)

—/
DD

A N— — J_J
) N N N A N N) o) o) W

(1) (@2b) Gb) 4) © (D @) #lO#1 #2 #2 #3 #3 #4 #4

26

Finite versus infinite abstractions

Finite abstractions:

* Universal representations/algorithms
* No approximation in the abstract

Infinite abstractions:

* No universal representations/algorithms
* Require further approximation in the abstract to
ensure termination (widening/narrowing)

Equivalent for the static analysis of a given system,
provably more powerful for an infinite family of
systems

Scalability through infinite abstractions — more
burden of the static analyzer designer

28

Unique versus multiple abstraction encoding
Universal representation of abstractions:

* e.g.terms for provers, BDDs, etc

Abstraction-specific representations:

* e.g. no efficient universal representation of
geometric objects

Scalability through multiple abstraction representations
— more burden on the analyzer designer but very
efficient algorithms require specific data structures

29

Refinement

* Refinement is necessary (very hard to find good

abstractions)

* Automatic abstraction-refinement is costly and may

not terminate

* Manual refinement by end-user &| static analyzer

designer

e.g.in Astrée:
¢ Parameterized abstract domains
* Parameterized widenings
* (Automated) analysis directives
* Local improvements of the abstract predicate transformers
* Inclusion of new abstract domains

Scalability through manual refinement — more
burden of the analyzer designer (& user)

31

Handling disjunction with multiple abstractions

Unique abstraction representation:
* embeds conjunction

Multiple abstraction-specific representations:

* conjunction of multiple abstractions with different
abstractions is not immediate

* reduced product (optimal in precision)

* partial reduction is cheaper (although sub-optimal)

e.g. Astrée:

¢ fixed reduction order among abstract domains

e some domains broadcast information to all domains
¢ some domains ask questions to others, in turn

30

Conclusion
Finding the appropriate abstraction is undecidable

and extremely difficult

Universal/all purpose tools with automatic
refinement only have the program as guidelines for
automatic refinement, this is hardly sufficient (e.g.
linear program — ellipsoidal abstraction for
programs)

Human guided parametrization/directives/choice of
combinations of domain specific abstractions is an
alternative which proved successfull but ...
Ultimately new abstractions (hence computer
property representations & manipulation
algorithms) must be designed manually but are

reusable ”

