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Computer controlled systems
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Computer controlled systems

Approximations: program ! precise, system ! precise

Minta Martin Lecture, MIT, May 13th, 2005 — 71 — ľ P. Cousot
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Example of bug report
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ADIRU  = Air Data Inertial Reference Unit (provides air speed, altitude & position)
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Qantas Airbus A330 accident Media Conference

14 October 2008

The Australian Transport Safety Bureau's investigation into the accident involving an Airbus A330-300 aircraft
operating as Qantas flight 72 on a flight from Singapore to Perth on 7 October 2008 is progressing well. The ATSB
has scheduled the media conference this evening to coincide with the release of an Operators Information
Telex/Flight Operations Telex, which is being sent by Airbus to operators of all Airbus aircraft. The aim of that telex is
to:

update operators on the factors identified to date that led to the accident involving QF72,
provide operational recommendations to mitigate risk in the event of a reoccurrence of the situation which
occurred on QF72.

To assist in understanding the following information, I would just like to refer you quickly to the diagrams projected
on the screen specifically, the term angle of attack which refers to the difference in angle between the aircraft and its
control surfaces, and the air stream as the aircraft moves through the air.

The next diagram is a simple representation of the aircraft and the components relevant to this explanation, which
include the angle of attack sensors located on the outside of the aircraft, the Air Data Inertial Reference Units
(ADIRUs), of which there are three, located in the avionics compartment inside the aircraft, the Flight Control
Primary Computers of which there are also three located in the avionics compartment, and the elevators, located on
the aircrafts horizontal stabiliser. In the context of this occurrence, the angle of attack sensors send raw data to the
ADIRUs, which provide processed angle of attack information to the Flight Control Primary Computers, which in turn
command the elevator position.

Returning to the circumstances of the 7 October flight, preliminary analysis of the Flight Data Recorder data, Post
Flight Report data and Built-in Test Equipment data has enabled the investigation to establish a preliminary
sequence of events this information is also contained in the Airbus telex.

The aircraft was flying at FL 370 or 37, 000 feet with Autopilot and Auto-thrust system engaged, when an Inertial
Reference System fault occurred within the Number-1 Air Data Inertial Reference Unit (ADIRU 1), which resulted in
the Autopilot automatically disconnecting. From this moment, the crew flew the aircraft manually to the end of the
flight, except for a short duration of a few seconds, when the Autopilot was reengaged. However, it is important to
note that in fly by wire aircraft such as the Airbus, even when being flown with the Autopilot off, in normal operation,
the aircrafts flight control computers will still command control surfaces to protect the aircraft from unsafe conditions
such as a stall.

The faulty Air Data Inertial Reference Unit continued to feed erroneous and spike values for various aircraft
parameters to the aircrafts Flight Control Primary Computers which led to several consequences including:

false stall and overspeed warnings
loss of attitude information on the Captain's Primary Flight Display
several Electronic Centralised Aircraft Monitoring system warnings.

About 2 minutes after the initial fault, ADIRU 1 generated very high, random and incorrect values for the aircrafts
angle of attack.

These very high, random and incorrect values of the angle attack led to:

the flight control computers commanding a nose-down aircraft movement, which resulted in the aircraft
pitching down to a maximum of about 8.5 degrees,
the triggering of a Flight Control Primary Computer pitch fault.

The crew's timely response led to the recovery of the aircraft trajectory within seconds. During the recovery the
maximum altitude loss was 650 ft.

The Digital Flight Data Recorder data show that ADIRU 1 continued to generate random spikes and a second
nose-down aircraft movement was encountered later on, but with less significant values in terms of aircraft's
trajectory.

At this stage of the investigation, the analysis of available data indicates that the ADIRU 1 abnormal behaviour is
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likely as the origin of the event.

The aircraft contains very sophisticated and highly reliable systems. As far as we can understand, this appears to be
a unique event and Airbus has advised that it is not aware of any similar event over the many years of operation of
the Airbus.

