
MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01

pcousot@cs.nyu.edu
http://cs.nyu.edu/~pcousot

November 1, 2009

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Patrick Cousot

Challenges in control/
command software analysis

1

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Motivation

2

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Computer controlled systems

3

Computer controlled systems

Approximations: program ! precise, system ! precise

Minta Martin Lecture, MIT, May 13th, 2005 — 71 — ľ P. Cousot

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Example of bug report

4
ADIRU = Air Data Inertial Reference Unit (provides air speed, altitude & position)

Example of bug report
Department

Infrastructure Australia
Bureau of Infrastructure, Transport and Regional Economics

Minister | Help | Feedback | Contact Us | Search keyword GO

Transport

Transport Safety

About the ATSB

Newsroom

Aviation Safety

Marine Safety

Rail Safety

Road Safety

Publications and
Investigation Reports

Accident and Incident
Notification Forms

Aviation

Roads

Rail

Maritime

Regional

Local Government

The Department

14 October 2008 - Qantas Airbus A330 accident Media Conference

MEDIA RELEASE

Adjust font size:

2008/43

Qantas Airbus A330 accident Media Conference

14 October 2008

The Australian Transport Safety Bureau's investigation into the accident involving an Airbus A330-300 aircraft
operating as Qantas flight 72 on a flight from Singapore to Perth on 7 October 2008 is progressing well. The ATSB
has scheduled the media conference this evening to coincide with the release of an Operators Information
Telex/Flight Operations Telex, which is being sent by Airbus to operators of all Airbus aircraft. The aim of that telex is
to:

update operators on the factors identified to date that led to the accident involving QF72,
provide operational recommendations to mitigate risk in the event of a reoccurrence of the situation which
occurred on QF72.

To assist in understanding the following information, I would just like to refer you quickly to the diagrams projected
on the screen specifically, the term angle of attack which refers to the difference in angle between the aircraft and its
control surfaces, and the air stream as the aircraft moves through the air.

The next diagram is a simple representation of the aircraft and the components relevant to this explanation, which
include the angle of attack sensors located on the outside of the aircraft, the Air Data Inertial Reference Units
(ADIRUs), of which there are three, located in the avionics compartment inside the aircraft, the Flight Control
Primary Computers of which there are also three located in the avionics compartment, and the elevators, located on
the aircrafts horizontal stabiliser. In the context of this occurrence, the angle of attack sensors send raw data to the
ADIRUs, which provide processed angle of attack information to the Flight Control Primary Computers, which in turn
command the elevator position.

Returning to the circumstances of the 7 October flight, preliminary analysis of the Flight Data Recorder data, Post
Flight Report data and Built-in Test Equipment data has enabled the investigation to establish a preliminary
sequence of events this information is also contained in the Airbus telex.

The aircraft was flying at FL 370 or 37, 000 feet with Autopilot and Auto-thrust system engaged, when an Inertial
Reference System fault occurred within the Number-1 Air Data Inertial Reference Unit (ADIRU 1), which resulted in
the Autopilot automatically disconnecting. From this moment, the crew flew the aircraft manually to the end of the
flight, except for a short duration of a few seconds, when the Autopilot was reengaged. However, it is important to
note that in fly by wire aircraft such as the Airbus, even when being flown with the Autopilot off, in normal operation,
the aircrafts flight control computers will still command control surfaces to protect the aircraft from unsafe conditions
such as a stall.

The faulty Air Data Inertial Reference Unit continued to feed erroneous and spike values for various aircraft
parameters to the aircrafts Flight Control Primary Computers which led to several consequences including:

false stall and overspeed warnings
loss of attitude information on the Captain's Primary Flight Display
several Electronic Centralised Aircraft Monitoring system warnings.

About 2 minutes after the initial fault, ADIRU 1 generated very high, random and incorrect values for the aircrafts
angle of attack.

These very high, random and incorrect values of the angle attack led to:

the flight control computers commanding a nose-down aircraft movement, which resulted in the aircraft
pitching down to a maximum of about 8.5 degrees,
the triggering of a Flight Control Primary Computer pitch fault.

The crew's timely response led to the recovery of the aircraft trajectory within seconds. During the recovery the
maximum altitude loss was 650 ft.

The Digital Flight Data Recorder data show that ADIRU 1 continued to generate random spikes and a second
nose-down aircraft movement was encountered later on, but with less significant values in terms of aircraft's
trajectory.

At this stage of the investigation, the analysis of available data indicates that the ADIRU 1 abnormal behaviour is

Print
Last Updated: 14 October, 2008

Privacy | Copyright | Disclaimer | Linking to the ATSB website | Sitemap

likely as the origin of the event.

The aircraft contains very sophisticated and highly reliable systems. As far as we can understand, this appears to be
a unique event and Airbus has advised that it is not aware of any similar event over the many years of operation of
the Airbus.

Airbus has this evening, Australian time, issued an Operators Information Telex reflecting the above information.
The telex also foreshadows the issue of Operational Engineering Bulletins and provides information relating to
operational recommendations to operators of A330 and A340 aircraft fitted with the type of ADIRU fitted to the
accident aircraft. Those recommended practices are aimed at minimising risk in the unlikely event of a similar
occurrence. That includes guidance and checklists for crew response in the event of an Inertial Reference System
failure.

