
49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Atlanta, GA
Pre-Conference Workshop on Verification of Control Systems

Patrick Cousot
CIMS-NYU & ENS

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

December 14, 2010

49th IEEE Conference on Decision and Control

cousot@ens.fr di.ens.fr/~cousot

Verification of Control
Systems by Abstract

Interpretation

1

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Motivation

2

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

All computer scientists have experienced bugs

3

• Checking the presence of bugs is great

• Proving their absence is even better!

Russian Proton-M rocket
carrying 3 Glonass-M satellites
(unknown programming error)

Mars orbiter loss
(unit error)

Patriot failure
(float rounding error)

Ariane 5.01 failure
(overflow error)

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Abstract interpretation

4

Patrick Cousot & Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238—252, Los Angeles, California, 1977.
ACM Press, New York, NY, USA

Patrick Cousot & Radhia Cousot. Systematic design of program analysis frameworks. In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages pages 269—282, San Antonio, Texas, 1979. ACM Press, New York, U.S.A.

Patrick Cousot & Radhia Cousot. Abstract interpretation frameworks. Journal of Logic and Computation, 2(4):511—547, August 1992.

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Abstract interpretation

5

• Started in the 70’s

• Statically and automatically inferring properties of the
behavior of programs/computer systems for
program analysis (proof, verification, optimization,
transformation, etc.)

• Based on the idea that undecidability and complexity of
automated static program analysis can be fought by
approximation

• Applications of abstract interpretation do scale up!

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Application to static analysis and verification

6

• Static analysis consists in automatically answering
questions about the runtime executions of programs

• Static means « at compile time », by examining the
program text only, without executions on computers

• Automatic means by a computer, without human
intervention during the analysis

Program

Question

Static
analyzer
program

Computer

Answer

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Fighting undecidability and complexity
in program verification

• Any automatic program verification method will
definitely fail on infinitely many programs (Gödel)

• Solutions:

• Ask for human help (theorem-prover based
deductive methods)

• Consider (small enough) finite systems (model-
checking)

• Do complete abstractions or else sound
approximations (abstract interpretation)

7

Program

Question

Static
analyzer
program

Computer

Answer
Don’t know

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

An informal introduction to
abstract interpretation

8

P. Cousot & R. Cousot. A gentle introduction to formal verification of computer systems by abstract interpretation. In Logics and Languages for Reliability and
Security, J. Esparza, O. Grumberg, & M. Broy (Eds), NATO Science Series III: Computer and Systems Sciences, © IOS Press, 2010, Pages 1—29.

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

1) Define the programming language semantics

9

Formalize the concrete execution of programs (e.g. transition system)

x

y

Trajectory
in state space

Space/time trajectory

(x,y)

t

x

y

t=0

t=1

t=2

t=…

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

II) Define the program properties of interest

10

Formalize what you are interested to know about program behaviors

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

III) Define which specification must be checked

11

Formalize what you are interested to prove about program behaviors

!"#$%&'()*"('

+",,%$-')
.#/0'1."#%',

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

IV) Choose the appropriate abstraction

12

Abstract away all information on program behaviors irrelevant to the proof

!"#$%&#'$()&'$

*"++&,-$%
'(./$0'"(&$+

1,+'(.0'&"#%"2%'3$%'(./$0'"(&$+

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

V) Mechanically verify in the abstract

13

The proof is fully automatic

!"##$%&'(
)*+,'-)"*$'#

."*%$//'0(1"0'

2%#)*+-)$"0("3()4'()*+,'-)"*$'#

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Soundness of the abstract verification

14

Never forget any possible case so the abstract proof is correct in the concrete

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2$,.#/1.%"()"3).4').#/0'1."#%',

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Unsound validation: testing

15

Try a few cases

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Unsound validation: bounded model-checking

16

Simulate the beginning of all executions

Bounded model-checking

Forbidden zone

Possible
trajectories

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Unsound validation: static analysis

17

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Incompleteness

18

When abstract proofs may fail while concrete proofs would succeed

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#)"#)3/-,')/-/#4)5

6-/#4)777

By soundness an alarm must be raised for this overapproximation!

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

True error

19

The abstract alarm may correspond to a concrete error

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#

3-/#4)555

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

False alarm

20

The abstract alarm may correspond to no concrete error (false negative)

!"#$%&&'())*"('

+",,%$-')
.#/0'1."#%',

!/-,')/-/#2

3-/#2)444

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

What to do about false alarms?

21

• Automatic refinement: inefficient and may not
terminate (Gödel)

• Domain-specific abstraction:

• Adapt the abstraction to the programming
paradigms typically used in given domain-specific
applications

• e.g. synchronous control/command: no recursion, no
dynamic memory allocation, maximum execution
time, etc.

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Just a bit less informally ...

22

Patrick Cousot & Radhia Cousot. Basic Concepts of Abstract Interpretation. In Building the Information Society , René Jacquard (Ed.), Kluwer Academic Publishers,
pp. 359—366, 2004. (IFIP WCC 2004 Toulouse, Topical Day on Abstract Interpretation, Tuesday 24 August 2004).

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Semantics and specification

23

• Small-step operational semantics (of a program)

• Reachable states

• Absence of run-time errors

7.4 Functions

We let (S × S × ...× S� �� �
n times

) �−→ S be set set of n-ary partial functions on S which is defined

as (S × S × ...× S� �� �
n times

) �−→ S � {f ∈ �n+1(S) | (�x1, . . . , xn, y� ∈ f ∧ �x1, . . . , xn, y�� ∈

f) ⇒ y = y�} and we write f(x1, . . . , xn) for the unique y such that �x1, . . . , xn, y� ∈ f .
The composition of unary function is f ◦ g(x) = F (g(x)). f ∈ S �−→ S is total when
dmn[f] = S which is written f ∈ S −→ S.

7.5 Images

The post-image of X ⊆ S by a relation r ∈ �(S) is post r X � {s� | ∃s ∈ X : r(s, s�)}. For
X ⊆ S × S, we define post2 r X � {�s, s��� | ∃�s, s�� ∈ X : r(s�, s��)}. The dual post-image
is �post r � ¬ ◦ post r ◦ ¬. The pre-image is pre r � post r−1 and the dual pre-image
is �pre r � ¬ ◦ pre r ◦ ¬. Similarly for �post2 r , pre2 r , and �pre2 r .

7.6 Ordinals

The class of ordinals �O, �� is an abstraction of well-founded relations on sets. In Barnays-
Gödel-Von Neumann set theory(1), the ordinals O are the well-ordered classes of all smaller
ordinals so that 0 � ∅, 1 � 0 + 1 = {0}, 2 � 1 + 1 = {0, 1}, 3 � 2 + 1 = {0, 1, 2},. . . , the
first infinite ordinal is ω � {0, 1, 2, . . .}. For any ordinal δ, either δ ∈ O or δ = O. The
order ∈ on ordinals is written <. The successor function is S(δ) � δ ∪ {δ} written δ + 1,
the lub is

�
(such that

�
∅ = 0) and the glb is

�
. Any ordinal λ is either a successor

ordinal λ = S(δ) or a limit ordinal λ such that ∀δ : λ �= S(δ) in which case λ =
�

δ∈λ δ.
�O, �� is an increasing transfinite chain with no strictly decreasing chain. If A ⊆ O then
�A, �, 0, A, ∪, ∩� is a complete lattice(2).