Airbus has this evening, Australian time, issued an Operators Information Telex reflecting the above information.
The telex also foreshadows the issue of Operational Engineering Bulletins and provides information relating to
operational recommendations to operators of A330 and A340 aircraft fitted with the type of ADIRU fitted to the
accident aircraft. Those recommended practices are aimed at minimising risk in the unlikely event of a similar
occurrence. That includes guidance and checklists for crew response in the event of an Inertial Reference System
failure.

Meanwhile, the ATSB's investigation is ongoing and will include:

Download of data from the aircraft's three ADIRUs and detailed examination and analysis of that data.
Arrangements are currently being made for the units to be sent to the component manufacturer's facilities
in the US as soon as possible and for ATSB investigators to attend and help with that testing, along with
representatives from the US National Transportation Safety Board, The French Bureau dEnquêtes et
dAnalyses (BEA) and Airbus.
In addition, investigators have been conducting a detailed review of the aircraft's maintenance history,
including checking on compliance with relevant Airworthiness Directives, although initial indications are that
the aircraft met the relevant airworthiness requirements.
Work is also ongoing to progress interviews, which will include with injured passengers to understand what
occurred in the aircraft cabin. The ATSB plans to distribute a survey to all passengers.

There has been close and frequent communication between the ATSB, Qantas, Airbus, the BEA, and CASA. That
close communication will continue as the investigation progresses to ensure that any additional safety action can be
instigated as soon as possible should critical safety factors be identified. The ATSB expects to publish a Preliminary
Factual report in about 30 days from the date of the accident.

Media Contact: David Hope 1800 020 616

Related Documents: | Audio file of media conference, 14 October 2008 (18 MB) |

http://www.atsb.gov.au/newsroom/2008/release/2008_43.aspx,
http://en.wikipedia.org/wiki/Qantas_Flight_72

“The Australian Transport
Safety Bureau (ATSB) found
that the main probable cause
of this incident was a latent
software error which allowed
the ADIRU to use data from a
failed accelerometer”

Airbus, 12/04/2008 — 4 — ľ P. Cousot
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• The initial effects of the fault were:    
• false stall and overspeed warnings
• loss of attitude information on the Captain's primary flight 

display
• several Electronic Centralised Aircraft Monitoring (ECAM) 

system warnings
• About two minutes later,  ADIRU #1, which was providing data to 

the captain's primary flight display, provided very high (and false) 
indications for the aircraft's angle of attack, leading to: 

• the flight control computers commanding a nose-down 
aircraft movement, which resulted in the aircraft pitching 
down to a maximum of about 8.5 degrees,

• the triggering of a Flight Control Primary Computer pitch 
fault.

• On 15 January 2009 the EASA issued an Emergency 
Airworthiness Directive to address the above A330 and A340 
Northrop-Grumman ADIRU problem of incorrectly responding 
to a defective inertial reference.
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• A memo leaked from Airbus on the Flight 447 (from Rio de 
Janeiro, Brazil, to Paris, that crashed into the Atlantic Ocean on 1 
June 2009) suggests that there was no evidence that Honeywell 
manufactured ADIRU malfunction was similar to the failure of the 
Northrop Grumman manufactured ADIRU in Qantas flight 
incidents 

An Air Data Inertial Reference Unit (ADIRU) is a key component of the integrated Air Data 
Inertial Reference System (ADIRS), that supplies air data (airspeed, angle of attack and altitude) 
and inertial reference (position and attitude) information to the pilots' Electronic Flight 
Instrument System displays as well as other systems on the aircraft such as the engines, 
autopilot, flight control and landing gear systems

LTN-101 FLAGSHIP™ GNADIRU

The LTN-101 FLAGSHIP™ is an integrated
global navigation, air data, inertial 
reference unit (GNADIRU) that has 
re-defined industry standards for laser 
inertial navigation systems:
•Hardware
•Software
• Performance
• Reliability
Introduced in 1992, FLAGSHIP has 
established an exceptional reliability record
of over 16,000 operating hours MTBF on
such leading commercial aircraft as the
Airbus wide and narrow body families,
Canadair Regional Jet and CL604, and the
Saab 2000. Now, with the incorporation of
Autonomous Integrity Monitored
Extrapolation (AIME™) technology, 
FLAGSHIP offers 0.3 navigation accuracy
worldwide, 24 hours a day.