Meanwhile, the ATSB's investigation is ongoing and will include:

Download of data from the aircraft's three ADIRUs and detailed examination and analysis of that data.
Arrangements are currently being made for the units to be sent to the component manufacturer's facilities
in the US as soon as possible and for ATSB investigators to attend and help with that testing, along with
representatives from the US National Transportation Safety Board, The French Bureau dEnquêtes et
dAnalyses (BEA) and Airbus.
In addition, investigators have been conducting a detailed review of the aircraft's maintenance history,
including checking on compliance with relevant Airworthiness Directives, although initial indications are that
the aircraft met the relevant airworthiness requirements.
Work is also ongoing to progress interviews, which will include with injured passengers to understand what
occurred in the aircraft cabin. The ATSB plans to distribute a survey to all passengers.

There has been close and frequent communication between the ATSB, Qantas, Airbus, the BEA, and CASA. That
close communication will continue as the investigation progresses to ensure that any additional safety action can be
instigated as soon as possible should critical safety factors be identified. The ATSB expects to publish a Preliminary
Factual report in about 30 days from the date of the accident.

Media Contact: David Hope 1800 020 616

Related Documents: | Audio file of media conference, 14 October 2008 (18 MB) |

http://www.atsb.gov.au/newsroom/2008/release/2008_43.aspx,
http://en.wikipedia.org/wiki/Qantas_Flight_72

“The Australian Transport
Safety Bureau (ATSB) found
that the main probable cause
of this incident was a latent
software error which allowed
the ADIRU to use data from a
failed accelerometer”

Airbus, 12/04/2008 — 4 — ľ P. Cousot

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

5

• The initial effects of the fault were:
• false stall and overspeed warnings
• loss of attitude information on the Captain's primary flight

display
• several Electronic Centralised Aircraft Monitoring (ECAM)

system warnings
• About two minutes later, ADIRU #1, which was providing data to

the captain's primary flight display, provided very high (and false)
indications for the aircraft's angle of attack, leading to:

• the flight control computers commanding a nose-down
aircraft movement, which resulted in the aircraft pitching
down to a maximum of about 8.5 degrees,

• the triggering of a Flight Control Primary Computer pitch
fault.

• On 15 January 2009 the EASA issued an Emergency
Airworthiness Directive to address the above A330 and A340
Northrop-Grumman ADIRU problem of incorrectly responding
to a defective inertial reference.

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

6

• A memo leaked from Airbus on the Flight 447 (from Rio de
Janeiro, Brazil, to Paris, that crashed into the Atlantic Ocean on 1
June 2009) suggests that there was no evidence that Honeywell
manufactured ADIRU malfunction was similar to the failure of the
Northrop Grumman manufactured ADIRU in Qantas flight
incidents

An Air Data Inertial Reference Unit (ADIRU) is a key component of the integrated Air Data
Inertial Reference System (ADIRS), that supplies air data (airspeed, angle of attack and altitude)
and inertial reference (position and attitude) information to the pilots' Electronic Flight
Instrument System displays as well as other systems on the aircraft such as the engines,
autopilot, flight control and landing gear systems

LTN-101 FLAGSHIP™ GNADIRU

The LTN-101 FLAGSHIP™ is an integrated
global navigation, air data, inertial
reference unit (GNADIRU) that has
re-defined industry standards for laser
inertial navigation systems:
•Hardware
•Software
• Performance
• Reliability
Introduced in 1992, FLAGSHIP has
established an exceptional reliability record
of over 16,000 operating hours MTBF on
such leading commercial aircraft as the
Airbus wide and narrow body families,
Canadair Regional Jet and CL604, and the
Saab 2000. Now, with the incorporation of
Autonomous Integrity Monitored
Extrapolation (AIME™) technology,
FLAGSHIP offers 0.3 navigation accuracy
worldwide, 24 hours a day.

FLAGSHIP lowers ownership
costs through:
• Increased functionality and flexibility

- Integrated GPS and air data
- ARINC 704/738-compatible without

modification
- Interchangeable with 10-MCU

ARINC 704 and 738 by use of adapter
tray only

- Offers AIME technology
- Provides LNAV advisory, VNAV, and

growth to precision approaches
• New generation reliability

- MTBF of over 16,000 operating hours
- Minimal false removals

• Enhanced maintainability
- Advanced built-in test to Level II
- In-flight fault diagnostics
- System and module BIT history storage

With the incorporation
of AIME™ technology,
FLAGSHIP™ offers
0.3 navigation
accuracy worldwide,
24 hours a day.

Navigation Systems

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Brief overview of one
approach to the design of

an aircraft digital fly by wire
control system

7

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Mechanical flight-control systems

8

18 mai 200610ième session : transports et sûreté de fonctionnement - outils, techniques et approches, ENST, Paris Page 11©
 A

IR
B

U
S

 S
.A

.S
.

A
ll

ri
g
h
ts

 r
e

s
e
rv

e
d
.
C

o
n
fi
d
e
n
ti
a
l
a
n
d
 p

ro
p
ri
e
ta

ry
 d

o
c
u
m

e
n
t.

What is Fly-by- Wire?

to … “Fly-By-Wire”….or Electrical Flight Control System (EFCS) ….
or “Commandes de Vol électriques” (CDVE)

Auto-pilot

computer

Fly-by-wire

computers

A/C Response

A/P order

From Mechanical Flight Control System….

AP

AP A/C

response

Feel and

Limitation

Computer

Flight Augmentation

Computer

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

What is fly-by-wire?

9

18 mai 200610ième session : transports et sûreté de fonctionnement - outils, techniques et approches, ENST, Paris Page 12©
 A

IR
B

U
S

 S
.A

.S
.

A
ll

ri
g
h
ts

 r
e
s
e
rv

e
d
.
C

o
n
fi
d
e
n
ti
a
l
a
n
d
 p

ro
p
ri
e
ta

ry
 d

o
c
u
m

e
n
t.

