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Aperitif:
Relational semantics of loops

§�xx§
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Relational semantics of loops
while B do C od

– x 2 R=Q=Z: values of the loop variables before a loop
iteration
– x0 2 R=Q=Z: values of the loop variables after a loop
iteration
– �B; C�(x; x0): relational semantics of one loop iteration

– �B; C�(x; x0) =

NV
i=1

ffi(x; x
0) > 0 (where > is >, – or =)

– not a restriction for numerical programs
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Example of quadratic form program (factorial)
[x x0]A[x x0]> + 2[x x0] q + r > 0

n := 0;
f := 1;
while (f <= N) do

n := n + 1;
f := n * f

od

-1.f +1.N >= 0
+1.n >= 0
+1.f -1 >= 0
-1.n +1.n’ -1 = 0
+1.N -1.N’ = 0
-1.f.n’ +1.f’ = 0

[nfNn0f 0N 0]

2
66666664

0 0 0 0 0 0

0 0 0 `1
2 0 0

0 0 0 0 0 0

0 `1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

3
77777775

2
6666664

n
f
N
n0
f 0
N 0

3
7777775

+2[nfNn0f 0N 0]

2
6666664

0
0
0
0
1
2
0

3
7777775

+0 = 0
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Appetiser:
Floyd/Hoare/Naur correctness

proof method
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Invariance proof
Given a loop precondition P , find an unkown loop in-
variant I such that:
– The invariant is initial:

8 x : P (x) ) I(x)

– The invariant is inductive:

8 x; x0 : I(x) ^ �B; C�(x; x0) ) I(x0)
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Invariance proof for numerical programs
Given a loop precondition P (x) > 0, find an unkown
loop invariant I(x) > 0 such that:
– The invariant is initial:

8 x : P (x) > 0 ) I(x) > 0

– The invariant is inductive:

8 x; x0 :

0
B@I(x) > 0 ^

N̂

i=1

ffi(x; x
0) > 0

1
CA ) I(x0) > 0
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Termination proof
Given a loop invariant I, find an R=Q=Z-valued unkown
rank function r such that:
– The rank is nonnegative:

8 x : I(x) ) r(x) – 0

– The rank is strictly decreasing:

8 x; x0 : I(x) ^ �B; C�(x; x0) ) r(x0) » r(x)` ”

” = 1 for Z, ” > 0 for R=Q to avoid Zeno 1
2,

1
4,

1
8. . .
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Wine service:
Iterated forward/backward

static analysis for
conditional termination
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Conditional termination

– In general a loop does not terminate for all initial val-
ues of the variables
– In that case we can find no rank function!
– We must automatically determine a necessary loop
precondition
– We use a iterated forward/backward static analysis . . .
with an auxiliary counter counting the number of re-
maining iterations down to zero
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Arithmetic mean example, polyhedral
abstraction without auxiliary counter)

{x>=y}
while (x <> y) do

{x>=y+2}
x := x - 1;

{x>=y+1}
y := y + 1

{x>=y}
od

{x=y}
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Arithmetic mean example, polyhedral
abstraction with auxiliary counter

{x=y+2k,x>=y}
while (x <> y) do

{x=y+2k,x>=y+2}
k := k - 1;

{x=y+2k+2,x>=y+2}
x := x - 1;

{x=y+2k+1,x>=y+1}
y := y + 1

{x=y+2k,x>=y}
od

{x=y,k=0}
assume (k = 0)

{x=y,k=0}
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Entrée:
Abstraction to

parametric constraints
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Parametric constraints

– Fix the form of the unkown (I(x) > 0/r(x) > 0) using
parameters a in the form Q(a; x) > 0

– This is an abstraction
– Examples:
- r(x; y) = a:x+ b:y + c

- I(x; x0) = a:x2 + b:x:x0 + c:x02 + d:x+ e:x0 + f
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Solving the constraints

– The invariance [termination] problems have the form:

9 a : 8 x; x0 :0
B@[Q(a; x) > 0 ^ ]

n̂

k=1

Ck(x; x
0) > 0

1
CA

)
Q0(a; x; x0) > 0

– Find an algorithm to effectively compute a!
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Problems
In order to compute a:
– How to handle

V
?

– How to get rid of the implication ) ?
! Lagrangian relaxation

– How to get rid of the universal quantification 8 ?
– How to handle ^ ?

! quantifier elimination (does not scale up)
! mathematical programming
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Algorithmically interesting cases

– linear inequalities
! linear programming 1

– linear matrix inequalities (LMI)/quadratic forms
– bilinear matrix inequalities (BMI)

! semidefinite programming
– semialgebraic sets

! polynomial quantifier elimination, or
! relaxation with semidefinite programming

1 Already explored for invariants by Sankaranarayanan, Spima, Manna (CAV’03, SAS’04, heuristic solver)
and for termination by Podelski & Rybalchenko (VMCAI’03, Lagrange coefficients eliminated by hand to
reduce to linear programming so no disjunctions, no tests, etc).
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First main course:
Lagrangian relaxation
for implication elimination
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Example of linear Lagrangian relaxation

A) B (assuming A 6= ;)
( (soundness)
) (completeness)

border of A parallel to border of B
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Lagrangian relaxation, formally
Let V be a finite dimensional linear vector space, N > 0
and 8k 2 [1; N ] : ffk 2 V 7! R.