8 Trace semantics

Definition 2 (trace semantics) A trace semantics is a pair ST = �Σ, �T � where Σ is a
non-empty set of states and �T ⊆ �Σ∞ is a non-empty set of non-empty traces.

Definition 3 (terminating semantics) A trace semantics ST = �Σ, �T � is terminating
if and only if �T ⊆ �Σ + (or equivalently �T ∩ �Σ ω = ∅). ��

Definition 4 (termination domain) The termination domain of ST = �Σ, �T � is tdm[�T]
� ¬dmn[�T ∩ �Σ ω]. ��

(1)
Mendelson, Elliott. An Introduction to Mathematical Logic, 4th ed., Chapman & Hall, London, 1997.

(2)
A complete lattice is usually a set, it must be extended to a class. However for a given transition

system, we can use a maximal ordinal to bound the class of ordinals needed in ranking functions.

6

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}
τ∗

post τ∗ Init
lfp⊆ λX . Init ∪ post τ X
B
post τ∗ Init ⊆ B

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

Termination proofs can proceed by induction on the transition relation ατ(�T) when it
is well-founded, as shown by Lem. 9 below.

Limit closure requires that an infinite trace that can be covered by parts of traces in
�T should be in �T [?, Sect. 2.6].

Definition 8 (limit closed) The set �T ∈ ℘(�Σ∞) of traces is limit closed if and only if

∀�s ∈ �Σω : (∀n ∈ N : ∃�s � ∈ �Σ∗,�s �� ∈ �Σ∞ : �s ��sn�sn+1�s
�� ∈ �T) ⇒ (�s ∈ �T) ��

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}
τ∗

post τ∗ Init
lfp⊆ λX . Init ∪ post τ X
B
post τ∗ Init ⊆ B

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

Termination proofs can proceed by induction on the transition relation ατ(�T) when it
is well-founded, as shown by Lem. 9 below.

Limit closure requires that an infinite trace that can be covered by parts of traces in
�T should be in �T [?, Sect. 2.6].

Definition 8 (limit closed) The set �T ∈ ℘(�Σ∞) of traces is limit closed if and only if

∀�s ∈ �Σω : (∀n ∈ N : ∃�s � ∈ �Σ∗,�s �� ∈ �Σ∞ : �s ��sn�sn+1�s
�� ∈ �T) ⇒ (�s ∈ �T) ��

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}
τ∗

post τ∗ Init
lfp⊆ λX . Init ∪ post τ X
B
post τ∗ Init ⊆ B

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

Termination proofs can proceed by induction on the transition relation ατ(�T) when it
is well-founded, as shown by Lem. 9 below.

Limit closure requires that an infinite trace that can be covered by parts of traces in
�T should be in �T [?, Sect. 2.6].

Definition 8 (limit closed) The set �T ∈ ℘(�Σ∞) of traces is limit closed if and only if

∀�s ∈ �Σω : (∀n ∈ N : ∃�s � ∈ �Σ∗,�s �� ∈ �Σ∞ : �s ��sn�sn+1�s
�� ∈ �T) ⇒ (�s ∈ �T) ��

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}
τ∗

post τ∗ Init
= lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

Termination proofs can proceed by induction on the transition relation ατ(�T) when it
is well-founded, as shown by Lem. 9 below.

Limit closure requires that an infinite trace that can be covered by parts of traces in
�T should be in �T [?, Sect. 2.6].

Definition 8 (limit closed) The set �T ∈ ℘(�Σ∞) of traces is limit closed if and only if

∀�s ∈ �Σω : (∀n ∈ N : ∃�s � ∈ �Σ∗,�s �� ∈ �Σ∞ : �s ��sn�sn+1�s
�� ∈ �T) ⇒ (�s ∈ �T) ��

7

transitive closure

post-image

reachable states

fixpoint characterization

erroneous states

no erroneous state is reachable from initial states

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Σ \ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Σ \ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

7

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If �L, �, ⊥� is a complete lattice or a cpo, F ∈ L → L is increasing, �L,

�� is a poset, α ∈ L → L is continuous (6),(7), F ∈ L → L commutes (resp. semi-
commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F � F ◦ α) then α(lfp �

⊥ F) =
lfp

�
α(⊥)

F (resp. α(lfp �
⊥ F) � lfp

�
α(⊥)

F).

Applying Lem. 7 to �L, �� −−−→←−−−
¬
¬ �L, ��, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F ∈ L → L is increasing on a complete Boolean
lattice �L, �, ⊥, ¬� then ¬ lfp

�
⊥ F = gfp

�
¬⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is increasing,
γ ∈ L → L is co-continuous (8), F ∈ L → L commutes with F that is γ ◦ F = F ◦ γ

then γ(gfp
�
� F) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us define the abstraction generalizing [15] to traces

wlp[�T] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[�Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P) ⇒ (s�s ∈ �Q)
�

such that �℘(�Σ+), ⊆� −−−−−−−−−−→←−−−−−−−−−−
λ �T .wlp[�T]�Q

wlp−1[�Q]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P) and PA = lfp
⊆
∅ λ P .¬EA ∩

(B∪ pre[t]P) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q � ¬pre[t](¬Q) =
{s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s ∈ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an
alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6, the bounded prefix abstraction

αk(�T) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for approximating both PA and PA.

7 Contract precondition inference by data flow analysis
Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

Fixpoint abstraction and approximation

24

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.

Theorem

Example

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

Termination proofs can proceed by induction on the transition relation ατ(�T) when it
is well-founded, as shown by Lem. 9 below.

Limit closure requires that an infinite trace that can be covered by parts of traces in
�T should be in �T [?, Sect. 2.6].

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

Termination proofs can proceed by induction on the transition relation ατ(�T) when it
is well-founded, as shown by Lem. 9 below.

Limit closure requires that an infinite trace that can be covered by parts of traces in
�T should be in �T [?, Sect. 2.6].

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

Termination proofs can proceed by induction on the transition relation ατ(�T) when it
is well-founded, as shown by Lem. 9 below.

Limit closure requires that an infinite trace that can be covered by parts of traces in
�T should be in �T [?, Sect. 2.6].

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

Termination proofs can proceed by induction on the transition relation ατ(�T) when it
is well-founded, as shown by Lem. 9 below.

Limit closure requires that an infinite trace that can be covered by parts of traces in
�T should be in �T [?, Sect. 2.6].

7

transitive closure

identity

commutativity

reachable states

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

⇒

�Σ, τ, Init�

post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Σ \ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

7

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Abstraction by Galois connections

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a prior assert (e.g. assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj(x)) or to an element of a collection (written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� and a specification A, the contract

precondition inference problem consists in computing PA ∈ ℘(Σ) such that when
replacing the initial states I by PA ∩ I, we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies �τ +
I ∩ ¬�́EA ⊆ �τ +

PA
.

Choosing PA = I so that I \ PA = ∅ hence �τ +
I\PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that �τ +
I\PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is PA � {s | ∃s�s ∈ �τ + ∩ ¬�́EA}. (4) ��

Instead of reasoning on the set PA of states from which there exists a good run

without any error, we can reason on the complement PA that is the set of states

from which all runs are bad in that they always lead to an error. Define PA to be

the set of states from which any complete run in �τ + does fail.

PA � ¬PA = {s | ∀s�s ∈ �τ +
: s�s ∈ �́EA}.