What is Fly-by- Wire?

From Fly-by-Wire ….

Auto-pilot

computer

Fly-by-wire

computers

A/C Response

A/P order

HYDRAULIC POWER

to … “Fly-by-Wire” associated to “Power-by-Wire”.

Auto-pilot

computer

Fly-by-wire

computers

A/C Response

A/P order

HYDRAULIC and

ELECTRICAL POWER

Reference Actuators SensorsControler

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Mathematical model of an airplane
and its flight dynamics

10

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Control surfaces

11

Control surfaces
1. Winglet
2. Low-Speed Aileron
3. High-Speed Aileron
4. Flap track fairing
5. Krüger flaps
6. Slats
7. Three slotted inner flaps
8. Three slotted outer flaps
9. Spoilers
10. Spoilers-Air brakes

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

• Flap actuators:

• Trim actuators:

• Vibration control actuators

• Engine thurst vector control:

• Engine fuel metering:

• etc

Sensors and Actuators

12

• Position sensors:

• Force measurement sensors:

• Presure sensors:

• Speed meters (Pitot tubes):

• Pitch, roll a yaw meters/gyroscopes:

• etc

•

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

!

Abstract— The civil aircraft‘s electrical flight control system

has been changed to take benefit of technical improvements.

New technologies, when mature, can be incorporated in

aircrafts. Evolutions are considered towards a digital network

between computers and actuators/sensors, and more

distributed processing for actuators and sensors. Thus, new

architectures are possible for future aircraft systems. The

difficulty is to achieve the same safety and availability

requirements with additional operational reliability (required

by airlines). The challenge that faces the engineers is to design

mass-produced fault-tolerant systems with reasonable cost.

Analysis of existing electrical flight control system architectures

of the Airbus and Boeing airplanes as well as future

requirements drive us to introduce a brief overview for an

incremental methodology of architectural design process based

on progressive requirements injection.

Index Terms— dependability, fault-tolerance, safety analysis,

critical avionics systems, digital electrical flight control systems

I. INTRODUCTION

Fig. 1 shows a commercial transport aircraft’s Flight

Control System (FCS). It is an electrical system with digital

technologies: Fly-By-Wire (FBW) since the Airbus A310. In

general, pilot commands are sensed electrically and

processed by digital computers to position the control

surfaces. The components of FCS include sensors, actuators

(hydraulic and electric), flight control surfaces, the respective

cockpit controls, connecting linkages, the necessary

operating mechanisms, and digital flight control computers

(central processing units) as the system’s core.

The flight control system provides airplane control and

envelope protection in pitch, roll, and yaw axes. All system

processing on FCS is performed by flight control computers

because computers are the only components of the system

which have functions implemented in software (intelligent

components). Traditionally, digital signals are used for inter

M. Sghairi is with LAAS-CNRS, Université de Toulouse, 7, avenue du

Colonel Roche, F-31077 Toulouse, France. She is also with AIRBUS France,

Flight Control System Department, 316 route de Bayonne, 31060 Toulouse,

France (e-mail: msghairi@laas.fr or sghairi@airbus.com).

A. de Bonneval is with LAAS-CNRS, Université de Toulouse, 7, avenue

du Colonel Roche, F-31077 Toulouse, France. He is also with Université de

Toulouse, Université P. Sabatier, 118, Route de Narbonne, F-31062

Toulouse, France (e-mail: agnan@laas.fr).

Y. Crouzet is with LAAS-CNRS, Université de Toulouse, 7, avenue du

Colonel Roche, F-31077 Toulouse, France (e-mail: crouzet@laas.fr).

J.-J. Aubert and P. Brot are with AIRBUS France, Flight Control System

Department, 316 route de Bayonne, 31060 Toulouse, France (e-mail:

aubert@airbus.com and brot@airbus.com).

communication between Flight Control Computers (FCC),

while analog signals are used for communication between

FCC and sensors/actuators. During the last few years there

has been a considerable amount of effort undertaken in the

area of integrated modular avionic (IMA) [1], and digital

communication based on AFDX [2] switch in order to

minimize aircraft cabling to provide further weight, cost

reduction, and high operational reliability.

The primary concern of our project is to develop a new

low-cost architecture for future aircraft flight control systems

based on digital communication technologies. The

commercial transport industry can benefit from Fly-By-Wire

technologies. Unfortunately, the equipments and

architectures proposed for FBW applications must meet

stringent safety and availability requirements [3] for being

certified. For such applications, the probability of losing

aircraft’s function or a critical failure must be less than 10-9

per flight hour.

The paper is organized as follows: Section I presents flight

control systems. Section II and III provide the fundamental

concepts and definition of dependability. Sections IV and V

describe basic architecture of Airbus and Boeing fault

tolerance flight computer. Section VI is dedicated for

system’s safety and economic requirements. Section VII

presents a brief overview for the incremental methodology

process to define primary optimal architecture. While section

VIII presents conclusions and perspectives of this work.

Fig 1: Flight control system’s elements.

Challenges in Building Fault -Tolerant Flight

Control System for a Civil Aircraft

M. Sghairi, A. de Bonneval, Y. Crouzet, J.-J. Aubert and P. Brot

Design of the control model (flight control laws)

13

electrical back-up
hydraulic actuator

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

14The MathWorks’ Aerospace Toolbox 2.4

Simulation of the controlled system
e.g. in SimulinkTM

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Formal specification of the control
e.g. in ScadeTM / SAOTM

15

18 mai 200610ième session : transports et sûreté de fonctionnement - outils, techniques et approches, ENST, Paris Page 18©
 A

IR
B

U
S

 S
.A

.S
.

