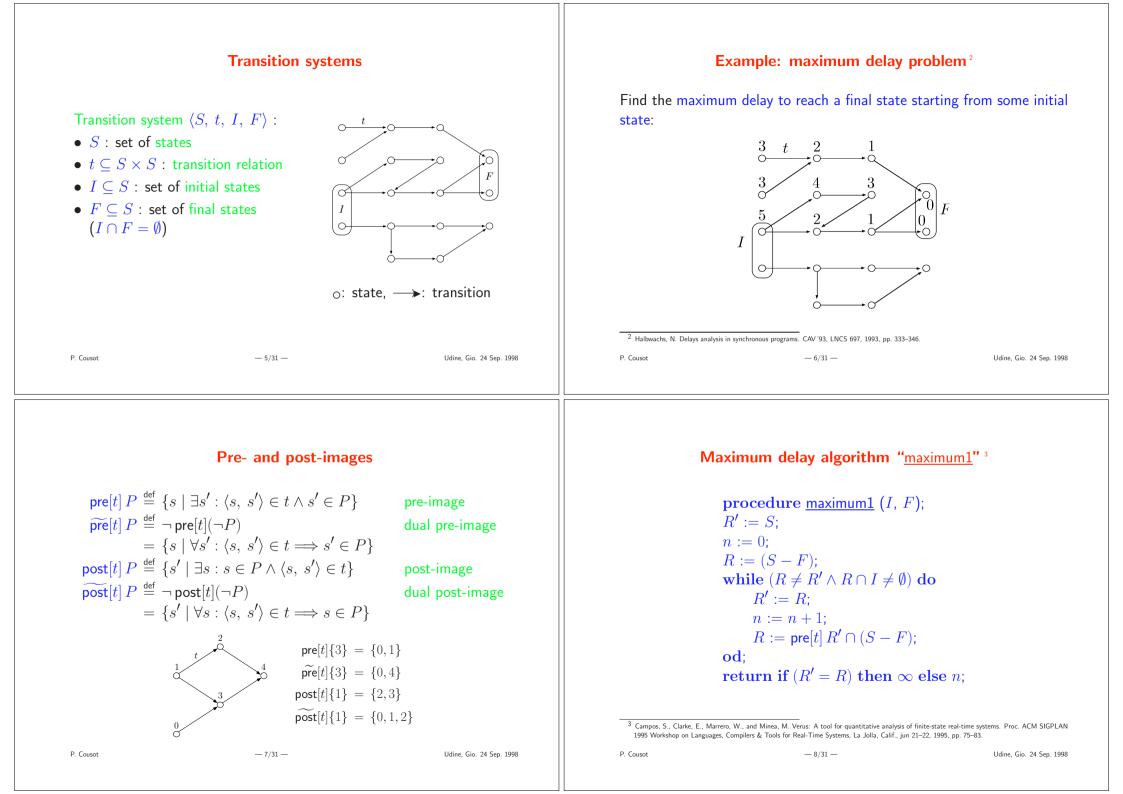
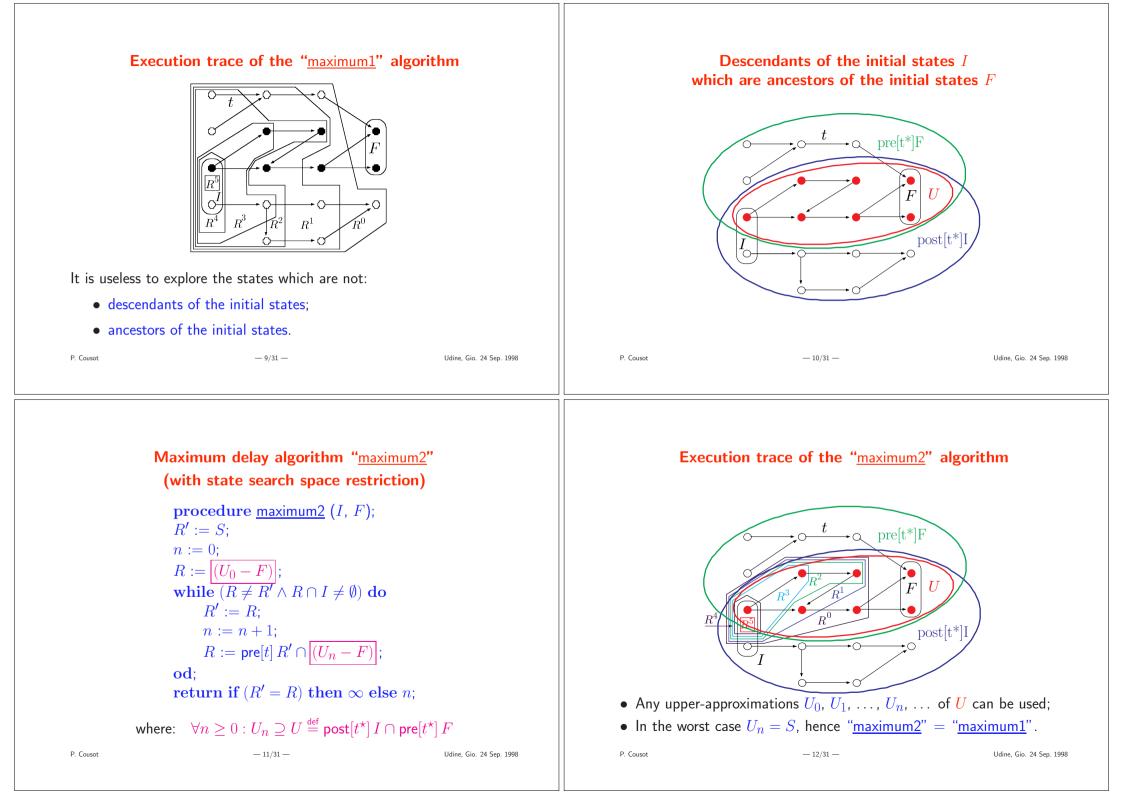
Patrick COUSOT • Model-checking: DMI, École normale supérieure - finite state space; 45 rue d'Ulm - sound and complete property verification.	Combining model-checking and abstract interpretation <u>Why</u> ?		
75230 Paris cedex 05 France• Abstract Interpretation: – infinite state space;	 finite state space; sound and complete property verification. Abstract Interpretation: 		
Udine, Italy, Gio. 24 Sep. 1998, 15h00–16h00 P. Cousot -1/31 - Udine, Gio. 24 Sep. 1998 P. Cousot -2/31 -	Udine, Gio. 24 Sep. 1998		
Combining model-checking and abstract interpretation A new combination ¹ <u>How</u> ? 3. Parallel combination of model-checking and a tion:	3. Parallel combination of model-checking and abstract interpreta-		
 1. Model abstraction: The finite model is an abstraction of the system; ⇒ EXACT PROPERTIES OF AN APPROXIMATE MODEL. 2. Abstract symbolic methods: Use symbolic representations of properties (BDDs, convex polyhedra,); One can make approximations (e.g. widenings); ⇒ APPROXIMATE PROPERTIES OF AN EXACT MODEL. Approximate PROPERTIES OF AN EXACT MODEL. - Model-checking: * Exact symbolic representation of properties of exact models and exact representation of exact models. - Model-checking: * Exact symbolic representation of properties of exact models. - Model-checking: * Exact symbolic representation of properties of exact models. - Model-checking: * Exact symbolic representation of properties of exact models. - Model-checking: * Exact symbolic representation of properties of exact models. - Model-checking: * Exact properties of exact model. - Model-checking: * Exact symbolic representation of properties of exact model. - Model-checking: * Exact properties of exact model. - Model-checking: * Exact properties of exact model. - Model-checking: * Exact properties of exact model. - Model-checking: * Exact properties of exact model. 	 Model-checking: Exact symbolic representation of properties; The model is an exact representation of the system; ⇒ EXACT PROPERTIES OF EXACT MODEL Abstract interpretation: Preliminary/parallel analysis of the model by abstract interpretation; 		





