MCAI 2 expedition, Pittsburgh, 2009/10/31—11/01 Computer controlled systems

Challenges in control/
command software analysis

Patrick Cousot

pcousot(@cs.nyu.edu
http://cs.nyu.edu/~pcousot

November [, 2009

Example of bug report

“The Australian Transport
Safety Bureau (ATSB) found
that the main probable cause
of this incident was a Ilatent
software error which allowed
the ADIRU to use data from a
failed accelerometer”

http://www.atsb.gov.au/newsroom/2008/release/2008_43.aspx,
http://en.wikipedia.org/wiki/Qantas_Flight_72

ADIRU = Air Data Inertial Reference Unit (provides air speed, altitude & position)
2

Motivation

* The initial effects of the fault were:

¢ false stall and overspeed warnings

* loss of attitude information on the Captain's primary flight
display

¢ several Electronic Centralised Aircraft Monitoring (ECAM)
system warnings

* About two minutes later, ADIRU #1, which was providing data to
the captain's primary flight display, provided very high (and false)
indications for the aircraft's angle of attack, leading to:

* the flight control computers commanding a nose-down
aircraft movement, which resulted in the aircraft pitching
down to a maximum of about 8.5 degrees,

¢ the triggering of a Flight Control Primary Computer pitch
fault.

*On |5 January 2009 the EASA issued an Emergency
Airworthiness Directive to address the above A330 and A340
Northrop-Grumman ADIRU problem of incorrectly responding
to a defective inertial reference.

Brief overview of one
approach to the design of
an aircraft digital fly by wire
control system

* A memo leaked from Airbus on the Flight 447 (from Rio de
Janeiro, Brazil, to Paris, that crashed into the Atlantic Ocean on |
June 2009) suggests that there was no evidence that Honeywell
manufactured ADIRU malfunction was similar to the failure of the
Northrop Grumman manufactured ADIRU in Qantas flight
incidents

An Air Data Inertial Reference Unit (ADIRU) is a key component of the integrated Air Data
Inertial Reference System (ADIRS), that supplies air data (airspeed, angle of attack and altitude)
and inertial reference (position and attitude) information to the pilots' Electronic Flight
Instrument System displays as well as other systems on the aircraft such as the engines,
autopilot, flight control and landing gear systems

6

Mechanical flight-control systems

.
Flight Augmentatip
d
Computer)” /
)

N)

Lirfftation ® 23

ofmputer il"
[AP P ¢

AIC
response

What is fly-by-wire!?

Reference Controler Actuators Sensors

/ \

\
= 7

A/P oider

Fly-by-wire

|\/_' computers

HYDRAULIC and

" ELECTRICAL POWER

Control surfaces

Control surfaces

| Winglet

2. Low-Speed Aileron

3. High-Speed Aileron

4. Flap track fairing

5. Kriger flaps

6.Slats

7.Three slotted inner flaps
8.Three slotted outer flaps
9.Spoilers

10. Spoilers-Air brakes

Mathematical model of an airplane
and its flight dynamics

10

Natural Motions of Rigid
Aircraft

* Speed meters (Pitot tubes):

* Pitch, roll a yaw meters/gyroscopes:

Sensors and Actuators

* Position sensors: * Flap actuators:
¢ Force measurement sensors: e Trim actuators:
® Presure sensors: ¢ Vibration control actuators

* Engine thurst vector control:

¢ Engine fuel metering:

* etc * etc

ICAI 2 expedition. Pittsburah. 2009/10/31—11/01

Design of the control model (flight control laws)

electrical back-up
hydraulic actuator

Formal specification of the control

e.g.in Scade™ / SAO™

Scader:

SAO:

MCAI

12 expedition. Pitt

Simulation of the controlled system
e.g. in Simulinkm™

Kq |

Pitch Attitude Hold

Kq

= =X -
N
- s .
Dtheta_ref et
- ehae
able
atuato, | Ddetaa | BEAVER
dynamics
ettar
T B
F E N
s .
i ntegrator
n

ol il

Dphi

The MathWorks’ Aerospace Toolbox 2.4 14

sburah, 2009/10/31—11/01

Design of a fault-tolerant control system (I)

} COM
\ MON

* Separate flight computers with
different software and inputs

* The results of these command
and monitoring units are
checked by a comparator

*In case of desagreement
control switches to another
pair of computers

*In total 10 primary and
secondary computers

Aoproach t Dependalty . Posesdings 15t TP Workd Cosputr

Congress, Building the Information Society, Toulouse, France, 22-27
aolt 2004, pp. 191-212.