A
ll

ri
g
h
ts

 r
e
s
e
rv

e
d
.
C

o
n
fi
d
e
n
ti
a
l
a
n
d
 p

ro
p
ri
e
ta

ry
 d

o
c
u
m

e
n
t.

DESIGN & MANUFACTURING ERROR

FUNCTIONAL SPECIFICATION

- interface between aircraft &

computer sciences

- automatic code generation

- Classical V&V means, plus

- virtual iron bird (simulation)

- some formal proof

ScadeTM:

SAOTM:

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Design of a fault-tolerant control system (I)

16

electrical components. These redundant components have to

be distributed in different locations. For example, actuators

are managed by any of the flight control computers, to protect

against failure of single calculator that causes loss of control

in any axis (roll, pitch or yaw).

The linkages between the flight control computers and the

flight surfaces are arranged so that each surface is controlled

by multiple independent actuators. Each actuator is

controlled by different computers so loss of a single actuator

or computer will not lead to a loss of the surface’s control.

Another form of segregation is the hydraulic system which is

3-way replicated through different dedicated paths.

IV. INDUSTRIAL PRACTICES AND STRATEGIES

A. Airbus Basic Internal Architecture Computer

The airbus flight control system is based on many self

checking flight computers composed of two software

variants or unit (command and monitoring unit) [10] as show

in Fig. 2 whose results are compared. The command unit and

the monitor unit are separated channels within a single

computer. Each channel has separate hardware and different

software. If the results of the channels disagree (as checked

by the comparator) or are not produced at the same time then

an error is assumed and control switches to another computer.

The software for the different channels in each computer has

been developed by different teams using different

programming languages. There are two kinds of computers:

primary computer (for complex processing) and secondary

computer.

Fig. 2: Airbus basic computer global architecture.

B. Boeing Basic Internal Architecture Computer

Flight control computer comprise three Primary Flight

Computer (PFCs), each of identical design and construction.

Each PFC (Primary Flight Control) is identified as a channel

and is composed of three dissimilar computing lanes [11] as

depicted in Fig 3.

Fig 3: Boeing basic computer global architecture.

Primary flight control system’s lines have the same input

signals and are all active. Their outputs are connected to a

voter that compares these signals. The correct signals are then

chosen by majority voting. The faulty module can be masked

by 2-out-of-3 voting.

V. SYSTEM ARCHITECTURE AND REDUNDANCY

Flight control system requires fault tolerance software

(diversity) to complete fault tolerance hardware.

The analysis of Airbus and Being FCS shows that the design

and implementation of such a safe system of operation

through the combined use of redundancy and diversification

to minimize the probability of failure common mode between

units and redundant to make independent software design

faults can be optimized by proper adjustments of the

redundancy. It also shows that a level of redundancy is very

important. This "over-redundancy" is justified by the desire

for a demonstration of safety, which is guided by both

regulations and certification. However, given the high level

of redundancy practiced, it seems interesting to try to propose

alternative architectures on less hardware and software

resources. To conduct this exercise, we first have to identify

and formalize the requirements to be met by the flight control

systems.

VI. FLIGHT CONTROL SYSTEMS REQUIREMENTS

Architectures proposed for critical systems must meet

stringent safety and availability requirements to achieve

certification [12]. For flight control systems, the probability

of loss of aircraft function or critical failure must be less than

10-9 per flight hour. This is normally achieved through the

use of redundant architectures. In addition to the primary

redundancy required to meet the safety requirements,

manufacturers have also stipulated the inclusion of additional

redundancy or second redundancy in key system to meet

additional economic requirement.

• Separate flight computers with
different software and inputs

• The results of these command
and monitoring units are
checked by a comparator

• In case of desagreement
control switches to another
pair of computers

• In total 10 primary and
secondary computers

(I) Airbus

Step 7: preliminary calculation evaluation: quick
evaluation of probability’s objective with simple formula (we
can use assumptions);

 Step 8: iteration over all requirements;

 Step 9: iteration over all sub-functions.

This approach is a part of a complete safety process
methodology that allows us to define a new safe architecture
for a complex real time safety-critical system. At the current
stage we don’t introduce a real time requirement.

VIII. CONCLUSIONS

To meet extreme high safety requirements (of 10-9 per
flight hour) as well as economic requirements, multiple
redundant hardware and software resources are required for
flight control systems. Unfortunately, redundancy increases
hardware costs, weight, and power requirements. In the
economy and business world, consumers usually choose to
purchase the cheapest product that meets their needs.
Presumably, one of the watchwords that will guide the design
of future aircraft generation will be "eco-efficiency". In this
context, the FCS must offer a service that consumes less
resources.

REFERENCES

[1] Paul J. Prisazunk Integrated Modukar Avionics Airlines Eletronic
Engineering Committee CH3258 -3/92/0000 -0039 1992 IEEE

[2] Brajou, F.; Ricco, P.;The Airbus A380 - an AFDX-based flight test
computer concept AUTOTESTCON –IEEE 2004, pages 460-465

[3] Traverse P., Lacaze I., Souyris J., « Airbus Fly-by-Wire: A Total
Approach to Dependability », Proceedings 18th IFIP World Computer
Congress, Building the Information Society, Toulouse, France, 22-27
août 2004, pp. 191-212.