Tarski's fixpoint theorem

A monotonic map $\varphi \in L \mapsto L$ on a complete lattice:

 $\langle L, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$

has a least fixpoint:

If $\varphi = \Box \{ x \in L \mid \varphi(x) \sqsubseteq x \}$

(such that $\varphi(\operatorname{lfp} \varphi) = \operatorname{lfp} \varphi$ and $\varphi(x) = x$ implies $\operatorname{lfp} \varphi \sqsubseteq x$) and, dually, a greatest fixpoint:

$$\mathsf{gfp}\,\varphi \,=\, \sqcup \{x \in L \mid x \sqsubseteq \varphi(x)\}$$

Fixpoint characterization of the descendants of the initial states I which are ancestors of the initial states F

$$pre[t^{\star}] F = lfp^{\subseteq} \lambda X \cdot F \cup pre[t] X = lfp_{F}^{\subseteq} \lambda X \cdot X \cup pre[t] X,$$

$$\widetilde{pre}[t^{\star}] F = gfp^{\subseteq} \lambda X \cdot F \cap \widetilde{pre}[t] X = gfp_{F}^{\subseteq} \lambda X \cdot X \cap \widetilde{pre}[t] X,$$

$$post[t^{\star}] I = lfp^{\subseteq} \lambda X \cdot I \cup post[t] X = lfp_{I}^{\subseteq} \lambda X \cdot X \cup post[t] X,$$

$$\widetilde{post}[t^{\star}] I = gfp^{\subseteq} \lambda X \cdot I \cap \widetilde{post}[t] X = gfp_{I}^{\subseteq} \lambda X \cdot X \cap \widetilde{post}[t] X$$

Kleenian fixpoint theorem⁴

- 13/31 -

The least fixpoint of an <u>upper-continuous</u> map $\varphi \in L \mapsto L$ on a cpo $\langle L, \sqsubseteq, \bot, \sqcup \rangle$ is:

$$\operatorname{lfp} \varphi = \bigsqcup_{n \ge 0} \varphi^n(\bot)$$

where the iterates $\varphi^n(x)$ of φ from x are:

•
$$\varphi^0(x) \stackrel{\text{def}}{=} x;$$

• $\varphi^{n+1}(x) \stackrel{\text{def}}{=} \varphi(\varphi^n(x))$ for all $x \in L$.

⁴ Can be generalized to monotonic non-continuous maps.

P. Cousot

P. Cousot

Udine, Gio. 24 Sep. 1998

Udine, Gio. 24 Sep. 1998

P. Cousot

Udine, Gio. 24 Sep. 1998

Udine, Gio. 24 Sep. 1998

Iterative characterization of the descendants of the initial states *I*

— 14/31 —

$$\operatorname{post}[t^*] I = \operatorname{lfp}^{\subseteq} \mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}^n(\emptyset) \quad \text{where} \quad \mathcal{F}(X) = I \cup \operatorname{post}[t] X$$

Analysis of the model by abstract interpretation

• We can compute:

$U_0 \supseteq U_1 \supseteq \ldots \supseteq U_n \supseteq U \stackrel{\text{def}}{=} \mathsf{post}[t^\star] I \cap \mathsf{pre}[t^\star] F$

by abstract interpretation;

- The abstract interpretation can be done in parallel with the modelchecking (at almost no supplementary cost);
- The abstract interpretation results are used on the fly for U_n as they become available to restrict the state search space;
- Several restriction operators have been proposed for symbolic model checking (with BDDs (cofactor, constrain, restrict) & convex polyhedra ⁵).

