« Automatic program verification

 by Lagrangian relaxation and semidefinite programming »Patrick Cousot
École normale supérieure 45 rue d'Ulm
75230 Paris cedex 05, France
Patrick.Cousot@ens.fr
wWW.di.ens.fr/~cousot
Semantics lunch - Cambridge, UK - Oct. 18th, 2004

Aperitif:
 Relational semantics of loops

Relational semantics of loops

while B do C od
$-x \in \mathbb{R} / \mathbb{Q} / \mathbb{Z}$: values of the loop variables before a loop iteration

- $x^{\prime} \in \mathbb{R} / \mathbb{Q} / \mathbb{Z}$: values of the loop variables after a loop iteration
- $\llbracket \mathrm{B} ; \llbracket \rrbracket\left(x, x^{\prime}\right)$: relational semantics of one loop iteration
$-\llbracket \mathrm{B} ; \mathrm{C} \rrbracket\left(x, x^{\prime}\right)=\bigwedge_{i=1}^{N} \sigma_{i}\left(x, x^{\prime}\right) \geqslant 0$ (where \geqslant is $>, \geq$ or $=$)
- not a restriction for numerical programs

Example of quadratic form program (factorial)

$$
\begin{aligned}
\mathrm{n} & :=0 ; \\
\mathrm{f} & :=1 ;
\end{aligned}
$$

while (f <= N) do

$$
\mathrm{n}:=\mathrm{n}+1
$$

$$
\mathrm{f}:=\mathrm{n} * \mathrm{f}
$$

od
$\left[n f N n^{\prime} f^{\prime} N^{\prime}\right]\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}n \\ f \\ N \\ n^{\prime} \\ f^{\prime} \\ N^{\prime}\end{array}\right]+2\left[n f N n^{\prime} f^{\prime} N^{\prime}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \\ 0\end{array}\right]+0=0$

Appetiser: Floyd/Hoare/Naur correctness proof method

Invariance proof

Given a loop precondition P, find an unkown loop invariant I such that:

- The invariant is initial:

$$
\forall x: P(x) \Rightarrow I(x)
$$

- The invariant is inductive:

$$
\forall x, x^{\prime}: I(x) \wedge \llbracket \mathrm{B} ; \rrbracket \rrbracket\left(x, x^{\prime}\right) \Rightarrow I\left(x^{\prime}\right)
$$

Invariance proof for numerical programs

Given a loop precondition $P(x) \geqslant 0$, find an unkown loop invariant $I(x) \geqslant 0$ such that:

- The invariant is initial:

$$
\forall x: P(x) \geqslant 0 \Rightarrow I(x) \geqslant 0
$$

- The invariant is inductive:

$$
\forall x, x^{\prime}:\left(I(x) \geqslant 0 \wedge \bigwedge_{i=1}^{N} \sigma_{i}\left(x, x^{\prime}\right) \geqslant 0\right) \Rightarrow I\left(x^{\prime}\right) \geqslant 0
$$

Termination proof

Given a loop invariant I, find an $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown rank function r such that:

- The rank is nonnegative:

$$
\forall x: I(x) \Rightarrow r(x) \geq 0
$$

- The rank is strictly decreasing:

$$
\forall x, x^{\prime}: I(x) \wedge \llbracket \mathrm{B} ; \mathrm{C} \rrbracket\left(x, x^{\prime}\right) \Rightarrow r\left(x^{\prime}\right) \leq r(x)-\eta
$$

$\eta=1$ for $\mathbb{Z}, \eta>0$ for \mathbb{R} / \mathbb{Q} to avoid Zeno $\frac{1}{2}, \frac{1}{4}, \frac{1}{8} \ldots$

Wine service:
 Iterated forward/backward static analysis for conditional termination

Conditional termination

- In general a loop does not terminate for all initial values of the variables
- In that case we can find no rank function!
- We must automatically determine a necessary loop precondition
- We use a iterated forward/backward static analysis ... with an auxiliary counter counting the number of remaining iterations down to zero