8x 2 V :

0
@
N̂

k=1

ffk(x) – 0

1
A) (ff0(x) – 0)

( soundness (Lagrange)
) completeness (lossless)
6) incompleteness (lossy)

9– 2 [1; N ] 7! R˜ : 8x 2 V : ff0(x)`
NX
k=1

–kffk(x) – 0

relaxation = approximation, –i = Lagrange coefficients
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Lagrangian relaxation, completeness cases

– Linear case
(affine Farkas’ lemma)
– Linear case with at most 2 quadratic constraints
(Yakubovich’s S-procedure)
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Lagrangian relaxation of the constraints

9 a : 8 x; x0 : [Q(a; x) > 0 ^ ]
n̂

k=1

Ck(x; x
0) > 0

) Q0(a; x; x0) > 0

( (is relaxed into)
9 a : [9– > 0] : 9–k > 0 : 8 x; x0 :

Q0(a

" linear in a

; x; x0)[` –

" bilinear in a & –

:Q(a; x)]`
nX
k=1

–k

" linear in the –k

:Ck(x; x
0) > 0
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Second main course:
Mathematical programming
for quantifier elimination
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Mathematical programming

9x 2 Rn:
N̂

i=1

gi(x) > 0

[Minimizing f(x)]

feasibility problem : find a solution to the constraints

optimization problem : find a solution, minimizing f(x)
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Semidefinite programming, once again

9x 2 Rn: M(x) < 0

[Minimizing cx]

Where the linear matrix inequality is

M(x) = M0 +
nX
k=1

xkMk

with symetric matrices (Mk = Mk
> and the positive

semidefiniteness is
M(x) < 0 = 8X 2 RN : X>M(x)X – 0
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Semidefinite programming, once again
Feasibility is:

9x 2 Rn: 8X 2 RN : X>
0
@M0 +

nX
k=1

xkMk

1
AX – 0

of the form of the (linear) formulæ we are interested in
for programs with linear matricial semantics.
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Interior point method for semidefinite programming

– Nesterov & Nemirovskii 1988, polynomial in worst case
and good in practice (thousands of variables)

x� x

– Various path strategies e.g. “stay in the middle”
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Semidefinite programming solvers
Numerous solvers available under Mathlabő, a.o.:

– lmilab: P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali

– Sdplr: S. Burer, R. Monteiro, C. Choi

– Sdpt3: R. Tütüncü, K. Toh, M. Todd

– SeDuMi: J. Sturm

– bnb: J. Löfberg (integer semidefinite programming)

Common interfaces to these solvers, a.o.:

– Yalmip: J. Löfberg

Sometime need some help (feasibility radius, shift,. . . )
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Recent generalization to bilinear matrix
inequalities

– penbmi: M. Kočvara, M. Stingl

Feasibility is:

9x 2 Rn : 8X 2 RN :

X>
0
@M0 +

nX
j=1

xjMj +
nX
k=1

nX
‘=1

xkx‘M
0
k‘

1
AX – 0

of the form of the (bilinear) formulæ we are interested
in!
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Skipping the cheese . . .
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Not enough time for . . .

– Disjunctions in the loop test?
– Conditionals in the loop body?
– Nested loops?
– Concurrency?
– Fair parallelism?
– Semi-algebraic/polynomial programs?
– Data structures?
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Desert
Invariance and Termination

Examples
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Termination of a linear program
{y >= 1}  ̀ termination precondition de-

termined by iterated for-
ward/backward polyhedral
analysis

while (x >= 1) do
x := x - y

od

lmilab:
r(x,y) = +2.178955e+12.x +1.453116e+12.y -1.451513e+12
lmilab (with feasibility radius of 1.0e4):
r(x,y) = +4.074723e+03.x +2.786715e+03.y +1.549410e+03
sedumi:
r(x,y) = +2.271450e+03.x +1.810903e+03.y -3.623997e+03

bnb (integer semidefinite programming) 2: r(x,y) = +2.x+2.y-3
2 still in infancy!
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Termination of the arithmetic mean
{x=y+2k,x>=y}  ̀ termination precondition

determined by iterated
forward/backward poly-
hedral analysis

while (x <> y) do
k := k - 1;
x := x - 1;
y := y + 1

od
{assert (k = 0)}

lmilab:

r(x,y,k) = +1.382113e+03.x -1.382113e+03.y +4.978695e+03.k

+2.711732e+03
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Termination of the Euclidean division
1: {y>=1}  ̀ termination precondition determined

by iterated forward/backward polyhe-
dral analysis

bnb:

r(y,q,r) = -2.y +2.q +4.r

Floyd’s proposal r(x; y; q; r) = x ` q is
more intuitive but requires to discover
the nonlinear loop invariant x = r+ qy.