P. Cousot	
-----------	--

```
- 17/31 -
```

- Upper approximation D of $post[t^*]I = lfp^{\subseteq} \lambda X \cdot I \cup post[t]X$ by abstract interpretation⁶
- 1. Consider an abstract domain $\langle L, \sqsubseteq \rangle$ approximating sets of states $\langle \wp(S), \subseteq \rangle$;
- 2. define a correspondence:

$$\langle \wp(S), \subseteq \rangle \xleftarrow{\gamma}{\alpha} \langle L, \sqsubseteq \rangle$$

which is a Galois connection:

$$\forall P \in \wp(S) : \forall Q \in L : \alpha(P) \sqsubseteq Q \Longleftrightarrow P \subseteq \gamma(Q) \;.$$

The abstract value $\alpha(P)$ is the approximation of $P \subseteq S$: $P \subseteq \gamma(\alpha(P))$.

```
3. Define an abstract post-image transformer \mathcal{F} \in L \mapsto L:
```

 $\forall Q \in L: \alpha \mathrel{\circ} (\lambda X {\boldsymbol{\cdot}} I \cup \mathsf{post}[t] \, X) \mathrel{\circ} \gamma(Q) \sqsubseteq \mathcal{F}(Q)$

- 4. Define a widening operator $\nabla \in L \times L \mapsto L$:
 - it is an upper approximation:
 - $\forall x, y \in L : x \sqsubseteq x \bigtriangledown y \text{ and } \forall x, y \in L : y \sqsubseteq x \bigtriangledown y.$
 - it enforces finite convergence of \mathcal{F} -upward iterates:
 - for all increasing chains $x^0 \sqsubseteq x^1 \sqsubseteq \ldots \sqsubseteq x^i \sqsubseteq \ldots$ the increasing chain defined by $y^0 = x^0, \ldots, y^{i+1} = y^i \bigtriangledown x^{i+1}, \ldots$ is not strictly increasing.

- 5. The upward forward iteration sequence with widening:
 - $\begin{array}{ll} \ \hat{\mathcal{F}}^{0} \stackrel{\text{def}}{=} \alpha(\emptyset), \\ \ \hat{\mathcal{F}}^{i+1} \stackrel{\text{def}}{=} \hat{\mathcal{F}}^{i} & \text{if } \mathcal{F}(\hat{\mathcal{F}}^{i}) \sqsubseteq \hat{\mathcal{F}}^{i} \\ \ \hat{\mathcal{F}}^{i+1} \stackrel{\text{def}}{=} \hat{\mathcal{F}}^{i} \bigtriangledown \mathcal{F}(\hat{\mathcal{F}}^{i}) & \text{otherwise} \end{array}$

is ultimately stationary; Its limit $\hat{\mathcal{F}}$ is a sound upper approximation of $\text{post}[t^*] I$ in that:

$$\mathsf{post}[t^{\star}] I \subseteq \gamma(\mathsf{lfp}^{\sqsubseteq} \mathcal{F}) \subseteq \gamma(\hat{\mathcal{F}}) \;.$$

Udine, Gio. 24 Sep. 1998

P. Cousot

Udine, Gio. 24 Sep. 1998

⁵ Halbwachs, N. and Raymond, P. On the use of approximations in symbolic model checking. Tech. rep. SPECTRE L21 (jan 1996), VERIMAG laboratory, Grenoble, France.

⁶ Cousot, P. and Cousot, R. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. 4th POPL, Los Angeles, 1977, pp. 238–252.

6. Define a *narrowing operator* $\triangle \in L \times L \mapsto L$ such that: 7. the downward forward iteration sequence with narrowing: $-\check{\mathcal{F}}^{0} \stackrel{\text{def}}{\equiv} \hat{\mathcal{F}}$ - it is an upper approximation $\check{\boldsymbol{\mathcal{T}}}^{i+1} \stackrel{\text{def}}{=} \check{\boldsymbol{\mathcal{T}}}^{i}^{i}$ $\forall x, y \in L : x \sqsubset y \Longrightarrow x \sqsubset x \bigtriangleup y \sqsubseteq y.$ if $\mathcal{F}(\check{\mathcal{F}}^i) = \check{\mathcal{F}}^i$ - $\check{\mathcal{F}}^{i+1} \stackrel{\text{def}}{=} \check{\mathcal{F}}^i \wedge \mathscr{F}(\check{\mathcal{F}}^i)$ - it enforces finite convergence of \mathcal{F} -downward iterates: otherwise For all decreasing chains $x^0 \sqsupseteq x^1 \sqsupseteq \ldots$ the decreasing is ultimately stationary; chain defined by $y^0 = x^0, \ldots, y^{i+1} = y^i \bigtriangleup x^{i+1}, \ldots$ is its limit $\check{\mathcal{F}}$ is a better sound upper approximation $\text{post}[t^{\star}]I$ in that: not strictly decreasing. $\mathsf{post}[t^*] I \subset \gamma(\mathsf{lfp}^{\sqsubseteq} \mathcal{F}) \subset \gamma(\check{\mathcal{F}}) \subset \gamma(\hat{\mathcal{F}})$. P. Cousot - 21/31 -Udine, Gio. 24 Sep. 1998 P. Cousot - 22/31 -Udine, Gio. 24 Sep. 1998