FLAGSHIP lowers ownership
costs through:
• Increased functionality and flexibility 

- Integrated GPS and air data
- ARINC 704/738-compatible without  

modification
- Interchangeable with 10-MCU 

ARINC 704 and 738 by use of adapter 
tray only

- Offers AIME technology
- Provides  LNAV advisory, VNAV, and 

growth to precision approaches
• New generation reliability

- MTBF of over 16,000 operating hours 
- Minimal false removals

• Enhanced maintainability
- Advanced built-in test to Level II
- In-flight fault diagnostics
- System and module BIT history storage

With the incorporation
of  AIME™ technology,
FLAGSHIP™ offers 
0.3 navigation 
accuracy worldwide, 
24 hours a day.

Navigation Systems
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Brief overview of one 
approach to the design of 

an aircraft digital fly by wire 
control system
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Mechanical flight-control systems

8

18 mai 200610ième session : transports et sûreté de fonctionnement - outils, techniques et approches, ENST, Paris Page 11©
 A

IR
B

U
S

 S
.A

.S
. 

A
ll 

ri
g
h
ts

 r
e

s
e
rv

e
d
. 
C

o
n
fi
d
e
n
ti
a
l 
a
n
d
 p

ro
p
ri
e
ta

ry
 d

o
c
u
m

e
n
t.

What is Fly-by- Wire?

to … “Fly-By-Wire”….or  Electrical Flight Control System (EFCS) ….
or “Commandes de Vol électriques” (CDVE)

Auto-pilot 

computer

Fly-by-wire 

computers

A/C Response

A/P order

From Mechanical Flight Control System….

AP

AP A/C 

response

Feel and 

Limitation 

Computer

Flight Augmentation 

Computer
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What is fly-by-wire?
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What is Fly-by- Wire?

From Fly-by-Wire ….

Auto-pilot 

computer

Fly-by-wire 

computers

A/C Response

A/P order

HYDRAULIC POWER

to … “Fly-by-Wire” associated to “Power-by-Wire”.

Auto-pilot 

computer

Fly-by-wire 

computers

A/C Response

A/P order

HYDRAULIC and

ELECTRICAL POWER

Reference Actuators SensorsControler
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Mathematical model of an airplane 
and its flight dynamics
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Control surfaces
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Control surfaces
1. Winglet
2. Low-Speed Aileron
3. High-Speed Aileron
4. Flap track fairing
5. Krüger flaps
6. Slats
7. Three slotted inner flaps
8. Three slotted outer flaps
9. Spoilers
10. Spoilers-Air brakes
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• Flap actuators:

• Trim actuators:

• Vibration control actuators

• Engine thurst vector control:

• Engine fuel metering:

• etc

Sensors    and    Actuators

12

• Position sensors:

• Force measurement sensors:

• Presure sensors:

• Speed meters (Pitot tubes):

• Pitch, roll a yaw meters/gyroscopes:

• etc

•
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Abstract— The civil aircraft‘s electrical flight control system 

has been changed to take benefit of technical improvements. 

New technologies, when mature, can be incorporated in 

aircrafts. Evolutions are considered towards a digital network 

between computers and actuators/sensors, and more 

distributed processing for actuators and sensors. Thus, new 

architectures are possible for future aircraft systems. The 

difficulty is to achieve the same safety and availability 

requirements with additional operational reliability (required 

by airlines). The challenge that faces the engineers is to design 

mass-produced fault-tolerant systems with reasonable cost. 

Analysis of existing electrical flight control system architectures 

of the Airbus and Boeing airplanes as well as future 

requirements drive us to introduce a brief overview for an 

incremental methodology of architectural design process based 

on progressive requirements injection. 

 

Index Terms— dependability, fault-tolerance, safety analysis, 

critical avionics systems, digital electrical flight control systems 

 

I. INTRODUCTION  

Fig. 1 shows a commercial transport aircraft’s Flight 

Control System (FCS). It is an electrical system with digital 

technologies: Fly-By-Wire (FBW) since the Airbus A310. In 

general, pilot commands are sensed electrically and 

processed by digital computers to position the control 

surfaces. The components of FCS include sensors, actuators 

(hydraulic and electric), flight control surfaces, the respective 

cockpit controls, connecting linkages, the necessary 

operating mechanisms, and digital flight control computers 

(central processing units) as the system’s core.  