q := 0;
2: {q=0,y>=1}

r := x;
3: {x=r,q=0,y>=1}

while (y <= r) do
4: {y<=r,q>=0}

r := - y + r;
5: {r>=0,q>=0}

q := q + 1
6: {r>=0,q>=1}

od
7: {q>=0,y>=r+1}
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Termination of a quadratic program: factorial
{true}  ̀ termination precondition

determined by iterated for-
ward/backward polyhedral
analysis

n := 0;
f := 1;
while (f <= N) do

n := n + 1;
f := n * f

od

sedumi (with feasibility radius of 1.0e+3):

r(n,f,N) = -9.993462e-01.n +1.617225e-04.f +2.688476e+02.N
+8.745232e+02
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Loop body with tests

while (x < y) do
if (i >= 0) then

x := x+i+1
else

y := y+i
fi

od

lmilab:
r(i,x,y) = -2.252791e-09.i -4.355697e+07.x +4.355697e+07.y

+5.502903e+08
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Quadratic termination of linear loop
{n>=0}  ̀ termination precondition

determined by iterated for-
ward/backward polyhedral
analysis

i := n; j := n;
while (i <> 0) do

if (j > 0) then
j := j - 1

else
j := n; i := i - 1

fi
od
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sdplr (with feasibility radius of 1.0e+3):

r(n,i,j) = +7.024176e-04.n^2 +4.394909e-05.n.i ...
-2.809222e-03.n.j +1.533829e-02.n ...
+1.569773e-03.i^2 +7.077127e-05.i.j ...
+3.093629e+01.i -7.021870e-04.j^2 ...
+9.940151e-01.j +4.237694e+00

Successive values of
r(n; i; j) for n = 10 on
loop entry

0

5

10

0
2

4
6

8
10

0

50

100

150

200

250

300

350

j

Ranking function

i

r(
10

,i,
j)
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Termination of a concurrent program
[| 1: while [x+2 < y] do

2: [x := x + 1]
od

3:
||

1: while [x+2 < y] do
2: [y := y - 1]

od
3:

|]

interleaving

!̀

while (x+2 < y) do
if ?=0 then

x := x + 1
else if ?=0 then

y := y - 1
else

x := x + 1;
y := y - 1

fi fi
od

penbmi: r(x,y) = 2.537395e+00.x+-2.537395e+00.y+
-2.046610e-01
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Termination of a fair parallel program
[[ while [(x>0)|(y>0) do x := x - 1] od ||

while [(x>0)|(y>0) do y := y - 1] od ]]

interleaving
+ scheduler!̀

{m>=1}  termination precondition determined by iterated
forward/backward polyhedral analysist := ?;

assume (0 <= t & t <= 1);
s := ?;
assume ((1 <= s) & (s <= m));
while ((x > 0) | (y > 0)) do

if (t = 1) then
x := x - 1

else
y := y - 1

fi;
s := s - 1;

if (s = 0) then
if (t = 1) then

t := 0
else

t := 1
fi;
s := ?;
assume ((1 <= s) & (s <= m))

else
skip

fi
od;;

penbmi: r(x,y,m,s,t) = +1.000468e+00.x +1.000611e+00.y
+2.855769e-02.m -3.929197e-07.s +6.588027e-06.t +9.998392e+03
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Semidefinite programming relaxation for
polynomial programs

eps = 1.0e-9;
while (0 <= a) & (a <= 1 - eps)

& (eps <= x) & (x <= 1) do
x := a*x*(1-x)

od

Write the verification conditions in polynomial form, use
SOStool to relax in semidefinite programming form.

SOStool+SeDuMi:
r(x) = 1.222356e-13.x + 1.406392e+00
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When constraint resolution fails. . .
Infeasibility of the constraints does not mean “non ter-
mination” but simply failure:

– There can be a rank function of a different form
(e.g. quadratic while looking for a linear one),

– The solver may have failed (e.g. add a shift).
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Coffee:
Conclusion
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Numerical errors

– LMI solvers do numerical computations with rounding
errors, shifts, etc
– rank function is subject to numerical errors
– the hard point is to discover a candidate for the rank
function
– much less difficult, when it is known, to re-check for
satisfaction (e.g. by static analysis)
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Invariance for Euclidian division

assume (y > 0);
q := 0;
r := x;
while (y <= r) do

r := - y + r;
q := q + 1

od

yalmip bmi:
1.337645e-04*x+2.484973e-04*q*y+1.588933e-03*r >= 0
which is not false!
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Digestif:
Questions
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Seminal work
– LMI case, Lyapunov 1890,
“an invariant set of a dif-
ferential equation is sta-
ble in the sense that it at-
tracts all solutions if one
can find a function that is
bounded from below and
decreases along all solu-
tions outside the invariant
set”.
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THE END

I hope you had a good and relaxed
semantics lunch
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