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, �� −−−→←−−−
α

γ
�L, �� consists of posets �L,

��, �L, �� and maps α ∈ L → L, γ ∈ L → L such that ∀x ∈ L, y ∈ L : α(x) � y ⇔
x � γ(y). The dual is �L, �� −−−→←−−−

γ

α �L, ��. In a Galois connection, the abstraction
α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization γ is increasing and preserves existing greatest lower bounds (glbs). If

�L, �� is a complete Boolean lattice with unique complement ¬ then the complement
isomorphism is �L, �� −−−→←−−−

¬
¬ �L, �� (since ¬x � y ⇔ x � ¬y).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.

4

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a prior assert (e.g. assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj(x)) or to an element of a collection (written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� and a specification A, the contract

precondition inference problem consists in computing PA ∈ ℘(Σ) such that when
replacing the initial states I by PA ∩ I, we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies �τ +
I ∩ ¬�́EA ⊆ �τ +

PA
.

Choosing PA = I so that I \ PA = ∅ hence �τ +
I\PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that �τ +
I\PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is PA � {s | ∃s�s ∈ �τ + ∩ ¬�́EA}. (4) ��

Instead of reasoning on the set PA of states from which there exists a good run

without any error, we can reason on the complement PA that is the set of states

from which all runs are bad in that they always lead to an error. Define PA to be

the set of states from which any complete run in �τ + does fail.

PA � ¬PA = {s | ∀s�s ∈ �τ +
: s�s ∈ �́EA}.

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, �� −−−→←−−−
α

γ
�L, �� consists of posets �L,

��, �L, �� and maps α ∈ L → L, γ ∈ L → L such that ∀x ∈ L, y ∈ L : α(x) � y ⇔
x � γ(y). The dual is �L, �� −−−→←−−−

γ

α �L, ��. In a Galois connection, the abstraction
α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization γ is increasing and preserves existing greatest lower bounds (glbs). If

�L, �� is a complete Boolean lattice with unique complement ¬ then the complement
isomorphism is �L, �� −−−→←−−−

¬
¬ �L, �� (since ¬x � y ⇔ x � ¬y).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.

4

concrete
domain

concrete
implica-on

abstract
domain

abstract
implica-on

concre-za-on

abstrac-on

soundness

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If �L, �, ⊥� is a complete lattice or a cpo, F ∈ L → L is increasing, �L,

�� is a poset, α ∈ L → L is continuous (6),(7), F ∈ L → L commutes (resp. semi-
commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F � F ◦ α) then α(lfp �

⊥ F) =
lfp

�
α(⊥)

F (resp. α(lfp �
⊥ F) � lfp

�
α(⊥)

F).

Applying Lem. 7 to �L, �� −−−→←−−−
¬
¬ �L, ��, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F ∈ L → L is increasing on a complete Boolean
lattice �L, �, ⊥, ¬� then ¬ lfp

�
⊥ F = gfp

�
¬⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is increasing,
γ ∈ L → L is co-continuous (8), F ∈ L → L commutes with F that is γ ◦ F = F ◦ γ

then γ(gfp
�
� F) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us define the abstraction generalizing [15] to traces

wlp[�T] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[�Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P) ⇒ (s�s ∈ �Q)
�

such that �℘(�Σ+), ⊆� −−−−−−−−−−→←−−−−−−−−−−
λ �T .wlp[�T]�Q

wlp−1[�Q]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P) and PA = lfp
⊆
∅ λ P .¬EA ∩

(B∪ pre[t]P) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q � ¬pre[t](¬Q) =
{s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s ∈ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an
alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6, the bounded prefix abstraction

αk(�T) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for approximating both PA and PA.

7 Contract precondition inference by data flow analysis
Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

best abstraction

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpointabstraction.Recallfrom[12,7.1.0.4]that

Lemma7If�L,�,⊥�isacompletelatticeoracpo,F∈L→Lisincreasing,�L,

��isaposet,α∈L→Liscontinuous(6),(7),F∈L→Lcommutes(resp.semi-
commutes)withFthatisα◦F=F◦α(resp.α◦F�F◦α)thenα(lfp�

⊥F)=
lfp

�
α(⊥)F(resp.α(lfp�

⊥F)�lfp
�
α(⊥)F).

ApplyingLem.7to�L,��−−−→←−−−¬¬�L,��,wegetCor.8andbydualityCor.9below.

Corollary8(DavidPark)IfF∈L→LisincreasingonacompleteBoolean
lattice�L,�,⊥,¬�then¬lfp�

⊥F=gfp�
¬⊥¬◦F◦¬.

Corollary9If�L,�,��isacompletelatticeoradcpo,F∈L→Lisincreasing,
γ∈L→Lisco-continuous(8),F∈L→LcommuteswithFthatisγ◦F=F◦γ

thenγ(gfp
�
�F)=gfp�

γ(�)F.

6Fixpointstrongestcontractprecondition
Following[10],letusdefinetheabstractiongeneralizing[15]totraces

wlp[�T]�λ�Q.�
s

��
∀s�s∈�T:s�s∈�Q�

wlp−1
[�Q]�λP.�

s�s∈�Σ+��
(s∈P)⇒(s�s∈�Q)

�

suchthat�℘(�Σ+),⊆�−−−−−−−−−−→ ←−−−−−−−−−−
λ�T.wlp[�T]�Q

wlp−1[�Q]
�℘(Σ),⊇�andPA=wlp[�τ+](�́EA).Byfixpoint

abstraction,itfollowsfrom(1-a)andCor.8that

Theorem10PA=gfp
⊆
ΣλP.EA∪(¬B∩�pre[t]P)andPA=lfp

⊆
∅λP.¬EA∩

(B∪pre[t]P)wherepre[t]Q�{s|∃s�∈Q:�s,s��∈t}and�pre[t]Q�¬pre[t](¬Q)=
{s|∀s�:�s,s��∈t⇒s�∈Q}.��

IfthesetΣofstatesisfinite,asassumedinmodel-checking[2],thefixpointdefinition
ofPAinTh.10iscomputableiteratively,uptocombinatorialexplosion.Thecode
tocheckthepreconditions∈PAcanproceedbyexhaustiveenumeration.Incase
thisdoesnotscaleuporforinfinitestatesystems,boundedmodel-checking[5]isan
alternativeusing

�k
i=0�τiinsteadof�τ+but,byTh.6,theboundedprefixabstraction

αk(�T)�
�
�s∈�T��

|�s|�k
�

isunsoundforapproximatingbothPAandPA.

7Contractpreconditioninferencebydataflowanalysis
Insteadofstate-basedreasonings,asinSect.4and6,wecanconsidersymbolic(or
evensyntactic)reasoningsmovingthecodeassertionstothecodeentry,whenthe
effectisthesame.Thiscanbedonebyasounddataflowanalysis[18]when
1.thevalueofthevisiblesideeffectfreeBooleanexpressiononscalarorcollection

variablesintheassertisexactlythesameasthevalueofthisexpressionwhen
evaluatedonentry;

2.thevalueoftheexpressioncheckedonprogramentryischeckedinanasserton
allpathsthatcanbetakenfromtheprogramentry.

Weproposeabackwarddataflowanalysistocheckforbothsufficientconditions1
and2.

(6)αiscontinuousifandonlyifitpreservesexistinglubsofincreasingchains.
(7)ThecontinuityhypothesisforαcanberestrictedtotheiteratesoftheleastfixpointofF.
(8)γisco-continuousifandonlyifitpreservesexistingglbsofdecreasingchains.