The flight control system provides airplane control and 

envelope protection in pitch, roll, and yaw axes. All system 

processing on FCS is performed by flight control computers 

because computers are the only components of the system 

which have functions implemented in software (intelligent 

components). Traditionally, digital signals are used for inter 
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communication between Flight Control Computers (FCC), 

while analog signals are used for communication between 

FCC and sensors/actuators. During the last few years there 

has been a considerable amount of effort undertaken in the 

area of integrated modular avionic (IMA) [1], and digital 

communication based on AFDX [2] switch in order to 

minimize aircraft cabling to provide further weight, cost 

reduction, and high operational reliability.  

The primary concern of our project is to develop a new 

low-cost architecture for future aircraft flight control systems 

based on digital communication technologies. The 

commercial transport industry can benefit from Fly-By-Wire 

technologies. Unfortunately, the equipments and 

architectures proposed for FBW applications must meet 

stringent safety and availability requirements [3] for being 

certified. For such applications, the probability of losing 

aircraft’s function or a critical failure must be less than 10-9 

per flight hour.  

The paper is organized as follows: Section I presents flight 

control systems. Section II and III provide the fundamental 

concepts and definition of dependability. Sections IV and V 

describe basic architecture of Airbus and Boeing fault 

tolerance flight computer. Section VI is dedicated for 

system’s safety and economic requirements. Section VII 

presents a brief overview for the incremental methodology 

process to define primary optimal architecture. While section 

VIII presents conclusions and perspectives of this work. 

 

 

 
 

Fig 1: Flight control system’s elements. 

Challenges in Building Fault -Tolerant Flight 

Control System for a Civil Aircraft 

M. Sghairi, A. de Bonneval, Y. Crouzet, J.-J. Aubert and P. Brot 

 

Design of the control model (flight control laws)
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electrical back-up 
hydraulic actuator
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14The MathWorks’ Aerospace Toolbox 2.4 

Simulation of the controlled system 
e.g. in SimulinkTM
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Formal specification of the control 
e.g. in ScadeTM / SAOTM
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DESIGN & MANUFACTURING ERROR

FUNCTIONAL SPECIFICATION

- interface between aircraft & 

computer sciences

- automatic code generation

- Classical V&V means, plus

- virtual iron bird (simulation)

- some formal proof

ScadeTM:

SAOTM:
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Design of a fault-tolerant control system (I)
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electrical components. These redundant components have to 

be distributed in different locations. For example, actuators 

are managed by any of the flight control computers, to protect 

against failure of single calculator that causes loss of control 

in any axis (roll, pitch or yaw). 

The linkages between the flight control computers and the 

flight surfaces are arranged so that each surface is controlled 

by multiple independent actuators. Each actuator is 

controlled by different computers so loss of a single actuator 

or computer will not lead to a loss of the surface’s control. 

Another form of segregation is the hydraulic system which is 

3-way replicated through different dedicated paths. 

 

IV. INDUSTRIAL PRACTICES AND STRATEGIES 

A. Airbus Basic Internal Architecture Computer  

The airbus flight control system is based on many self 

checking flight computers composed of two software 

variants or unit (command and monitoring unit) [10] as show 

in Fig. 2 whose results are compared. The command unit and 

the monitor unit are separated channels within a single 

computer. Each channel has separate hardware and different 

software. If the results of the channels disagree (as checked 

by the comparator) or are not produced at the same time then 

an error is assumed and control switches to another computer. 

The software for the different channels in each computer has 

been developed by different teams using different 

programming languages. There are two kinds of computers: 

primary computer (for complex processing) and secondary 

computer. 

 

 
 

Fig. 2: Airbus basic computer global architecture. 

 

 

B. Boeing Basic Internal Architecture Computer  

Flight control computer comprise three Primary Flight 

Computer (PFCs), each of identical design and construction. 

Each PFC (Primary Flight Control) is identified as a channel 

and is composed of three dissimilar computing lanes [11] as 

depicted in Fig 3. 