[4] Arlat J., Blanquart J.-P., Boyer T., Crouzet Y., Durand M.-H.,
Fabre J.-C., Founau M., Kaaniche M., Kanoun K., Le Meur P.,
Mazet C., Powell D., Scheerens F., Thevenod-Fosse P.,
Waeselynck H., Composants logiciels et sûreté de fonctionnement -
Intégration de COTS, Hermès Science Publications, Paris, 2000, 158 p.

[5] Laprie J.-C., Arlat J., Blanquart J.-P., Costes A., Crouzet Y.,
Deswarte Y., Fabre J.-C., Guillermain H., Kaâniche M., Kanoun K.,
Mazet C., Powell D., Rabéjac C., Thévenod P., Guide de la sûreté de
fonctionnement, Toulouse, Cépaduès-Éditions, 1995-96, 369 p.

[6] D. Brière, and P. Traverse, Airbus A320/A330/A340 electrical flight
controls – a family of fault-tolerant systems, Proc. 23rd IEEE Int.
Symp. On Fault-Tolerant Computing (FTCS-23), Toulouse, France,
pp. 616-623 (1993).

[7] DO178B/ED12, Software Considerations in Airborne Systems and
Equipment Certification, published by ARINC, no. DO178B, and
EUROCAE, no. ED12, 1992.

[8] C. Favre, Fly-by-wire for commercial aircraft: the Airbus experience,
International Journal of Control, vol. 59, No. 1, pp.139-157 (1994).

[9] Avizienis A., « The N-Version Approach to Fault-Tolerant Software »,
IEEE Transactions on Software Engineering, vol. SE-I 1, no. 12,
December 1985, pp. 1491-1501

[10] ARP 4754/ED79, Certification Considerations for Highly-Integrated or
Complex Systems, published by SAE, no. ARP4754, and EUROCAE,
no. ED79 (1996).

[11] Yeh Y.C., « Triple-Triple Redundant 777 Primary Flight Computers »,
Proceedings IEEE Aerospace Applications Conference, Aspen, CO,
USA, 3-10 février 1996, pp. 293-307.

[12] Riter, « Modeling and Testing a Critical Fault-Tolerant Multi-Process
System », Proceedings 25th International Symposium on
Fault-Tolerant Computing (FTCS-25), Pasadena, CA, USA, 27-30 juin
1995, pp. 516-521

[13] FAR/JAR 25, Airworthiness Standards: Transport Category Airplane,
published by FAA,title 14, part 25, and Certification Specifications for
Large Aeroplanes,

[14] FAA (Federal Aviation Administration), System Safety Handbook,
chapitre 3:Principles of System Safety, 30 décembre 2000, 19 p.

[15] DO254/ED80, Design Assurance Guidance for Airborne Electronic
Hardware, published by ARINC, no. DO254, and EUROCAE, no.
ED80 (2000).

[16] SAE (Society of Automotive Engineers), Guidelines and Methods for
Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment, Document No. ARP 4671, décembre 1996.

[17] EASA (former JAA), CS-25.5. A. Avizienis, J.C. Laprie, and B.
Randell, Fundamental Concepts of Dependability,LAAS report no.
01-145 (2001).

[18] Yeh Y.C., « Safety Critical Avionics for the 777 Primary Flight
Controls System », Proceedings 20th Conference on Digital Avionics
Systems, Daytona Beach, FL, USA, 14-18 octobre 2001, pp.
1C2/1.1C2/11.

18 mai 200610ième session : transports et sûreté de fonctionnement - outils, techniques et approches, ENST, Paris Page 15©
 A

IR
B

U
S

 S
.A

.S
.

A
ll

ri
g
h
ts

 r
e

s
e
rv

e
d
.
C

o
n
fi
d
e
n
ti
a
l
a
n
d
 p

ro
p
ri
e
ta

ry
 d

o
c
u
m

e
n
t.

PHYSICAL FAULTS

SAFETY

COM

MON

COMMAND & MONITORING COMPUTER

P1

P2
P3

S1

S2

18 mai 200610ième session : transports et sûreté de fonctionnement - outils, techniques et approches, ENST, Paris Page 21©
 A

IR
B

U
S

 S
.A

.S
.

A
ll

ri
g
h
ts

 r
e

s
e
rv

e
d
.
C

o
n
fi
d
e
n
ti
a
l
a
n
d
 p

ro
p
ri
e
ta

ry
 d

o
c
u
m

e
n
t.

PARTICULAR RISKS

COMMON POINT AVOIDANCE

- Qualification to environment

- Physical separation

- Ultimate back-up

PRIM3-SEC3-

CPIOMC1

2100 VU

PRIM2-SEC2-

CPIOMC2

2200 VU

PRIM1-SEC1

2500 VU

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Design of a fault-tolerant control system (II)

17

electrical components. These redundant components have to

be distributed in different locations. For example, actuators

are managed by any of the flight control computers, to protect

against failure of single calculator that causes loss of control

in any axis (roll, pitch or yaw).

The linkages between the flight control computers and the

flight surfaces are arranged so that each surface is controlled

by multiple independent actuators. Each actuator is

controlled by different computers so loss of a single actuator

or computer will not lead to a loss of the surface’s control.

Another form of segregation is the hydraulic system which is

3-way replicated through different dedicated paths.

IV. INDUSTRIAL PRACTICES AND STRATEGIES

A. Airbus Basic Internal Architecture Computer

The airbus flight control system is based on many self

checking flight computers composed of two software

variants or unit (command and monitoring unit) [10] as show

in Fig. 2 whose results are compared. The command unit and

the monitor unit are separated channels within a single

computer. Each channel has separate hardware and different

software. If the results of the channels disagree (as checked

by the comparator) or are not produced at the same time then

an error is assumed and control switches to another computer.