5

Example:

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

Termination proofs can proceed by induction on the transition relation ατ(�T) when it
is well-founded, as shown by Lem. 9 below.

7

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Convergence acceleration
• Fixpoints can be computed iteratively

• Accelerate convergence by a widening

• followed by a narrowing

• to get an over-approximation

26

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

Lemma 7 �℘(�Σ∞), ⊆� −−−→←−−−
ατ

γτ ��(Σ), ⊆�

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T).

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

�Σ, τ, Init�
post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Bad

9 Transition abstraction and semantics

A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty set Σ of states.
It is deterministic if and only if τ is a function. The transition semantics abstraction of a
trace semantics ST = �Σ, �T � is the transition system Sτ = �Σ, ατ(�T)� where the transition
abstraction ατ is

ατ ∈ ℘(�Σ∞) −→ �(Σ)
ατ(�T) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

�r � {�s ∈ �Σ 2 | r(�s0,�s1)}
γτ ∈ �(Σ) −→ ℘(�Σ∞)

γτ(τ) � �τ ∝

7

May not finitely converge

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot27

Intuition for Widening

f

l fp f

f

l fp f

Iteration Iteration with widening

(using the derivative as in
Newton-Raphson method)

x

f(x)6x

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Soundness and (In)completeness

28

• Soundness: We effectively compute such that

and check that in the abstract,

proving

• [In]completeness: may produce false alarms (e.g. take

 so that no abstraction is possible)

• In practice, can be made complete for domain-
specific programs (such as synchronous control/
command) with adequate abstractions.

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

⇒

�Σ, τ, Init�

post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Σ \ Bad

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X ⊆ Σ \ Bad

α(post τ∗ Init) = α(lfp⊆ λX . Init ∪ post τ X) � lfp�⊥ F � F ↓� � F ↑�

F ↓� ∩ Bad = ∅

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

⇒

�Σ, τ, Init�

post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Σ \ Bad

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X ⊆ Σ \ Bad

α(post τ∗ Init) = α(lfp⊆ λX . Init ∪ post τ X) � lfp�⊥ F � F ↓� � F ↑�

F ↓� ∩ Bad = ∅

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

⇒

�Σ, τ, Init�

post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Σ \ Bad

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X ⊆ Σ \ Bad

α(post τ∗ Init) = α(lfp⊆ λX . Init ∪ post τ X) � lfp�⊥ F � F ↓� � F ↑�

F ↓� ∩ Bad = ∅

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

⇒

�Σ, τ, Init�

post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Σ \ Bad

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X ⊆ Σ \ Bad

α(post τ∗ Init) = α(lfp⊆ λX . Init ∪ post τ X) � lfp�⊥ F � F ↓� � F ↑�

F ↓� ∩ Bad = ∅

7

Lemma 5 A semantics ST = �Σ, �T �, is terminating if and only if tdm[�T] = Σ. ��

Definition 6 (termination proof) A termination proof for a trace semantics ST is the
proof, using the definition of ST as hypothesis, that it is terminating for all states, that is
Σ ⊆ tdm[�T] (a variant is Init ⊆ tdm[�T] where Init ⊆ Σ is a given set of initial states). ��

⇒

�Σ, τ, Init�

post r X � {s� | ∃s ∈ X : r(s, s�)}

Σ

lfp�⊥ F =
�

n�0 Fn(⊥)

F ↑0 � ⊥, . . . , F ↑n+1 � F ↑n �
F (F ↑n) until F (F ↑�) � F ↑�

F ↓0 � F ↑�, . . . , F ↓n+1 � F ↓n �
F (F ↓n) until F (F ↓�) = F ↓�

lfp�⊥ F � F ↓� � F ↑�

τ∗ = lfp⊆ λR . Σ ∪R ◦ τ

λR . post R Init ◦ λR . Σ ∪R ◦ τ] = λR . Init ∪ post τ (post R Init)

�℘(Σ× Σ), ⊆� −−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
λR . post�R�Init

λX . {�s, s��|s∈Init⇒s�∈X}
�℘(Σ), ⊆�

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X
Bad
post τ∗ Init ⊆ Σ \ Bad

post τ∗ Init = lfp⊆ λX . Init ∪ post τ X ⊆ Σ \ Bad

α(post τ∗ Init) = α(lfp⊆ λX . Init ∪ post τ X) � lfp�⊥ F � F ↓� � F ↑�

F ↓� ∩ Bad = ∅

Bad = ¬post τ∗ Init

7

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

In practice ...
• Proceed by structural induction in the syntax of

programs

• Use chaotic/asynchronous iterations within loops

• Use many abstractions combined in an approximate
reduced product with partial iterative reduction

29

• Example:

• x ∈ [1,13]

• even(x)

 reduction:

• x ∈ [2,12]

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Applications of abstract
interpretation to the static

analysis of aerospace
control systems

30

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival. Static Analysis and Verification of Aerospace Software by
Abstract Interpretation. AIAA Infotech@Aerospace 2010, AIAA 2010-3385, 20–22 April 2010, Atlanta, GA, http://pdf.aiaa.org/preview/2010/
CDReadyMIAA10_2358/PV2010_3385.pdf

Patrick Cousot. Integrating Physical Systems in the Static Analysis of Embedded Control Software. The Third Asian Symposium on Programming Languages and Systems
(APLAS'05), Tsukuba, Japan, November 3—5, 2005. Lecture Notes in Computer Science, volume 3780, © Springer, Berlin, pp. 135—138.

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

ASTRÉE

31

Patrick Cousot, Radhia Cousot, Jérôme Feret, Antoine Miné, David Monniaux, Laurent Mauborgne, Xavier Rival. The ASTRÉE Analyzer. ESOP 2005: The European
Symposium on Programming, Edinburgh, Scotland, April 2—10, 2005. Lecture Notes in Computer Science 3444, © Springer, Berlin, pp. 21—30.

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Target language and applications

32

• C programming language

• Without recursion, longjump, dynamic
memory allocation, conflicting side effects,
backward jumps, system calls (stubs)

• With a l l i t s horrors (union, po in ter
arithmetics, etc)

• Reasonably extending the standard (e.g. size &
endianess of integers, IEEE 754-1985 floats, etc)

• Synchronous control/command

• e.g. generated from Scade

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

The semantics of C implementations
is very hard to define

33

The Semantics of C is Hard (Ex. 2: Runtime Errors)

What is the effect of out-of-bounds array indexing?
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

Yields different results on different machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC

n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits

Bus error PC Intel 64 bits

MPI, 8/26/2008 — 46 — ľ P. Cousot

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Implicit specification

34

• Absence of runtime errors: overflows, division by
zero, buffer overflow, null & dangling pointers,
alignment errors, …

• Semantics of runtime errors:

• Terminating execution: stop (e.g. floating-point
exceptions when traps are activated)

• Predictable outcome: go on with worst case (e.g.
signed integer overflows result in some integer,
some options: e.g. modulo arithmetics)

• Unpredictable outcome: stop (e.g. memory
corruption)

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Abstractions

35

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

•

• Example:

•

•

Example of general purpose abstraction: octagons

36

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Example of general purpose abstraction:
decision trees

37

Example of abstract domain functor in Astrée: decision trees

– Code Sample:
/* boolean.c */

typedef enum {F=0,T=1} BOOL;

BOOL B;

void main () {

unsigned int X, Y;

while (1) {

...

B = (X == 0);

...

if (!B) {

Y = 1 / X;

}

...