Abstract interpretation design

- The design of:
 - the abstract algebra $(L, \Box, \bot, \top, \Box, \Box, \nabla, \Delta, f_1, \ldots, f_n)$
 - the transformer \mathcal{F} (usually composed out of the primitives f_1 , \ldots, f_n

are problem dependent;

- Natural choices in the model-checking context are:
 - BDDs (discrete systems),
 - Convex polyhedra (hybrid systems);

for which widening operators have been defined 7, 8.

Upper approximation A of pre $[t^*]F = |fp^{\subseteq} \lambda X \cdot F \cup pre[t]X$ by abstract interpretation⁹

Use the same abstract algebra $\langle L, \sqsubseteq, \bot, \top, \sqcup, \sqcap, \bigtriangledown, \triangle, f_1, \ldots, f_n \rangle$:

8. Define an abstract pre-image transformer $\mathcal{B} \in L \vdash m \to L$:

 $\forall Q \in L : \alpha \circ (\lambda X \cdot F \cup \mathsf{pre}[t] X) \circ \gamma(Q) \sqsubset \mathcal{B}(Q)$

- 9. First use an upward backward iteration sequence with widening finitely converging to $\hat{\mathcal{B}}$;
- 10. Improve by a *downward iteration sequence with narrowing* finitely converging to \mathcal{B} such that:

 $\operatorname{pre}[t^{\star}] F = \operatorname{lfp}^{\subseteq} \lambda X \cdot F \cup \operatorname{pre}[t] X \subseteq \gamma(\operatorname{lfp}^{\sqsubseteq} \mathcal{B}) \subseteq \gamma(\check{\mathcal{B}}) \subseteq \gamma(\check{\mathcal{B}})$

P. Cousot

⁷ Mauborgne, L. Abstract interpretation using typed decision graphs. Sci. Comput. Prog., 31(1):91-112, 1998.

⁸ Cousot. P. and Halbwachs, N. Automatic discovery of linear restraints among variables of a program. In 5th POPL, Tucson, 1978, pp. 84–97.

⁹ Cousot, P. and Cousot, R. Systematic design of program analysis frameworks. In 6th POPL, San Antonio, 1979, pp. 269–282. - 24/31 -

Sequence of upper approximations $U_0, U_1, \ldots, U_n, \ldots$ of $U = post[t^*] I \cap pre[t^*] F$ by abstract interpretation ^{10, 11}

- $U_0 = S$, all states;
- U₁ is the γ-concretization of the limit of the upward forward iteration sequence with widening for *F*;
- U₂ is the γ-concretization of the limit of the corresponding downward forward iteration sequence with narrowing for *F* starting from U₀;
- • •

¹¹ Cousot, P. and Cousot, R. Abstract interpretation and application to logic programs. J. Logic Prog. 13, 2–3, 103–179. (The editor of JLP has mistakenly published the unreadable galley proof. For a correct version of this paper, see http://www.ens.fr/~cousot.)