Arithmetic mean example, polyhedral abstraction without auxiliary counter)

$$
\left.\begin{array}{l}
\{\mathrm{x}>=\mathrm{y}\} \\
\text { while }(\mathrm{x}<>\mathrm{y}) \mathrm{do} \\
\{\mathrm{x}>=\mathrm{y}+2\} \\
\mathrm{x}:=\mathrm{x}-1 ; \\
\{\mathrm{x}>=\mathrm{y}+1\} \\
\mathrm{y}:=\mathrm{y}+1 \\
\{\mathrm{x}>=\mathrm{y}\}
\end{array}\right\} \begin{aligned}
& \text { od } \\
& \{\mathrm{x}=\mathrm{y}\}
\end{aligned}
$$

Arithmetic mean example, polyhedral abstraction with auxiliary counter

$$
\begin{gathered}
\{\mathrm{x}=\mathrm{y}+2 \mathrm{k}, \mathrm{x}>=\mathrm{y}\} \\
\text { while }(\mathrm{x}<>\mathrm{y}) \mathrm{do} \\
\{\mathrm{x}=\mathrm{y}+2 \mathrm{k}, \mathrm{x}>=\mathrm{y}+2\} \\
\mathrm{k}:=\mathrm{k}-1 ; \\
\{\mathrm{x}=\mathrm{y}+2 \mathrm{k}+2, \mathrm{x}>=\mathrm{y}+2\} \\
\mathrm{x}:=\mathrm{x}-1 ; \\
\{\mathrm{x}=\mathrm{y}+2 \mathrm{x}+1, \mathrm{x}>=\mathrm{y}+1\} \\
\mathrm{y}:=\mathrm{y}+1 \\
\{\mathrm{x}=\mathrm{y}+2 \mathrm{k}, \mathrm{x}>=\mathrm{y}\} \\
\text { od } \\
\{\mathrm{x}=\mathrm{y}, \mathrm{k}=0\} \\
\text { assume }(\mathrm{k}=0) \\
\{\mathrm{x}=\mathrm{y}, \mathrm{k}=0\}
\end{gathered}
$$

Entrée: Abstraction to parametric constraints

Parametric constraints

- Fix the form of the unkown $(I(x) \geqslant 0 / r(x) \geqslant 0)$ using parameters a in the form $Q(a, x) \geqslant 0$
- This is an abstraction
- Examples:

$$
\begin{aligned}
& -r(x, y)=a \cdot x+b \cdot y+c \\
& -I\left(x, x^{\prime}\right)=a \cdot x^{2}+b \cdot x \cdot x^{\prime}+c \cdot x^{\prime 2}+d \cdot x+e \cdot x^{\prime}+f
\end{aligned}
$$

Solving the constraints

- The invariance [termination] problems have the form:

$$
\begin{aligned}
& \exists a: \forall x, x^{\prime}: \\
& \left(\begin{array}{l}
{[Q(a, x) \geqslant 0 \wedge] \bigwedge_{k=1}^{n} C_{k}\left(x, x^{\prime}\right) \geqslant 0}
\end{array}\right) \\
& \Rightarrow Q^{\prime}\left(a, x, x^{\prime}\right) \geqslant 0
\end{aligned}
$$

- Find an algorithm to effectively compute a !

Problems

In order to compute a :

- How to handle \wedge ?
- How to get rid of the implication \Rightarrow ?
\rightarrow Lagrangian relaxation
- How to get rid of the universal quantification \forall ?
- How to handle \wedge ?
\rightarrow quantifier elimination (does not scale up)
\rightarrow mathematical programming

Algorithmically interesting cases

- linear inequalities
\rightarrow linear programming ${ }^{1}$
- linear matrix inequalities (LMI)/quadratic forms
- bilinear matrix inequalities (BMI)
\rightarrow semidefinite programming
- semialgebraic sets
\rightarrow polynomial quantifier elimination, or
\rightarrow relaxation with semidefinite programming

[^0]
First main course: Lagrangian relaxation for implication elimination

Example of linear Lagrangian relaxation

$$
\begin{aligned}
& A \Rightarrow B \\
\Leftarrow & \text { (soundness) } \\
\Rightarrow & \text { (completeness) } \\
& \text { border of } A \text { parallel to border of } B
\end{aligned}
$$

Lagrangian relaxation, formally

Let \mathbb{V} be a finite dimensional linear vector space, $N>0$ and $\forall k \in[1, N]: \sigma_{k} \in \mathbb{V} \mapsto \mathbb{R}$.