() Airbus 6

MCAI 2 expedition. Pittsburah, 2009/10/31—11/01

mlll

S

Design of a fault-tolerant control system (Il)

* Three different primary flight
computers

* The computers have the
same input signals and are all
active

* The outputs are connected
to a voter that compares
signals

® The correct signal is chosen
by a majority vote

Yeh Y.C., « Triple-Triple Redundant 777 Primary Flight Computers »,

Proceedings IEEE Aerospace Applications Conference, Aspen, CO,
USA, 3-10 février 1996, pp. 293-307.

~(I) Boeing .

09/10/31—11/01

Automatic compilation and linkage in
machine code

C/C++
Source
CPU- >
Specific Compiler
Info
v
Assembly
. > Assembler
v

. Embedded
Linker —> Toviaret

Generation of C code

* Automatic C code generation
* The primitives are programmed by hand

State Machines
L 000
TN

Predefined operators

Higher Order

| |
i e

T S fo s
Modeling constructs

@0 D HE O

Simulation and testing

* From classical software testing and
inspection techniques (e.g. Rational
Suite DevelopmentStudio”)

* To full-scale similation benches for
system integration:

¢ To the iron bird:

* To flight tests:

() www-01.ibm.com/software/awdtools/suite/dstudio/unix/

20

Successes for formal
methods

21

Examples of model-checkers

e SCADE Design Verifier (www.esterel-technologies.com/products/
scade-suite/design-verifier): check the Iogic of flight-control
primitives

Examples of provers

® Caveat (http://www-list.cea.fr/labos/gb/LSL/caveat/
index.html): Hoare logic prover with user-provided invariants,
used to prove the Autotest primitive functions

23

Examples of static analyzers

AT WCET Analyzers (www.absint.de/ait/): compute tight
bounds for the worst-case execution time (WCET) of tasks in
synchronous real-time systems.

Astrée (www.astree.ens.fr,www.absint.de/astree/):
proof of absence of runtime error in the primary flight
control software of the Airbus A340/600 & A380 fly-by-wire
system.

Fluctuat (www-1list.cea.fr/labos/gb/LSL/fluctuat/
flopsoft.html): contribution of individual program

operations to the global error on float variables, used on
DSPs (.

StackAnalyzer (www.absint.de/stackanalyzer/): worst-
case stack usage of the tasks in all applications.

22

Short term challenges for
formal methods

24

From sequential/synchronous to parallel/
distributed

Flight warning system

25

Long-term challenges for
formal methods

27

Test is sometimes impossible...

Static analysis of communicating imperfectly clocked
redundant units

SE?SORS
Changes
Counting

hhhhhh
nnnnnnn

ACTUATORS

etegeal boasaing
Specification : no alarm raised with a normal input

o 2/3A A
input stability < A : | Between % x A | input stability > A : the analyzer
counter-example and A : 7 proves the specification

26

Future challenges

A software bug discovered during flight tests is
extremely costly, but easy to correct during the design
phase

* Present day: process validation + a posteriori
software validation
* Future: early definition and validation of [software]
systems *+ final product validation

28

Models and specifications

* Absence of formal specifications: model-based development in
Simulink™, Scade™, etc. means that the model is the only
available formal specification => no formal specification of the
model itself

* Implicit specifications: can be embedded in verification tools (and

documented e.g. in simple data files), examples:

* Integrity: no computer can send wrong information to actuators

* Availability: in a fault-tolerant system, no component failure can
result in the unavailability of a service

* Electromagnetic radiations: memory glitches cannot make
programs to fail

* etc

¢ Explicit formal specifications ultimately needed: in which form?

29

Environment specifications

* Precise verification:

* Program abstraction : precise
* Environment abstraction : precise

31

Environment specifications

* Currently blind verification:

v

Sensors Actuators
Flight control
program

* Program abstraction : precise
* Environment abstraction : imprecise (bounds)

30

Hybrid models of discrete control programs
and continuous physical systems

* Recent improvements on bounded time analysis of
continuous and hybrid systems"
* Not so much in duration (" 'unbounded time”)

= should scale from seconds to minutes and more.

(1) Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. PhD thesis,
University Joseph Fourier of Grenoble, October 29, 2009.

32

Conclusion

* Formal methods should be used:
* All along the whole design chain
* On functional properties (specification?)
* On along range of time (s — mn — h: scalability)
* For parallel/distributed systems (semantics?)
* For end-users (non-intrusion)

33

Thank you for your attention

34

Conclusion

* Formal methods should be used:
* All along the whole design chain
* On functional properties (specification?)
* On a long range of time (s — mn — h: scalability)
* For parallel/distributed systems (semantics?)
* For end-users (non-intrusive methods)

* Robust software has simple
abstractions
* Long proofs imply bugs
Paraphrasing John Doyle

33