The software for the different channels in each computer has

been developed by different teams using different

programming languages. There are two kinds of computers:

primary computer (for complex processing) and secondary

computer.

Fig. 2: Airbus basic computer global architecture.

B. Boeing Basic Internal Architecture Computer

Flight control computer comprise three Primary Flight

Computer (PFCs), each of identical design and construction.

Each PFC (Primary Flight Control) is identified as a channel

and is composed of three dissimilar computing lanes [11] as

depicted in Fig 3.

Fig 3: Boeing basic computer global architecture.

Primary flight control system’s lines have the same input

signals and are all active. Their outputs are connected to a

voter that compares these signals. The correct signals are then

chosen by majority voting. The faulty module can be masked

by 2-out-of-3 voting.

V. SYSTEM ARCHITECTURE AND REDUNDANCY

Flight control system requires fault tolerance software

(diversity) to complete fault tolerance hardware.

The analysis of Airbus and Being FCS shows that the design

and implementation of such a safe system of operation

through the combined use of redundancy and diversification

to minimize the probability of failure common mode between

units and redundant to make independent software design

faults can be optimized by proper adjustments of the

redundancy. It also shows that a level of redundancy is very

important. This "over-redundancy" is justified by the desire

for a demonstration of safety, which is guided by both

regulations and certification. However, given the high level

of redundancy practiced, it seems interesting to try to propose

alternative architectures on less hardware and software

resources. To conduct this exercise, we first have to identify

and formalize the requirements to be met by the flight control

systems.

VI. FLIGHT CONTROL SYSTEMS REQUIREMENTS

Architectures proposed for critical systems must meet

stringent safety and availability requirements to achieve

certification [12]. For flight control systems, the probability

of loss of aircraft function or critical failure must be less than

10-9 per flight hour. This is normally achieved through the

use of redundant architectures. In addition to the primary

redundancy required to meet the safety requirements,

manufacturers have also stipulated the inclusion of additional

redundancy or second redundancy in key system to meet

additional economic requirement.

• Three different primary flight
computers

• The computers have the
same input signals and are all
active

• The outputs are connected
to a voter that compares
signals

• The correct signal is chosen
by a majority vote

(II) Boeing

Step 7: preliminary calculation evaluation: quick
evaluation of probability’s objective with simple formula (we
can use assumptions);

 Step 8: iteration over all requirements;

 Step 9: iteration over all sub-functions.

This approach is a part of a complete safety process
methodology that allows us to define a new safe architecture
for a complex real time safety-critical system. At the current
stage we don’t introduce a real time requirement.

VIII. CONCLUSIONS

To meet extreme high safety requirements (of 10-9 per
flight hour) as well as economic requirements, multiple
redundant hardware and software resources are required for
flight control systems. Unfortunately, redundancy increases
hardware costs, weight, and power requirements. In the
economy and business world, consumers usually choose to
purchase the cheapest product that meets their needs.
Presumably, one of the watchwords that will guide the design
of future aircraft generation will be "eco-efficiency". In this
context, the FCS must offer a service that consumes less
resources.

REFERENCES

[1] Paul J. Prisazunk Integrated Modukar Avionics Airlines Eletronic
Engineering Committee CH3258 -3/92/0000 -0039 1992 IEEE

[2] Brajou, F.; Ricco, P.;The Airbus A380 - an AFDX-based flight test
computer concept AUTOTESTCON –IEEE 2004, pages 460-465

[3] Traverse P., Lacaze I., Souyris J., « Airbus Fly-by-Wire: A Total
Approach to Dependability », Proceedings 18th IFIP World Computer
Congress, Building the Information Society, Toulouse, France, 22-27
août 2004, pp. 191-212.

[4] Arlat J., Blanquart J.-P., Boyer T., Crouzet Y., Durand M.-H.,
Fabre J.-C., Founau M., Kaaniche M., Kanoun K., Le Meur P.,
Mazet C., Powell D., Scheerens F., Thevenod-Fosse P.,
Waeselynck H., Composants logiciels et sûreté de fonctionnement -
Intégration de COTS, Hermès Science Publications, Paris, 2000, 158 p.

[5] Laprie J.-C., Arlat J., Blanquart J.-P., Costes A., Crouzet Y.,
Deswarte Y., Fabre J.-C., Guillermain H., Kaâniche M., Kanoun K.,
Mazet C., Powell D., Rabéjac C., Thévenod P., Guide de la sûreté de
fonctionnement, Toulouse, Cépaduès-Éditions, 1995-96, 369 p.

[6] D. Brière, and P. Traverse, Airbus A320/A330/A340 electrical flight
controls – a family of fault-tolerant systems, Proc. 23rd IEEE Int.
Symp. On Fault-Tolerant Computing (FTCS-23), Toulouse, France,
pp. 616-623 (1993).

[7] DO178B/ED12, Software Considerations in Airborne Systems and
Equipment Certification, published by ARINC, no. DO178B, and
EUROCAE, no. ED12, 1992.

[8] C. Favre, Fly-by-wire for commercial aircraft: the Airbus experience,
International Journal of Control, vol. 59, No. 1, pp.139-157 (1994).

[9] Avizienis A., « The N-Version Approach to Fault-Tolerant Software »,
IEEE Transactions on Software Engineering, vol. SE-I 1, no. 12,
December 1985, pp. 1491-1501

[10] ARP 4754/ED79, Certification Considerations for Highly-Integrated or
Complex Systems, published by SAE, no. ARP4754, and EUROCAE,
no. ED79 (1996).