 
 

Fig 3: Boeing basic computer global architecture. 

 

Primary flight control system’s lines have the same input 

signals and are all active. Their outputs are connected to a 

voter that compares these signals. The correct signals are then 

chosen by majority voting. The faulty module can be masked 

by 2-out-of-3 voting. 

 

V. SYSTEM ARCHITECTURE AND REDUNDANCY 

Flight control system requires fault tolerance software 

(diversity) to complete fault tolerance hardware. 

The analysis of Airbus and Being FCS shows that the design 

and implementation of such a safe system of operation 

through the combined use of redundancy and diversification 

to minimize the probability of failure common mode between 

units and redundant to make independent software design 

faults can be optimized by proper adjustments of the 

redundancy. It also shows that a level of redundancy is very 

important. This "over-redundancy" is justified by the desire 

for a demonstration of safety, which is guided by both 

regulations and certification. However, given the high level 

of redundancy practiced, it seems interesting to try to propose 

alternative architectures on less hardware and software 

resources. To conduct this exercise, we first have to identify 

and formalize the requirements to be met by the flight control 

systems.  

 

VI. FLIGHT CONTROL SYSTEMS REQUIREMENTS 

Architectures proposed for critical systems must meet 

stringent safety and availability requirements to achieve 

certification [12]. For flight control systems, the probability 

of loss of aircraft function or critical failure must be less than 

10-9 per flight hour. This is normally achieved through the 

use of redundant architectures. In addition to the primary 

redundancy required to meet the safety requirements, 

manufacturers have also stipulated the inclusion of additional 

redundancy or second redundancy in key system to meet 

additional economic requirement. 

 

• Separate flight computers with 
different software and inputs

• The results of these command 
and monitoring units are 
checked by a comparator

• In case of desagreement 
control switches to another 
pair of computers

• In total 10 primary and 
secondary computers

(I) Airbus

 
 

 

Step 7: preliminary calculation evaluation: quick 
evaluation of probability’s objective with simple formula (we 
can use assumptions); 

 Step 8: iteration over all requirements; 

 Step 9: iteration over all sub-functions.  
 

This approach is a part of a complete safety process 
methodology that allows us to define a new safe architecture 
for a complex real time safety-critical system. At the current 
stage we don’t introduce a real time requirement.  
 

VIII. CONCLUSIONS 

To meet extreme high safety requirements (of 10-9 per 
flight hour) as well as economic requirements, multiple 
redundant hardware and software resources are required for 
flight control systems. Unfortunately, redundancy increases 
hardware costs, weight, and power requirements. In the 
economy and business world, consumers usually choose to 
purchase the cheapest product that meets their needs. 
Presumably, one of the watchwords that will guide the design 
of future aircraft generation will be "eco-efficiency". In this 
context, the FCS must offer a service that consumes less 
resources. 
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COMMAND & MONITORING COMPUTER
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Design of a fault-tolerant control system (II)
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electrical components. These redundant components have to 

be distributed in different locations. For example, actuators 

are managed by any of the flight control computers, to protect 

against failure of single calculator that causes loss of control 

in any axis (roll, pitch or yaw). 

The linkages between the flight control computers and the 

flight surfaces are arranged so that each surface is controlled 

by multiple independent actuators. Each actuator is 

controlled by different computers so loss of a single actuator 

or computer will not lead to a loss of the surface’s control. 

Another form of segregation is the hydraulic system which is 

3-way replicated through different dedicated paths. 

 

IV. INDUSTRIAL PRACTICES AND STRATEGIES 

A. Airbus Basic Internal Architecture Computer  

The airbus flight control system is based on many self 

checking flight computers composed of two software 

variants or unit (command and monitoring unit) [10] as show 

in Fig. 2 whose results are compared. The command unit and 

the monitor unit are separated channels within a single 

computer. Each channel has separate hardware and different 

software. If the results of the channels disagree (as checked 

by the comparator) or are not produced at the same time then 

an error is assumed and control switches to another computer. 

The software for the different channels in each computer has 

been developed by different teams using different 

programming languages. There are two kinds of computers: 

primary computer (for complex processing) and secondary 

computer. 