$$
\forall x \in \mathbb{V}:\left(\bigwedge_{k=1}^{N} \sigma_{k}(x) \geq 0\right) \Rightarrow\left(\sigma_{0}(x) \geq 0\right)
$$

\Leftarrow soundness (Lagrange)
\Rightarrow completeness (lossless)
$\nRightarrow \quad$ ncompleteness (lossy)

$$
\exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}: \forall x \in \mathbb{V}: \sigma_{0}(x)-\sum_{k=1}^{N} \lambda_{k} \sigma_{k}(x) \geq 0
$$

relaxation $=$ approximation, $\lambda_{i}=$ Lagrange coefficients

Lagrangian relaxation, completeness cases

- Linear case (affine Farkas' lemma)
- Linear case with at most 2 quadratic constraints (Yakubovich's S-procedure)

Lagrangian relaxation of the constraints

$$
\begin{aligned}
& \exists a: \forall x, x^{\prime}:[Q(a, x) \geqslant 0 \wedge] \bigwedge_{k=1}^{n} C_{k}\left(x, x^{\prime}\right) \geqslant 0 \\
& \Rightarrow Q^{\prime}\left(a, x, x^{\prime}\right) \geqslant 0
\end{aligned}
$$

\Leftarrow (is relaxed into)

$$
\exists a:[\exists \lambda \geqslant 0]: \exists \lambda_{k} \geqslant 0: \forall x, x^{\prime}:
$$

$$
Q^{\prime}\left(a, x, x^{\prime}\right)[-\lambda \cdot Q(a, x)]-\sum_{k=1}^{n} \lambda_{k} \cdot C_{k}\left(x, x^{\prime}\right) \geqslant 0
$$

\uparrow linear in $a \quad \uparrow$ linear in the λ_{k}
\uparrow bilinear in $a \& \lambda$

Second main course: Mathematical programming for quantifier elimination

Mathematical programming

$$
\begin{array}{ll}
\exists x \in \mathbb{R}^{n}: & \bigwedge_{i=1}^{N} g_{i}(x) \geqslant 0 \\
\text { [Minimizing } & f(x)]
\end{array}
$$

feasibility problem : find a solution to the constraints optimization problem : find a solution, minimizing $f(x)$

Semidefinite programming

$$
\exists x \in \mathbb{R}^{n}: \quad M(x) \succcurlyeq 0
$$

[Minimizing $c x$]
Where the linear matrix inequality is

$$
M(x)=M_{0}+\sum_{k=1}^{n} x_{k} M_{k}
$$

with symetric matrices ($M_{k}=M_{k}^{\top}$ and the positive semidefiniteness is

$$
M(x) \succcurlyeq 0=\forall X \in \mathbb{R}^{N}: X^{\top} M(x) X \geq 0
$$

Semidefinite programming, once again

Feasibility is:

$$
\exists x \in \mathbb{R}^{n}: \forall X \in \mathbb{R}^{N}: X^{\top}\left(M_{0}+\sum_{k=1}^{n} x_{k} M_{k}\right) X \geq 0
$$

of the form of the (linear) formulæ we are interested in for programs with linear matricial semantics.

Interior point method for semidefinite programming

- Nesterov \& Nemirovskii 1988, polynomial in worst case and good in practice (thousands of variables)

- Various path strategies e.g. "stay in the middle"

Semidefinite programming solvers

Numerous solvers available under Mathlab ${ }^{\circ}$, a.o.:

- lmilab: P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali
- Sdplr: S. Burer, R. Monteiro, C. Choi
- Sdpt3: R. Tütüncü, K. Toh, M. Todd
- SeDuMi: J. Sturm
- bnb: J. Löfberg (integer semidefinite programming)

Common interfaces to these solvers, a.o.:

- Yalmip: J. Löfberg

Sometime need some help (feasibility radius, shift,...)

Recent generalization to bilinear matrix inequalities

- penbmi: M. Kočvara, M. Stingl

Feasibility is:

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n}: \forall X \in \mathbb{R}^{N}: \\
& \quad X^{\top}\left(M_{0}+\sum_{j=1}^{n} x_{j} M_{j}+\sum_{k=1}^{n} \sum_{\ell=1}^{n} x_{k} x_{\ell} M_{k \ell}^{\prime}\right) X \geq 0
\end{aligned}
$$

of the form of the (bilinear) formulæ we are interested in!