}

}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

MPI, 8/26/2008 — 66 — ľ P. Cousot

The boolean relation abstract
domain is parameterized by the
height of the decision tree (an
ana lyzer opt ion) and the
abstract domain at the leaves

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Example of domain-specific abstraction: ellipses

38

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — ľ P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

The Ariane 5.01 maiden flight failure

– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher self-
detroyed after 42 seconds
of flight because of a
software overflow

A 16 bits piece of code of Ariane 4 had been reused within the new 32 bits code for Ariane 5.
This caused an uncaught overflow, ultimately making the launcher uncontrolable.

Rencontres INRIA–Industrie, 11/10/2007 — 48 — ľ P. Cousot

The Ariane 5.01 maiden flight failure

– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher was de-
troyed after 40 seconds
of flight because of a
software overflow12

12 A 16 bit piece of code of Ariane 4 had been reused within the new 32 bit code for Ariane 5.
This caused an uncaught overflow, making the launcher uncontrolable.

Rencontres INRIA–Industrie, 11/10/2007 — 48 — ľ P. Cousot

Example of domain-specific abstraction (I): exponentials

39

Arithmetic-geometric progressions (Example 2)
% cat count.c

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

volatile BOOLEAN I; int R; BOOLEAN T;

void main() {

R = 0;

while (TRUE) {

__ASTREE_log_vars((R));

if (I) { R = R + 1; }

else { R = 0; }

T = (R >= 100);

__ASTREE_wait_for_clock(());

}}

% cat count.config

__ASTREE_volatile_input((I [0,1]));

__ASTREE_max_clock((3600000));

% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!

More precise than the clock domain (intervals for X, X + clock,
X ` clock) which could therefore be suppressed!
MPI, 8/26/2008 — 84 — ľ P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Example of domain-specific abstraction (II): exponentials

40

Example of analysis by Astrée (suite)
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev()
{ X=E;

if (FIRST) { P = X; }
else
{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };
B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1 +
1.19209290217e-07)ˆclock - 5.87747175411e-39
/ 1.19209290217e-07 <= 23.0393526881

FICS’08, Shanghai, 3–6/6/2008 — 65 — ľ P. Cousot

Example of analysis by Astrée (suite)
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev()
{ X=E;

if (FIRST) { P = X; }
else
{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };
B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1 +
1.19209290217e-07)ˆclock - 5.87747175411e-39
/ 1.19209290217e-07 <= 23.0393526881

FICS’08, Shanghai, 3–6/6/2008 — 65 — ľ P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

The Patriot missile failure

– “On February 25th, 1991, a Patriot
missile . . . failed to track and inter-
cept an incoming Scud (˜).”
– The software failure was due to accu-
mulated rounding error (y)

(˜) This Scud subsequently hit an Army barracks, killing 28 Americans.
(y)– “Time is kept continuously by the system’s internal clock in

tenths of seconds”

– “The system had been in operation for over 100 consecutive
hours”

– “Because the system had been on so long, the resulting inac-
curacy in the time calculation caused the range gate to shift
so much that the system could not track the incoming Scud”

Rencontres INRIA–Industrie, 11/10/2007 — 55 — ľ P. Cousot

Cumulated rounding error

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Example of domain-specific abstraction (III): scaling

41

Static Analysis of Scaling with Astrée
% cat -n scale.c

1 int main () {
2 float x; x = 0.70000001;
3 while (1) {
4 x = x / 3.0;
5 x = x * 3.0;
6 __ASTREE_log_vars((x));
7 __ASTREE_wait_for_clock(());
8 }
9 }

% gcc scale.c
% ./a.out
x = 0.699999988079071

% cat scale.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem scale.config –unroll 0 scale.c\
|& grep "x in" | tail -1

direct = <float-interval: x in [0.69999986887, 0.700000047684] >
%

Rencontres INRIA–Industrie, 11/10/2007 — 57 — ľ P. Cousot

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Sep. 5, 2006 September 5, 2006 J!!!— 3 — []¨—"""I ľ P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot42

Polyhedra (too
expensive)

Signs (too
imprecise)

Linear
congruences

(too expensive)

Zonotopes
(inclusion?)

Support functions
(widening?)

Convex sets
(algorithmics?)

Examples of abstractions not used by Astrée

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot43

A common believe on static analyzers

“The properties that can be proved by static analyzers are often
simple” [2]
Like in mathematics:

– May be simple to state (no overflow)

– But harder to discover (P 2 [`1325:4522; 1325:4522])
– And difficult to prove (since it requires finding a non trivial
non-linear invariant for second order filters with complex
roots [Fer04], which can hardly be found by exhaustive enu-
meration)

Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.

MPI, 8/26/2008 J✁✁ ✁ – 37 –? []¨ –✄ ✄✄I ľ P. Cousot

An erroneous common belief on static analyzersExample of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — ľ P. Cousot

()

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Industrial applications

44

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Examples of applications

45

• Verification of the absence of runtime-errors in

• Fly-by-wire flight control systems

• ATV docking system

• Flight warning system

(on-going work)

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

• 8 years of research (CNRS/ENS/INRIA):
www.astree.ens.fr

• Industrialization by AbsInt (since Jan. 2010):

Industrialization

46

www.absint.com/astree/

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

On-going work

47

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival. Static Analysis and Verification of Aerospace Software by
Abstract Interpretation. AIAA Infotech@Aerospace 2010, AIAA 2010-3385, 20–22 April 2010, Atlanta, GA, http://pdf.aiaa.org/preview/2010/
CDReadyMIAA10_2358/PV2010_3385.pdf

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Verification of
target programs

48

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Verification of compiled programs

49

• The valid source may be proved correct while the
certified compiler is incorrect so the target program
may go wrong

• Possible approaches:

• Verification at the target level

• Source to target proof translation and proof
check on the target

✴ Translation validation (local verification of
equivalence of run-time error free source and
target)

• Formally certified compilers

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Verification of
imperfectly clocked

synchronous systems

50

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

• Example of (buggy) communicating synchronous systems:

• Synchronized and dysynchronized executions:

Imperfect synchrony

51

But these computations are performed according to two clocks C and C
�
. It may be that these clocks are

synchronous. This case is depicted in the lower left part of Fig. 2. The two alternating boolean outputs of

the two systems being always equal, the comparison always results in no alarm (OK statement).

But maybe the clocks C and C
�
are slightly desynchronized by a small delay ε. This case is depicted in the

lower right part of Fig.2. The two alternating boolean outputs of the two systems are then almost always

equal, but they differ near every clock tick. Then, the comparison being made precisely on those tick, it

always results into an alarm (“!=” statement). However, this alarm is probably unnecessary in that case,

since the desynchronization delay is very small. This desynchronization delay is in practice unavoidable, since

clocks are physical objects and cannot be perfect. This implementation of an alarm is therefore flawed. Such

errors cannot be always discovered by hand. Their detection has to be done automatically and statically.

NOTNOT

READ
C

READ

C’

C’

C

COMPARE

System 1 System 2

!= != !=!= !=

0 2 3 4 51

C’
true

false

C

true

false

C

true

false

Real
time

C

0 2 3 4 51

C’
true

false

System 2

COMPARE

C

true

false

C

true

false

Real
time

C

OK OK OKOK OK

System 1
ε ε εε ε

Figure 2. Example of two similar imperfectly-synchronous systems with an alarm watching differences in their outputs.