P. Cousot	— 25/31 —	Udine, Gio. 24 Sep. 1998	P. Cousot	— 26/31 —	Udine, Gio. 24 Sep. 1998

Correctness

- The sequence U_0 , U_1 , U_2 , ..., U^{4n+3} , U^{4n+4} , U^{4n+5} , U^{4n+6} , ... is a descending chain;
- \Rightarrow The restriction is more and more precise as the model-checking goes on;
- All elements U_k is the sequence are sound:

 $\mathsf{post}[t^\star]\,I\cap\mathsf{pre}[t^\star]\,F\,\subseteq\,U_k$

• Stop the abstract interpretation computation with a narrowing or when the parallel model-checking terminates;

- • •
- U⁴ⁿ⁺³ is the γ-concretization of the limit of the upward backward iteration sequence with widening for λX•(U⁴ⁿ⁺² ⊓ B(X));
- U^{4n+4} is the γ -concretization of the limit of the corresponding downward backward iteration sequence with narrowing for $\lambda X \cdot (U^{4n+2} \sqcap \mathcal{B}(X))$ starting from U^{4n+3} ;
- U^{4n+5} is the γ -concretization of the limit of the upward forward iteration sequence with widening for $\lambda X \cdot (U^{4n+4} \sqcap \mathcal{F}(X))$;
- U^{4n+6} is the γ -concretization of the limit of the corresponding downward forward iteration sequence with narrowing for $\lambda X \cdot (U^{4n+4} \sqcap \mathcal{F}(X))$ starting from U^{4n+5} ;
- • •

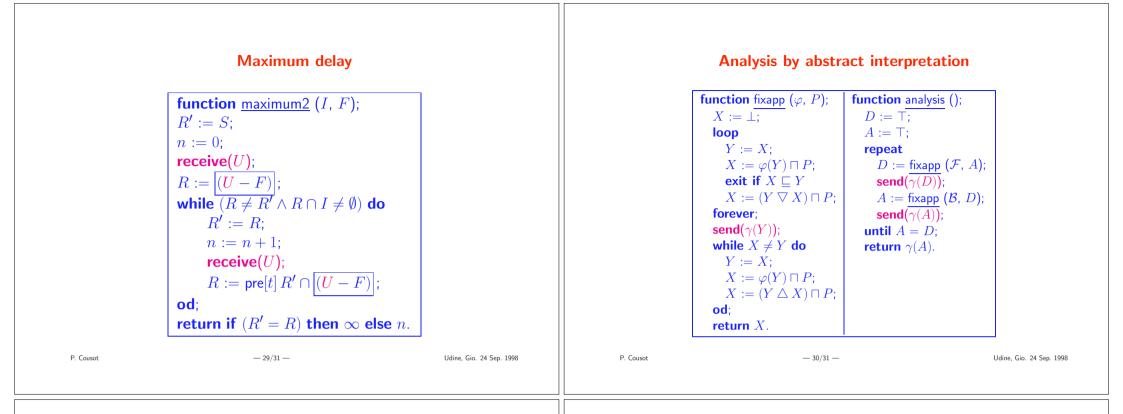
Parallel programming

analysis () $\parallel \mathbf{return} \ \underline{\mathsf{maximum2}} \ (I, F) \$

Communication:

- "send(V);" and "receive(U);" : asynchronous one-place buffered communication where the buffer is initialized to the supremum $T = \alpha(S)$
- "send(V);" replaces the current value of the buffer with V
- "receive(U);" assigns to U the current value of the buffer which is left unchanged.

¹⁰ Cousot, P. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique de programmes. Ph. D. thesis, Université scientifique et médicale de Grenoble, 1978.



Problematic termination

- The abstract interpretation always terminate;
- The abstract interpretation is approximate so the state-space restriction may not be finite;
- ⇒ The parallel combination of abstract interpretation and model-checking is incomplete since it may not terminate;
- In case of nontermination the information gathered by abstract interpretation is reusable for verification by:
 - abstract symbolic methods,
 - model abstraction;

which are also incomplete but guarantee termination.

Conclusion

- We have proposed a method for the parallel combination of modelanalysis by abstract interpretation and verification by model-checking where the verification:
 - makes no approximation on states and transitions,
 - explores an (hopefully finite) subgraph;
- Semi-algorithm since there is no guarantee that the explored subgraph will be finite:
 - classical model-checking would have failed anyway,
 - case by case experimentation is needed;
- The method should be used <u>before</u> resorting to model-checking of a more abstract model (the information gathered about the exact model being reusable).

Udine, Gio. 24 Sep. 1998

P. Cousot