Skipping the cheese ...

Not enough time for . . .

- Disjunctions in the loop test?
- Conditionals in the loop body?
- Nested loops?
- Concurrency?
- Fair parallelism?
- Semi-algebraic/polynomial programs?
- Data structures?

Desert Invariance and Termination Examples

Termination of a linear program

$$
\begin{aligned}
& \{y>=1\} \\
& \text { while }(x>=1) \text { do } \\
& \quad x:=x-y \\
& \text { od }
\end{aligned}
$$

\longleftarrow termination precondition determined by iterated forward/backward polyhedral analysis
lmilab:
$r(x, y)=+2.178955 e+12 . x+1.453116 e+12 . y-1.451513 e+12$
lmilab (with feasibility radius of 1.0 e 4):
$r(x, y)=+4.074723 e+03 . x+2.786715 e+03 . y+1.549410 e+03$ sedumi:
$r(x, y)=+2.271450 e+03 . x+1.810903 e+03 . y-3.623997 e+03$
bnb (integer semidefinite programming) ${ }^{2}: r(x, y)=+2 \cdot x+2 \cdot y-3$

[^1]
Termination of the arithmetic mean

$$
\begin{array}{ll}
\{\mathrm{x}=\mathrm{y}+2 \mathrm{k}, \mathrm{x}\rangle=\mathrm{y}\} & \longleftarrow \\
\text { while }(\mathrm{x}\langle>\mathrm{y}) \text { do } \mathrm{temination} \mathrm{precondition} \\
\mathrm{k}:=\mathrm{k}-1 ; & \text { determined by iterated } \\
\mathrm{x}:=\mathrm{x}-1 ; & \text { forward/backward poly- } \\
\mathrm{y}:=\mathrm{y}+1 & \text { hedral analysis } \\
\text { od } & \\
\text { \{assert }(\mathrm{k}=0)\} &
\end{array}
$$

```
lmilab:
```

$r(x, y, k)=+1.382113 e+03 . x-1.382113 e+03 . y+4.978695 e+03 . k$
$+2.711732 \mathrm{e}+03$

Termination of the Euclidean division

$$
\begin{aligned}
& \text { 1: }\{y>=1\} \quad \longleftarrow \text { termination precondition determined } \\
& \text { q : = 0; } \\
& \text { 2: }\{q=0, y>=1\} \\
& \text { r := x; } \\
& \text { 3: } \quad\{x=r, q=0, y>=1\} \\
& \text { while (y <= r) do } \\
& \text { 4: }\{y<=r, q\rangle=0\} \\
& \text { r := - y + r; } \\
& \text { 5: } \quad\{r>=0, q>=0\} \\
& q:=q+1 \\
& \text { 6: } \quad\{r>=0, q>=1\} \\
& \text { od } \\
& \text { 7: }\{q>=0, y>=r+1\} \\
& \text { by iterated forward/backward polyhe- } \\
& \text { dral analysis } \\
& \text { bnb: } \\
& r(y, q, r)=-2 . y+2 . q+4 . r \\
& \text { Floyd's proposal } r(x, y, q, r)=x-q \text { is } \\
& \text { more intuitive but requires to discover } \\
& \text { the nonlinear loop invariant } x=r+q y \text {. }
\end{aligned}
$$

Termination of a quadratic program: factorial

\{true\}	\longleftarrow termination precondition
n : $=0$;	determined by iterated for-
$\mathrm{f}:=1$;	ward/backward polyhedral
while (f <= N) do	analysis
n : $=\mathrm{n}+1$;	
f : $=\mathrm{n} * \mathrm{f}$	

sedumi (with feasibility radius of $1.0 \mathrm{e}+3$):
$r(n, f, N)=-9.993462 e-01 . n+1.617225 e-04 . f+2.688476 e+02 . N$
+8.745232e+02

Loop body with tests

```
while (x < y) do
    if (i >= 0) then
        x := x+i+1
```

 else
 \(y:=y+i\)
 fi
 od
lmilab:
$r(i, x, y)=-2.252791 e-09 . i-4.355697 e+07 . x+4.355697 e+07 . y$ +5.502903e+08