 

 
 

Fig. 2: Airbus basic computer global architecture. 

 

 

B. Boeing Basic Internal Architecture Computer  

Flight control computer comprise three Primary Flight 

Computer (PFCs), each of identical design and construction. 

Each PFC (Primary Flight Control) is identified as a channel 

and is composed of three dissimilar computing lanes [11] as 

depicted in Fig 3. 

 
 

Fig 3: Boeing basic computer global architecture. 

 

Primary flight control system’s lines have the same input 

signals and are all active. Their outputs are connected to a 

voter that compares these signals. The correct signals are then 

chosen by majority voting. The faulty module can be masked 

by 2-out-of-3 voting. 

 

V. SYSTEM ARCHITECTURE AND REDUNDANCY 

Flight control system requires fault tolerance software 

(diversity) to complete fault tolerance hardware. 

The analysis of Airbus and Being FCS shows that the design 

and implementation of such a safe system of operation 

through the combined use of redundancy and diversification 

to minimize the probability of failure common mode between 

units and redundant to make independent software design 

faults can be optimized by proper adjustments of the 

redundancy. It also shows that a level of redundancy is very 

important. This "over-redundancy" is justified by the desire 

for a demonstration of safety, which is guided by both 

regulations and certification. However, given the high level 

of redundancy practiced, it seems interesting to try to propose 

alternative architectures on less hardware and software 

resources. To conduct this exercise, we first have to identify 

and formalize the requirements to be met by the flight control 

systems.  

 

VI. FLIGHT CONTROL SYSTEMS REQUIREMENTS 

Architectures proposed for critical systems must meet 

stringent safety and availability requirements to achieve 

certification [12]. For flight control systems, the probability 

of loss of aircraft function or critical failure must be less than 

10-9 per flight hour. This is normally achieved through the 

use of redundant architectures. In addition to the primary 

redundancy required to meet the safety requirements, 

manufacturers have also stipulated the inclusion of additional 

redundancy or second redundancy in key system to meet 

additional economic requirement. 

 

• Three different primary flight 
computers

• The computers have the 
same input signals and are all 
active

• The outputs are connected 
to a voter that compares 
signals

• The correct signal is chosen 
by a majority vote

(II) Boeing

 
 

 

Step 7: preliminary calculation evaluation: quick 
evaluation of probability’s objective with simple formula (we 
can use assumptions); 

 Step 8: iteration over all requirements; 

 Step 9: iteration over all sub-functions.  
 

This approach is a part of a complete safety process 
methodology that allows us to define a new safe architecture 
for a complex real time safety-critical system. At the current 
stage we don’t introduce a real time requirement.  
 

VIII. CONCLUSIONS 

To meet extreme high safety requirements (of 10-9 per 
flight hour) as well as economic requirements, multiple 
redundant hardware and software resources are required for 
flight control systems. Unfortunately, redundancy increases 
hardware costs, weight, and power requirements. In the 
economy and business world, consumers usually choose to 
purchase the cheapest product that meets their needs. 
Presumably, one of the watchwords that will guide the design 
of future aircraft generation will be "eco-efficiency". In this 
context, the FCS must offer a service that consumes less 
resources. 
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Generation of C code
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• Automatic C code generation
• The primitives are programmed by hand
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Automatic compilation and linkage in 
machine code
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The Wind River Compiler tool suite (formerly known as the 
Diab Compiler) includes software development tools, such as 
a C/C++ compiler, an assembler, a linker, ANSI C and ANSI 
C++ standard libraries, and an instruction set simulator.  It is 
based on the industry-hardened Diab Compiler technology 
and has a proven track record for generating robust, compact, 
and fast-executing code for thousands of designs and millions 
of devices. The Wind River Compiler also provides the control 
and flexibility required to meet the demands of device software 
development, allowing developers to incorporate the Wind 
River Compiler into any build environment. The compiler offers 
numerous options for controlling code generation and assisting 
with porting code developed with other tools. 