IV.B. Syntax and semantics

We assume that each part of the synchronous software compiled for one precise computer will execute

according to the clock C of that computer with a period (the time between two consecutive clock ticks)

remaining inside a known interval [µC; νC], with 0 < µC � νC. In the quasi-synchronous framework introduced

formally by Caspi et al.,
58

two clocks supposed to tick synchronously are allowed to desynchronize in the

following way: at most two consecutive ticks of one of the clock may happen between two consecutive ticks

of the other clock. This hypothesis is quite weak, and we usually work with a clock whose parameter is such

that 2×µC � νC, which implies quasi-synchrony compared to a perfect clock whose period is between µC and

νC. When µC is close to νC, our hypothesis is stronger and we expect to be able to prove more properties.

Furthermore, each communication channel ch has an interval [αch;βch] as parameter such that the delays

between the emission of a value and its reception must always belong to this interval. The communications

over a given channel are still considered serial, which means that if a value a is sent over channel ch before

a value b, then a is received before b.
In this realistic framework, idealistic cases usually considered can still be modelled. It is then assumed

that all clocks C, C’, . . . are perfect: µC = νC = µC’ = νC’ = . . . and that communications are instantaneous,

i.e., 0 = αch = βch = αch’ = βch’ for all the channels ch, ch’, . . . in the system.

26 of 38

American Institute of Aeronautics and Astronautics

But these computations are performed according to two clocks C and C
�
. It may be that these clocks are

synchronous. This case is depicted in the lower left part of Fig. 2. The two alternating boolean outputs of

the two systems being always equal, the comparison always results in no alarm (OK statement).

But maybe the clocks C and C
�
are slightly desynchronized by a small delay ε. This case is depicted in the

lower right part of Fig.2. The two alternating boolean outputs of the two systems are then almost always

equal, but they differ near every clock tick. Then, the comparison being made precisely on those tick, it

always results into an alarm (“!=” statement). However, this alarm is probably unnecessary in that case,

since the desynchronization delay is very small. This desynchronization delay is in practice unavoidable, since

clocks are physical objects and cannot be perfect. This implementation of an alarm is therefore flawed. Such

errors cannot be always discovered by hand. Their detection has to be done automatically and statically.

NOTNOT

READ
C

READ

C’

C’

C

COMPARE

System 1 System 2

!= != !=!= !=

0 2 3 4 51

C’
true

false

C

true

false

C

true

false

Real
time

C

0 2 3 4 51

C’
true

false

System 2

COMPARE

C

true

false

C

true

false

Real
time

C

OK OK OKOK OK

System 1
ε ε εε ε

Figure 2. Example of two similar imperfectly-synchronous systems with an alarm watching differences in their outputs.

IV.B. Syntax and semantics

We assume that each part of the synchronous software compiled for one precise computer will execute

according to the clock C of that computer with a period (the time between two consecutive clock ticks)

remaining inside a known interval [µC; νC], with 0 < µC � νC. In the quasi-synchronous framework introduced

formally by Caspi et al.,
58

two clocks supposed to tick synchronously are allowed to desynchronize in the

following way: at most two consecutive ticks of one of the clock may happen between two consecutive ticks

of the other clock. This hypothesis is quite weak, and we usually work with a clock whose parameter is such

that 2×µC � νC, which implies quasi-synchrony compared to a perfect clock whose period is between µC and

νC. When µC is close to νC, our hypothesis is stronger and we expect to be able to prove more properties.

Furthermore, each communication channel ch has an interval [αch;βch] as parameter such that the delays

between the emission of a value and its reception must always belong to this interval. The communications

over a given channel are still considered serial, which means that if a value a is sent over channel ch before

a value b, then a is received before b.
In this realistic framework, idealistic cases usually considered can still be modelled. It is then assumed

that all clocks C, C’, . . . are perfect: µC = νC = µC’ = νC’ = . . . and that communications are instantaneous,

i.e., 0 = αch = βch = αch’ = βch’ for all the channels ch, ch’, . . . in the system.

26 of 38

American Institute of Aeronautics and Astronautics

• negate previous input
(on clocks C and C’)

• compare inputs

flawed
alarms

blackboard inputs

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Semantics and abstractions
• Continuous semantics (value s(t) of signals s at any

time t)

• Clock ticks and serial communications do happen in
known time intervals [l, h], l ≤ h

• Examples of abstractions:

•

•

• change counting

(signal changes less (more) than k times in time
interval [a, b])

52

were in fact designed in a continuous world (through differential equations) in an environment (made of
space and time) that is a continuous object. In addition, using a continuous-time semantics enables the use
of very well-known mathematical theories about continuous numbers which are not so frequently used in
static analysis.

IV.D. Temporal abstract domains

IV.D.1. Abstract constraints

A first domain of abstract constraints59 abstracts ℘(R → V) as conjunctive sets of universal and existential
constraints. A universal constraint over a signal s ∈ R → V is defined by a time interval [a; b] and a value x,
and denoted ∀t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value x during
the whole time interval [a; b]. An existential constraint over a signal s is defined by a time interval [a; b] and a
value x, and denoted ∃t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value
x at least once during the time interval [a; b]. For example, ∃t ∈ [0; 1] : s(t) = true ∧ ∃t ∈ [0; 1] : s(t) = false
is the abstraction of functions in R → B that change their boolean value at least once between t = 0 and
t = 1.

The operators defined for usual operations in abstract domains (∪,∩) as well as the backward abstract
operators corresponding to synchronous language primitives (− >, pre, blackboard reading, etc.) are quite
precise in this domain.

IV.D.2. Changes counting domain

A second domain of change counting60 was designed in order to deal automatically with reasoning on the
stability and the variability of systems. The abstract properties (� k, a � �b) and (� k, a � �b), for a, b ∈ R+

and k ∈ N, respectively mean that behaviors do not change their value more (respectively less) than k times
during the time interval [a; b].

This domain is more precise for forward operators and defines a very precise reduced product with the
abstract constraint domain.

An example of reduction is (with times a < b < c < d < e < f) when abstract an property u =
(� 1, a � �e) interacts with the abstract properties v = ∃t ∈ [b; c] : s(t) = x and w = ∀t ∈ [d; f] : s(t) = x.
Then, if there is at least one value change between c and d, then there are actually at least two changes.
Indeed, at some time t ∈ [c; d), the value has to be some y �= x, since at time d it has to be x (by w) and it
changes at least once in [c, d]. Then, at some point t� ∈ [b; c], the value has to be x (by v) which makes two
value changes: one between t� and t, and one between t and d. This is excluded by the stability property
u. As a consequence, there is no value change between c and d and, since the value at time d is x and
does not change, the value has to remain equal to x during whole time interval, which can be translated
into ∀t ∈ [c; d] : s(t) = x. This constraint merges with the constraint ∀t ∈ [d; f] : s(t) = x and yields
∀t ∈ [c; f] : s(t) = x.

IV.E. Application to redundant systems

It is often the case that similar (if not identical) systems run in parallel so that, in case one system has
a hardware failure, it is detected, either by the other similar systems or by a dedicated unit, and only
redundant units keep performing the computation. The continuous-time semantics presented in this section
has been precisely designed to prove the properties of such systems.

Another classic embedded unit aims at treating sensor values. Sensor values are indeed very unstable and
usually get stabilized by a synchronous system. The temporal abstract domains we introduced are precise
as well on the code for those systems.