Quadratic termination of linear loop

```
{n>=0}
i := n; j := n;
while (i <> 0) do
    if (j > 0) then
        j := j - 1
    else
        j := n; i := i - 1
    fi
od
```

\longleftarrow termination precondition determined by iterated forward/backward polyhedral analysis
sdplr (with feasibility radius of $1.0 \mathrm{e}+3$):

$$
\begin{aligned}
r(n, i, j)= & +7.024176 e-04 . n^{\wedge} 2+4.394909 e-05 . n . i \ldots \\
& -2.809222 e-03 . n . j+1.533829 e-02 . n \ldots \\
& +1.569773 e-03 . i^{\wedge} 2+7.077127 e-05 . i . j \\
& +3.093629 e+01 . i-7.021870 e-04 . j \wedge 2 \ldots \\
& +9.940151 e-01 . j+4.237694 e+00 \\
& \text { Ranking function }
\end{aligned}
$$

Successive values of $r(n, i, j)$ for $n=10$ on loop entry

Termination of a concurrent program

penbmi: $r(x, y)=2.537395 e+00 . x+-2.537395 e+00 . y+$

$$
-2.046610 e-01
$$

Termination of a fair parallel program

$$
\begin{aligned}
& \text { [[while }[(x>0) \mid(y>0) \text { do } x:=x-1] \text { od }|\mid \\
& \text { while }[(x>0) \mid(y>0) \text { do } y:=y-1] \text { od }]] \\
& \text { interleaving } \\
& + \text { scheduler } \\
& \{\mathrm{m}>=1\} \leftarrow \text { termination precondition determined by iterated }
\end{aligned}
$$

penbmi: $r(x, y, m, s, t)=+1.000468 \mathrm{e}+00 . \mathrm{x}+1.000611 \mathrm{e}+00 . \mathrm{y}$
$+2.855769 \mathrm{e}-02 . \mathrm{m}-3.929197 \mathrm{e}-07 . \mathrm{s}+6.588027 \mathrm{e}-06 . \mathrm{t}+9.998392 \mathrm{e}+03$

Semidefinite programming relaxation for polynomial programs

Logistic map

```
eps = 1.0e-9;
while (0 <= a) & (a <= 1 - eps)
        & (eps <= x) & (x <= 1) do
    x := a*x*(1-x)
```

od

Write the verification conditions in polynomial form, use SOStool to relax in semidefinite programming form.
SOStool+SeDuMi:

$$
r(x)=1.222356 \mathrm{e}-13 . \mathrm{x}+1.406392 \mathrm{e}+00
$$

When constraint resolution fails. . .

Infeasibility of the constraints does not mean "non termination" but simply failure:

- There can be a rank function of a different form (e.g. quadratic while looking for a linear one),
- The solver may have failed (e.g. add a shift).

Coffee:
 Conclusion

Numerical errors

- LMI solvers do numerical computations with rounding errors, shifts, etc
- rank function is subject to numerical errors
- the hard point is to discover a candidate for the rank function
- much less difficult, when it is known, to re-check for satisfaction (e.g. by static analysis)

Invariance for Euclidian division

$$
\begin{aligned}
& \text { assume }(y>0) ; \\
& \mathrm{q}:=0 ; \\
& \mathrm{r}:=\mathrm{x} ; \\
& \text { while }(\mathrm{y}<=\mathrm{r}) \mathrm{do} \\
& r \\
& r:=-\mathrm{y}+\mathrm{r} ; \\
& \mathrm{q} \\
& \text { od }:=\mathrm{q}+1
\end{aligned}
$$

yalmip bmi:
$1.337645 e-04 * x+2.484973 e-04 * q * y+1.588933 e-03 * r>=0$ which is not false!

Digestif:
 Questions

Seminal work

- LMI case, Lyapunov 1890, "an invariant set of a differential equation is stable in the sense that it attracts all solutions if one can find a function that is bounded from below and
 decreases along all solutions outside the invariant set".

THE END

I hope you had a good and relaxed semantics lunch

[^0]: ${ }^{1}$ Already explored for invariants by Sankaranarayanan, Spima, Manna (CAV'03, SAS'04, heuristic solver) and for termination by Podelski \& Rybalchenko (VMCAI'03, Lagrange coefficients eliminated by hand to reduce to linear programming so no disjunctions, no tests, etc).

[^1]: 2 still in infancy!