Product Highlights

Wind River Compiler provides the following capabilities to 
embedded software developers:

Faster-executing code and smaller software footprints
Reliable, stable, and mature code generation technology
Compliance with the industry’s most recent standards
Flexibility and control of options and build characteristics
Flexible business models
Support for a wide variety of target architectures
Responsive and knowledgeable support and special services

Benefits

High Performance

Wind River Compiler uses sophisticated optimization 
technology to generate exceptionally fast, compact, 
high-quality object code. This reduces costs and improves 
competitive position by doing the following:

Reducing hardware costs and allowing you to use lower-fre-
quency devices and less memory than your competition and 
improving the profitability of your product

Helping you develop applications that run faster and include 
more functionality and features than your competition, mak-
ing your product more desirable to the market
Improving time-to-market and reducing risk by eliminating 
the need to hand-optimize code at the last minute to meet 
aggressive performance goals ensuring your product will be 
first to market

Wind River Compiler uses a wide range of highly refined 
global, local, processor-specific, and application-specific 
(profile-driven) optimization techniques to generate code 
that runs faster with a smaller footprint. Whole program 
optimization permits the compiler to inline functions across 
multiple modules and source files, significantly boosting 
performance. Profile-driven optimizations employ the 
compiler’s capability to instrument the code and collect 
profile information specific for the application being 
developed. This information is then fed back into the 
compiler, enabling it to make better decisions when 
performing function inlining, register allocation, branch 
prediction, and other optimizations, further improving the 
application performance and footprint.

Wind River Compiler
Companies developing embedded devices are looking to increase productivity, meet challenging schedules and reduce 

project risks.  Software developers must contend with fitting more complex applications into the same memory space and 

adding new capabilities while maintaining real-time performance.  The choice of embedded tools has a significant impact 

on these goals and an embedded cross-compiler is a key piece of every embedded tool’s environment, affecting every 

piece of C or C++ code written for a project.  The choice of a compiler can determine the overall software footprint of the 

device software and also have a significant impact on the performance of an embedded system.

Application-specific 
profile data is fed 

back into the compiler

Assembly
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Libraries

CPU-
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Info

Assembler

Linker

Compiler

Embedded
Target

Profile 
Data

C/C++
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Profile-driven, application-specific optimizations
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Simulation and testing
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• From classical software testing and 
inspection techniques (e.g. Rational 
Suite DevelopmentStudio  )

• To full-scale similation benches for 
system integration:

• To the iron bird:

• To flight tests:

(1)

(1) www-01.ibm.com/software/awdtools/suite/dstudio/unix/
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Successes for formal 
methods

21
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Examples of static analyzers

22

• AiT WCET Analyzers (www.absint.de/ait/): compute tight 
bounds for the worst-case execution time (WCET) of tasks in 
synchronous real-time systems.

• Astrée (www.astree.ens.fr, www.absint.de/astree/): 
proof of absence of runtime error in the primary flight 
control software of the Airbus A340/600 & A380 fly-by-wire 
system.

• Fluctuat (www-list.cea.fr/labos/gb/LSL/fluctuat/
flopsoft.html): contribution of individual program 
operations to the global error on float variables, used on 
DSPs (.

• StackAnalyzer (www.absint.de/stackanalyzer/): worst-
case stack usage of the tasks in all applications.
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Examples of model-checkers

• SCADE Design Verifier (www.esterel-technologies.com/products/
scade-suite/design-verifier): check the logic of flight-control 
primitives

23

Examples of provers
• Caveat (http://www-list.cea.fr/labos/gb/LSL/caveat/

index.html): Hoare logic prover with user-provided invariants, 
used to prove the Autotest primitive functions
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Short term challenges for 
formal methods

24
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From sequential/synchronous to parallel/
distributed

25

Flight warning system
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Test is sometimes impossible...
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Real code Analysis Analysis

Static analysis of communicating imperfectly clocked

redundant units
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Long-term challenges for 
formal methods
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Future challenges

28

• Present day: process validation + a posteriori 
software validation

• Future: early definition and validation of [software] 
systems + final product validation

A software bug discovered during flight tests is 
extremely costly, but easy to correct during the design 
phase
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Models and specifications
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• Absence of formal specifications: model-based development in 
SimulinkTM, ScadeTM, etc. means that the model is the only 
available formal specification   no formal specification of the 
model itself

• Implicit specifications: can be embedded in verification tools (and 
documented e.g. in simple data files), examples:
• Integrity: no computer can send wrong information to actuators
• Availability: in a fault-tolerant system, no component failure can 

result in the unavailability of a service
• Electromagnetic radiations: memory glitches cannot make 

programs to fail
• etc

•  Explicit  formal specifications ultimately needed: in which form?