A prototype static analyzer has been developed implementing the two temporal abstract domains pre-
sented as well as other, less central domains. This prototype is independent from Astrée (Sect. III) and
Thésée (Sect. VI).

The prototype analyzer was able to prove some temporal specification of redundant systems with a voting
system deciding between them. Furthermore, when some property did not hold, looking at the remaining
abstract set sometimes led to actual erroneous traces in altered implementations.

An example analysis involved the code used in industry as a test for such systems where clocks may
desynchronize and communication might be delayed. No hypothesis was given on the inputs of the studied

28 of 38

American Institute of Aeronautics and Astronautics

were in fact designed in a continuous world (through differential equations) in an environment (made of
space and time) that is a continuous object. In addition, using a continuous-time semantics enables the use
of very well-known mathematical theories about continuous numbers which are not so frequently used in
static analysis.

IV.D. Temporal abstract domains

IV.D.1. Abstract constraints

A first domain of abstract constraints59 abstracts ℘(R → V) as conjunctive sets of universal and existential
constraints. A universal constraint over a signal s ∈ R → V is defined by a time interval [a; b] and a value x,
and denoted ∀t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value x during
the whole time interval [a; b]. An existential constraint over a signal s is defined by a time interval [a; b] and a
value x, and denoted ∃t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value
x at least once during the time interval [a; b]. For example, ∃t ∈ [0; 1] : s(t) = true ∧ ∃t ∈ [0; 1] : s(t) = false
is the abstraction of functions in R → B that change their boolean value at least once between t = 0 and
t = 1.

The operators defined for usual operations in abstract domains (∪,∩) as well as the backward abstract
operators corresponding to synchronous language primitives (− >, pre, blackboard reading, etc.) are quite
precise in this domain.

IV.D.2. Changes counting domain

A second domain of change counting60 was designed in order to deal automatically with reasoning on the
stability and the variability of systems. The abstract properties (� k, a � �b) and (� k, a � �b), for a, b ∈ R+

and k ∈ N, respectively mean that behaviors do not change their value more (respectively less) than k times
during the time interval [a; b].

This domain is more precise for forward operators and defines a very precise reduced product with the
abstract constraint domain.

An example of reduction is (with times a < b < c < d < e < f) when abstract an property u =
(� 1, a � �e) interacts with the abstract properties v = ∃t ∈ [b; c] : s(t) = x and w = ∀t ∈ [d; f] : s(t) = x.
Then, if there is at least one value change between c and d, then there are actually at least two changes.
Indeed, at some time t ∈ [c; d), the value has to be some y �= x, since at time d it has to be x (by w) and it
changes at least once in [c, d]. Then, at some point t� ∈ [b; c], the value has to be x (by v) which makes two
value changes: one between t� and t, and one between t and d. This is excluded by the stability property
u. As a consequence, there is no value change between c and d and, since the value at time d is x and
does not change, the value has to remain equal to x during whole time interval, which can be translated
into ∀t ∈ [c; d] : s(t) = x. This constraint merges with the constraint ∀t ∈ [d; f] : s(t) = x and yields
∀t ∈ [c; f] : s(t) = x.

IV.E. Application to redundant systems

It is often the case that similar (if not identical) systems run in parallel so that, in case one system has
a hardware failure, it is detected, either by the other similar systems or by a dedicated unit, and only
redundant units keep performing the computation. The continuous-time semantics presented in this section
has been precisely designed to prove the properties of such systems.

Another classic embedded unit aims at treating sensor values. Sensor values are indeed very unstable and
usually get stabilized by a synchronous system. The temporal abstract domains we introduced are precise
as well on the code for those systems.

A prototype static analyzer has been developed implementing the two temporal abstract domains pre-
sented as well as other, less central domains. This prototype is independent from Astrée (Sect. III) and
Thésée (Sect. VI).

The prototype analyzer was able to prove some temporal specification of redundant systems with a voting
system deciding between them. Furthermore, when some property did not hold, looking at the remaining
abstract set sometimes led to actual erroneous traces in altered implementations.

An example analysis involved the code used in industry as a test for such systems where clocks may
desynchronize and communication might be delayed. No hypothesis was given on the inputs of the studied

28 of 38

American Institute of Aeronautics and Astronautics

were in fact designed in a continuous world (through differential equations) in an environment (made of
space and time) that is a continuous object. In addition, using a continuous-time semantics enables the use
of very well-known mathematical theories about continuous numbers which are not so frequently used in
static analysis.

IV.D. Temporal abstract domains

IV.D.1. Abstract constraints

A first domain of abstract constraints59 abstracts ℘(R → V) as conjunctive sets of universal and existential
constraints. A universal constraint over a signal s ∈ R → V is defined by a time interval [a; b] and a value x,
and denoted ∀t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value x during
the whole time interval [a; b]. An existential constraint over a signal s is defined by a time interval [a; b] and a
value x, and denoted ∃t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value
x at least once during the time interval [a; b]. For example, ∃t ∈ [0; 1] : s(t) = true ∧ ∃t ∈ [0; 1] : s(t) = false
is the abstraction of functions in R → B that change their boolean value at least once between t = 0 and
t = 1.

The operators defined for usual operations in abstract domains (∪,∩) as well as the backward abstract
operators corresponding to synchronous language primitives (− >, pre, blackboard reading, etc.) are quite
precise in this domain.

IV.D.2. Changes counting domain

A second domain of change counting60 was designed in order to deal automatically with reasoning on the
stability and the variability of systems. The abstract properties (� k, a � �b) and (� k, a � �b), for a, b ∈ R+

and k ∈ N, respectively mean that behaviors do not change their value more (respectively less) than k times
during the time interval [a; b].

This domain is more precise for forward operators and defines a very precise reduced product with the
abstract constraint domain.

An example of reduction is (with times a < b < c < d < e < f) when abstract an property u =
(� 1, a � �e) interacts with the abstract properties v = ∃t ∈ [b; c] : s(t) = x and w = ∀t ∈ [d; f] : s(t) = x.
Then, if there is at least one value change between c and d, then there are actually at least two changes.
Indeed, at some time t ∈ [c; d), the value has to be some y �= x, since at time d it has to be x (by w) and it
changes at least once in [c, d]. Then, at some point t� ∈ [b; c], the value has to be x (by v) which makes two
value changes: one between t� and t, and one between t and d. This is excluded by the stability property
u. As a consequence, there is no value change between c and d and, since the value at time d is x and
does not change, the value has to remain equal to x during whole time interval, which can be translated
into ∀t ∈ [c; d] : s(t) = x. This constraint merges with the constraint ∀t ∈ [d; f] : s(t) = x and yields
∀t ∈ [c; f] : s(t) = x.

IV.E. Application to redundant systems

It is often the case that similar (if not identical) systems run in parallel so that, in case one system has
a hardware failure, it is detected, either by the other similar systems or by a dedicated unit, and only
redundant units keep performing the computation. The continuous-time semantics presented in this section
has been precisely designed to prove the properties of such systems.

Another classic embedded unit aims at treating sensor values. Sensor values are indeed very unstable and
usually get stabilized by a synchronous system. The temporal abstract domains we introduced are precise
as well on the code for those systems.

A prototype static analyzer has been developed implementing the two temporal abstract domains pre-
sented as well as other, less central domains. This prototype is independent from Astrée (Sect. III) and
Thésée (Sect. VI).