[11] Yeh Y.C., « Triple-Triple Redundant 777 Primary Flight Computers »,
Proceedings IEEE Aerospace Applications Conference, Aspen, CO,
USA, 3-10 février 1996, pp. 293-307.

[12] Riter, « Modeling and Testing a Critical Fault-Tolerant Multi-Process
System », Proceedings 25th International Symposium on
Fault-Tolerant Computing (FTCS-25), Pasadena, CA, USA, 27-30 juin
1995, pp. 516-521

[13] FAR/JAR 25, Airworthiness Standards: Transport Category Airplane,
published by FAA,title 14, part 25, and Certification Specifications for
Large Aeroplanes,

[14] FAA (Federal Aviation Administration), System Safety Handbook,
chapitre 3:Principles of System Safety, 30 décembre 2000, 19 p.

[15] DO254/ED80, Design Assurance Guidance for Airborne Electronic
Hardware, published by ARINC, no. DO254, and EUROCAE, no.
ED80 (2000).

[16] SAE (Society of Automotive Engineers), Guidelines and Methods for
Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment, Document No. ARP 4671, décembre 1996.

[17] EASA (former JAA), CS-25.5. A. Avizienis, J.C. Laprie, and B.
Randell, Fundamental Concepts of Dependability,LAAS report no.
01-145 (2001).

[18] Yeh Y.C., « Safety Critical Avionics for the 777 Primary Flight
Controls System », Proceedings 20th Conference on Digital Avionics
Systems, Daytona Beach, FL, USA, 14-18 octobre 2001, pp.
1C2/1.1C2/11.

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Generation of C code

18

• Automatic C code generation
• The primitives are programmed by hand

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Automatic compilation and linkage in
machine code

19

The Wind River Compiler tool suite (formerly known as the
Diab Compiler) includes software development tools, such as
a C/C++ compiler, an assembler, a linker, ANSI C and ANSI
C++ standard libraries, and an instruction set simulator. It is
based on the industry-hardened Diab Compiler technology
and has a proven track record for generating robust, compact,
and fast-executing code for thousands of designs and millions
of devices. The Wind River Compiler also provides the control
and flexibility required to meet the demands of device software
development, allowing developers to incorporate the Wind
River Compiler into any build environment. The compiler offers
numerous options for controlling code generation and assisting
with porting code developed with other tools.

Product Highlights

Wind River Compiler provides the following capabilities to
embedded software developers:

Faster-executing code and smaller software footprints
Reliable, stable, and mature code generation technology
Compliance with the industry’s most recent standards
Flexibility and control of options and build characteristics
Flexible business models
Support for a wide variety of target architectures
Responsive and knowledgeable support and special services

Benefits

High Performance

Wind River Compiler uses sophisticated optimization
technology to generate exceptionally fast, compact,
high-quality object code. This reduces costs and improves
competitive position by doing the following:

Reducing hardware costs and allowing you to use lower-fre-
quency devices and less memory than your competition and
improving the profitability of your product

Helping you develop applications that run faster and include
more functionality and features than your competition, mak-
ing your product more desirable to the market
Improving time-to-market and reducing risk by eliminating
the need to hand-optimize code at the last minute to meet
aggressive performance goals ensuring your product will be
first to market

Wind River Compiler uses a wide range of highly refined
global, local, processor-specific, and application-specific
(profile-driven) optimization techniques to generate code
that runs faster with a smaller footprint. Whole program
optimization permits the compiler to inline functions across
multiple modules and source files, significantly boosting
performance. Profile-driven optimizations employ the
compiler’s capability to instrument the code and collect
profile information specific for the application being
developed. This information is then fed back into the
compiler, enabling it to make better decisions when
performing function inlining, register allocation, branch
prediction, and other optimizations, further improving the
application performance and footprint.

Wind River Compiler
Companies developing embedded devices are looking to increase productivity, meet challenging schedules and reduce

project risks. Software developers must contend with fitting more complex applications into the same memory space and

adding new capabilities while maintaining real-time performance. The choice of embedded tools has a significant impact

on these goals and an embedded cross-compiler is a key piece of every embedded tool’s environment, affecting every

piece of C or C++ code written for a project. The choice of a compiler can determine the overall software footprint of the

device software and also have a significant impact on the performance of an embedded system.

Application-specific
profile data is fed

back into the compiler

Assembly
Source

Libraries

CPU-
Specific

Info

Assembler

Linker

Compiler

Embedded
Target

Profile
Data

C/C++
Source

Profile-driven, application-specific optimizations

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Simulation and testing

20

• From classical software testing and
inspection techniques (e.g. Rational
Suite DevelopmentStudio)

• To full-scale similation benches for
system integration:

• To the iron bird:

• To flight tests:

(1)

(1) www-01.ibm.com/software/awdtools/suite/dstudio/unix/

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Successes for formal
methods

21

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Examples of static analyzers

22

• AiT WCET Analyzers (www.absint.de/ait/): compute tight
bounds for the worst-case execution time (WCET) of tasks in
synchronous real-time systems.

• Astrée (www.astree.ens.fr, www.absint.de/astree/):
proof of absence of runtime error in the primary flight
control software of the Airbus A340/600 & A380 fly-by-wire
system.

• Fluctuat (www-list.cea.fr/labos/gb/LSL/fluctuat/
flopsoft.html): contribution of individual program
operations to the global error on float variables, used on
DSPs (.

• StackAnalyzer (www.absint.de/stackanalyzer/): worst-
case stack usage of the tasks in all applications.