)
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Environment specifications
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Software analysis & verification

!"#$%&'()*&+)"'
,+)$+-.

/0*1)+1 2(&3-&)+1

4

Abstractions: program ! precise, system ! coarse

Minta Martin Lecture, MIT, May 13th, 2005 — 72 — ľ P. Cousot

• Currently blind verification:

• Program abstraction : precise
• Environment abstraction : imprecise (bounds)
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System analysis & verification

Abstractions: program ! precise, system ! precise

Minta Martin Lecture, MIT, May 13th, 2005 — 73 — ľ P. Cousot
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Environment specifications

• Precise verification:

• Program abstraction : precise
• Environment abstraction : precise
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Hybrid models of discrete control programs
and continuous physical systems

32

) should scale from seconds to minutes and more.

Chapter 8. Intersection with a Hyperplanar Guard

(a) NAV01 – octagon (b) NAV04 – octagon

(c) NAV01 – cube (d) NAV04 – cube

Figure 8.11: Two navigation benchmarks with perturbations. In a and b the
intersections with the guards are over-approximated by octagons, whereas in c
and d they are over-approximated by their interval hulls. Blue: initial set. Light
blue: reachable sets. Green: Target State. Red: Forbidden State.
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3.4. Approximate Reachability of the Discretized System

direction may lead to rough over-approximation in other directions. In practice,
approximating tightness in one random direction instead of �i at each step, may
produce better (with respect to Hausdorff distance) approximations, as illustrated
on Figure 3.2.

Figure 3.2: Over-approximation of the reachable set of a 5 dimensional system
using tight (in blue) or non-tight (in red) approximations, obtained with the El-
lipsoidal Toolbox [KV06] and a modified version for the non-tight approximation.
On the left: range of the first variable as a function of the step k. On the right:
projection of the reachable set on the first two variables. For more details see
Annexe B.

3.4.2.3 Polytopes

Here the approximation procedure is not introduced to overcome the lack of closure
under one operation of the class considered, but to avoid the uncontrolled growth
of the number of parameters needed to represent the sets involved.

The most common technique is to over-approximate Φ�Ωi ⊕ V by a polytope
whose facets have the same normals has the facets of Φ�Ωi. We say that we push
or lift the facets of Φ�Ωi until it includes Φ�Ωi ⊕ V . One simple way to do it, is to
represent V by its support function ρV and to replace every facet of the form:

{x : x · n ≤ γ}

by

{x : x · n ≤ γ + ρV(n)}

It is also possible to perform an exact computation and then remove some of
the constraints, or vertices, of the resulting polytope [Fre08].

Another solution is to restrict the �Ωi to be in a smaller class. As an example, us-
ing template polyhedra, or only considering initial sets of small dimension [Han05].

39

• Recent improvements on bounded time analysis of 
continuous and hybrid systems

• Not so much in duration (``unbounded time’’)

(1) Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. PhD thesis,
University Joseph Fourier of Grenoble, October 29, 2009.

(1)
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Conclusion

33

• Formal methods should be used:
• All along the whole design chain
• On functional properties (specification?)
• On a long range of time (s → mn    →  h: scalability)
• For parallel/distributed systems (semantics?)
• For end-users (non-intrusion)

• Robust software has simple 
abstractions

• Long proofs imply bugs
Paraphrasing John Doyle
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Conclusion

• Formal methods should be used:
• All along the whole design chain
• On functional properties (specification?)
• On a long range of time (s → mn    →  h: scalability)
• For parallel/distributed systems (semantics?)
• For end-users (non-intrusive methods)

• Robust software has simple 
abstractions

• Long proofs imply bugs
Paraphrasing John Doyle
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Thank you for your attention

34