The prototype analyzer was able to prove some temporal specification of redundant systems with a voting
system deciding between them. Furthermore, when some property did not hold, looking at the remaining
abstract set sometimes led to actual erroneous traces in altered implementations.

An example analysis involved the code used in industry as a test for such systems where clocks may
desynchronize and communication might be delayed. No hypothesis was given on the inputs of the studied

28 of 38

American Institute of Aeronautics and Astronautics

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Example of static analysis

53

Real code Analysis Analysis

Static analysis of communicating imperfectly clocked

redundant units

REDUNDANT UNIT #2

 ! " [;] # $

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Integral bounding

ConstraintsConstraints

[;]

VOTER

 % &[;]
 ' (

ConstraintsACTUATORS ACTUATORS

SENSORS

REDUNDANT UNIT #1

[;]

Specification : no alarm raised with a normal input

2/3)0)
input stability < ∆ : Between 2

3 × ∆ input stability > ∆ : the analyzer
counter-example and ∆ : ? proves the specification

Julien Bertrane, ENS Paris Static analysis of imperfectly-clocked synchronous systems using continuous-time abstract domains 45/49

Real code Analysis Analysis

Static analysis of communicating imperfectly clocked

redundant units

REDUNDANT UNIT #2

 ! " [;] # $

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Integral bounding

ConstraintsConstraints

[;]

VOTER

 % &[;]
 ' (

ConstraintsACTUATORS ACTUATORS

SENSORS

REDUNDANT UNIT #1

[;]

Specification : no alarm raised with a normal input

2/3)0)
input stability < ∆ : Between 2

3 × ∆ input stability > ∆ : the analyzer
counter-example and ∆ : ? proves the specification

Julien Bertrane, ENS Paris Static analysis of imperfectly-clocked synchronous systems using continuous-time abstract domains 45/49

For how long
should the input
b e s t a b i l i z e d
before deciding
on disagreement?

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

THÉSÉE: Verification of
embedded real-time parallel

C programs

54

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Parallel programs

55

• Bounded number of processes with shared memory,
events, semaphores, message queues, blackboards,…

• Processes created at initialization only

• Real time operating system (ARINC 653) with fixed
priorities (highest priority runs first)

• Scheduled on a single processor

Verified properties

• Absence of runtime errors

• Absence of unprotected data races

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Semantics
• No memory consistency model for C

• Optimizing compilers consider sequential processes
out of their execution context

• We assume:
• sequential consistency in absence of data race
• for data races, values are limited by possible

interleavings between synchronization points

56

init: flag1 = flag2 = 0

process 1: process 2:

flag1 = 1; flag2 = 1;

if (!flag2) if (!flag1)

{ {
/* critical section */ /* critical section */

In the Java memory model, both processes can enter their critical section simultaneously. The rationale

is that, due to process-wide program optimisation without knowledge of other processes, a compiler might

assume that, e.g., in process 1, the write to flag1 and the read from flag2 are independent and can be

reordered, and the same for process 2, flag2 and flag1 respectively. As a consequence, each process can

read the other process’ flag before setting its own flag. Multi-processors with out-of-order execution or not

fully synchronized caches can also cause similar behaviors, even in the absence of compiler optimizations.

There is currently no memory consistency model for C; however, we need to choose one in order to

define our concrete semantics. It is safe to assume that, as C++, C will guarantee sequential consistency

for programs without data-race. We also draw from the Java model75 to give a semantics to unprotected

accesses, so that we can analyze the behavior of a program after a data-race. More precisely, assume that

a run of a process p performs a sequence of synchronisation operations at times t1 < . . . < tn, and a run

of another process p� performs two synchronisation operations at time t�1 < t�2; denote i and j such that

ti ≤ t�1 < ti+1 and tj ≤ t�2 < tj+1; then, a read from a variable v in p� between t�1 and t�2 can return either:

1) any value written to v by p between ti and tj+1 (unsynchronized access), or 2) the last value written to

v by p before ti if any or its initial value if none (synchronized access), or 3) the last value written to v by

p� if either the value was written after t�1 or there is no write from p to v before ti. This can be formalized

in fixpoint form76,77 and requires the D state components to store sets of values written to global variables

by processes (instead of a simple map). This semantics is sound to analyze data-race-free programs, and it

is also sound for programs with data-races under reasonable hypotheses75 on the optimizations used by the

compiler and the hardware consistency model enforced by the processor(s).

VI.B.2. Scheduling and synchronisation

The U state component in our concrete semantics models the scheduler state, which in turns defines which

process can run and which must wait. Firstly, it maintains the state of synchronisation objects, e.g., for each

mutex (there are finitely many), whether it is unlocked or locked by a process (and which one). Secondly, it

remembers, for each process, whether it is waiting for a resource internal to the system (e.g., trying to lock

an already locked mutex), for an external event (e.g., a message from the environment or a timeout), or is

runnable (i.e., either actually running or preempted by another process). As we assume that the scheduler

obeys a strict real-time semantics and there is a single processor, only one process can be scheduled in a

given state: the runnable process with highest priority. All higher priority processes are waiting at a system

call, while lower priority processes can be either waiting at a system call, or be runnable and preempted at

any program point.

The execution of a synchronisation primitive by the running process updates the scheduling state U . For

instance, trying to lock an already locked mutex causes the process to enter a wait state, while unlocking a

locked mutex causes either the mutex to be unlocked (if no process is waiting for it), or the mutex ownership

to pass to the highest priority process waiting for it (which then becomes runnable, and possibly preempts

the current process). Moreover, U might change due to external events, which we assume can take place at

any time. For instance, a process performing a timed wait enters a non-deterministic wait phase but can

become runnable at any time (as we do not model physical time), and possible preempt a lower priority

running process.

VI.C. Abstraction

Our prototype analyzer of parallel embedded realtime software, named Thésée, is based on Astrée
(Sect. III). It has a similar structure, reuses most of its abstractions (e.g., general-purpose numerical ab-

stractions for Di, trace partitioning with respect to Ci, etc.) and adds some more.

32 of 38

American Institute of Aeronautics and Astronautics

 write to flag1/2 and
read of flag2/1 are
independent so can be
reordered → error!

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Abstractions
• Based on Astrée for the sequential processes

• Takes scheduling into account

• OS entry points (semaphores, logbooks, sampling and
queuing ports, buffers, blackboards, …) are all
stubbed (using Astrée stubbing directives)

• Interference between processes: flow-insensitive
abstraction of the writes to shared memory and
inter-process communications

57

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Example of application: FWS

• Degraded mode (5 processes, 100 000 LOCS)

• 1h40 on 64-bit 2.66 GHz Intel server

• 98 alarms

• Full mode (15 processes, 1 600 000 LOCS)

• 50 h
• 12 000 alarms in May, 7000 in December 2010
• !!! more work to be done !!! (e.g. analysis of

complex data structures, interference, logs, etc)

58

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Conclusion

59

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

Cost-effective verification

60

• The rumor has it that:

• Manuel validation (testing) is costly, unsafe, not a
verification!

• Formal proofs by theorem provers are extremely
laborious hence costly

• Model-checkers do not scale up

• Why not try abstract interpretation?

• Domain-specific static analysis scales and can
deliver no false alarm

49th iEEE Conference on Decision and Control, Atlanta GA, Pre-Conference Workshop on Verification of Control Systems, Dec. 14, 2010 © P. Cousot

The End

61

Cited references are available online at URL http://www.di.ens.fr/~cousot/COUSOTpapers.shtml