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Examples of model-checkers

• SCADE Design Verifier (www.esterel-technologies.com/products/
scade-suite/design-verifier): check the logic of flight-control
primitives

23

Examples of provers
• Caveat (http://www-list.cea.fr/labos/gb/LSL/caveat/

index.html): Hoare logic prover with user-provided invariants,
used to prove the Autotest primitive functions

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Short term challenges for
formal methods

24

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

From sequential/synchronous to parallel/
distributed

25

Flight warning system

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Test is sometimes impossible...

26

Real code Analysis Analysis

Static analysis of communicating imperfectly clocked

redundant units

REDUNDANT UNIT #2

 ! " [;] # $

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Integral bounding

ConstraintsConstraints

[;]

VOTER

 % &[;]
 ' (

Constraints
ACTUATORS ACTUATORS

SENSORS

REDUNDANT UNIT #1

[;]

Specification : no alarm raised with a normal input

2/3)0)
input stability < ∆ : Between 2

3 × ∆ input stability > ∆ : the analyzer
counter-example and ∆ : ? proves the specification

Julien Bertrane, ENS Paris Static analysis of imperfectly-clocked synchronous systems using continuous-time abstract domains 45/49

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Long-term challenges for
formal methods

27

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Future challenges

28

• Present day: process validation + a posteriori
software validation

• Future: early definition and validation of [software]
systems + final product validation

A software bug discovered during flight tests is
extremely costly, but easy to correct during the design
phase

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Models and specifications

29

• Absence of formal specifications: model-based development in
SimulinkTM, ScadeTM, etc. means that the model is the only
available formal specification no formal specification of the
model itself

• Implicit specifications: can be embedded in verification tools (and
documented e.g. in simple data files), examples:
• Integrity: no computer can send wrong information to actuators
• Availability: in a fault-tolerant system, no component failure can

result in the unavailability of a service
• Electromagnetic radiations: memory glitches cannot make

programs to fail
• etc

• Explicit formal specifications ultimately needed: in which form?

)

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Environment specifications

30

Software analysis & verification

!"#$%&'()*&+)"'
,+)$+-.

/0*1)+1 2(&3-&)+1

4

Abstractions: program ! precise, system ! coarse

Minta Martin Lecture, MIT, May 13th, 2005 — 72 — ľ P. Cousot

• Currently blind verification:

• Program abstraction : precise
• Environment abstraction : imprecise (bounds)

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

System analysis & verification

Abstractions: program ! precise, system ! precise

Minta Martin Lecture, MIT, May 13th, 2005 — 73 — ľ P. Cousot

31

Environment specifications

• Precise verification:

• Program abstraction : precise
• Environment abstraction : precise

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Hybrid models of discrete control programs
and continuous physical systems

32

) should scale from seconds to minutes and more.

Chapter 8. Intersection with a Hyperplanar Guard

(a) NAV01 – octagon (b) NAV04 – octagon

(c) NAV01 – cube (d) NAV04 – cube

Figure 8.11: Two navigation benchmarks with perturbations. In a and b the
intersections with the guards are over-approximated by octagons, whereas in c
and d they are over-approximated by their interval hulls. Blue: initial set. Light
blue: reachable sets. Green: Target State. Red: Forbidden State.

116

3.4. Approximate Reachability of the Discretized System

direction may lead to rough over-approximation in other directions. In practice,
approximating tightness in one random direction instead of �i at each step, may
produce better (with respect to Hausdorff distance) approximations, as illustrated
on Figure 3.2.

Figure 3.2: Over-approximation of the reachable set of a 5 dimensional system
using tight (in blue) or non-tight (in red) approximations, obtained with the El-
lipsoidal Toolbox [KV06] and a modified version for the non-tight approximation.
On the left: range of the first variable as a function of the step k. On the right:
projection of the reachable set on the first two variables. For more details see
Annexe B.

3.4.2.3 Polytopes

Here the approximation procedure is not introduced to overcome the lack of closure
under one operation of the class considered, but to avoid the uncontrolled growth
of the number of parameters needed to represent the sets involved.

The most common technique is to over-approximate Φ�Ωi ⊕ V by a polytope
whose facets have the same normals has the facets of Φ�Ωi. We say that we push
or lift the facets of Φ�Ωi until it includes Φ�Ωi ⊕ V . One simple way to do it, is to
represent V by its support function ρV and to replace every facet of the form:

{x : x · n ≤ γ}

by

{x : x · n ≤ γ + ρV(n)}

It is also possible to perform an exact computation and then remove some of
the constraints, or vertices, of the resulting polytope [Fre08].

Another solution is to restrict the �Ωi to be in a smaller class. As an example, us-
ing template polyhedra, or only considering initial sets of small dimension [Han05].

39

• Recent improvements on bounded time analysis of
continuous and hybrid systems

• Not so much in duration (``unbounded time’’)

(1) Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. PhD thesis,
University Joseph Fourier of Grenoble, October 29, 2009.

(1)

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Conclusion

33

• Formal methods should be used:
• All along the whole design chain
• On functional properties (specification?)
• On a long range of time (s → mn → h: scalability)
• For parallel/distributed systems (semantics?)
• For end-users (non-intrusion)

• Robust software has simple
abstractions

• Long proofs imply bugs
Paraphrasing John Doyle

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Conclusion

• Formal methods should be used:
• All along the whole design chain
• On functional properties (specification?)
• On a long range of time (s → mn → h: scalability)
• For parallel/distributed systems (semantics?)
• For end-users (non-intrusive methods)

• Robust software has simple
abstractions

• Long proofs imply bugs
Paraphrasing John Doyle

33

MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 © P. Cousot,

Thank you for your attention

34

