

- The known fixpoint characterizations look similar³;
- So there should be a simple way of transferring/lifting fixpoint definitions through abstractions α (as we do in abstract interpretation [CC77]);
- I failed for some time and will explain some of the crucial steps to have this idea work properly.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In 4th POPL, pages 238–252, Los Angeles, Calif., 1977. ACM Press.

- 13/35-

³ although not completely identical.

```
P. Cousot
```

WG 2.3, Obernai, September 26, 1997

DIFFICULTY 1: ORDERINGS

- Because "natural" semantics describe both finite and infinite behaviors simultaneously, we cannot use lfp for \subseteq . But we could use gfp^{\subseteq};
- Unfortunately the abstraction of the gfp[□] fixpoint semantics for natural traces does not lead to Scott's denotational semantics;
- So we resort to two orderings *:
 - 1. \subseteq (approximation, refinement, logical implication, ...) for Galois connections α ;
 - 2. \sqsubseteq (computational ordering) for fixpoints.

- 14/35-

$\overline{^4}$. They are generally different but may happen to coincide by further abstractions.

P. Cousot

WG 2.3, Obernai, September 26, 1997

NATURAL TRACE FIXPOINT SEMANTICS

Let X and Y be sets of complete traces:

• $X \subseteq Y$, refinement • $X \sqsubset Y$, computational ordering $\stackrel{\Delta}{=} X^+ \subset Y^+ \land X^\omega \supset Y^\omega$ X^+ = the finite traces of X X^{ω} = the infinite traces of X $\mathcal{T}^{\natural} = \operatorname{lfp}^{\sqsubseteq} \mathcal{F}$ $\mathcal{F} \stackrel{\Delta}{=} \overline{t} \cup t : X$ traces of length 1 ending traces of X prefixed in blocking states by an initial transition P. Cousot - 15/35-WG 2.3, Obernai, September 26, 1997

DIFFICULTY 2: THE COMPUTATIONAL ORDERING

- There is only one approximation ordering;
- There are many possible computational orderings;
- <u>Theorem</u> (very rough sketch) $\operatorname{lfp}^{\sqsubseteq} \mathcal{F} = \operatorname{lfp}^{\sqsubseteq'} \mathcal{F}$ iff when ordering the transfinite iterates of \mathcal{F} from \perp by \sqsubseteq and \sqsubseteq' , the respective lubs will lead to the same limit.

More precisely ...

P. Cousot

- 16/35-

WG 2.3, Obernai, September 26, 1997

KLEENE FIXPOINT TRANSFER THEOREM If $\langle \mathcal{D}, F \rangle$ and $\langle \mathcal{D}^{\sharp}, F^{\sharp} \rangle$ are semantic specifications and $\alpha(\bot) = \bot^{\sharp}$ $F^{\sharp} \circ \alpha = \alpha \circ F$ $\forall \sqsubseteq$ -increasing chains $X_{\kappa}, \kappa \in \Delta : \alpha(\bigsqcup_{\kappa \in \Delta} X_{\kappa}) = \bigsqcup_{\kappa \in \Delta} {}^{\sharp} \alpha(X_{\kappa})$ then $\alpha(\operatorname{lfp}^{\sqsubseteq} F) = \operatorname{lfp}^{\sqsubseteq^{\sharp}} F^{\sharp}$ Note 1: The condition $F^{\sharp} \circ \alpha = \alpha \circ F$ provides guidelines for designing F^{\sharp} when knowing F and α ; Note 2: F^{\sharp} convergence is faster than that of F . 10 Case $-21/5^{-}$ Wi 2.1. Obtained Specific 2.105	 EXAMPLE: TRACES TO RELATION ABSTRACTION Problem for α ∈ Traces → Relation: α is continuous for ⊆, α is not continuous for ⊑: Kleene fixpoint transfer not applicable, But applicable to finite traces; α is not a complete □-morphism (because not complete ∩-morphism): Tarski fixpoint transfer not applicable, But applicable to infinite traces (since α is a a complete ∪-morphism), Solution: split, transfer by parts, combine.
TARSKI FIXPOINT TRANSFER THEOREM If $\langle \mathcal{D}, \sqsubseteq, \bot, \sqcup \rangle$ and $\langle \mathcal{D}^{\sharp}, \sqsubseteq^{\sharp}, \bot^{\sharp}, \sqcup^{\sharp} \rangle$ are complete lattices, $F \in \mathcal{D} \xrightarrow{\mathrm{m}} \mathcal{D}, F^{\sharp} \in \mathcal{D}^{\sharp} \xrightarrow{\mathrm{m}} \mathcal{D}^{\sharp}$ are monotonic and • α is a complete \sqcap -morphism • $F^{\sharp} \circ \alpha \sqsubseteq^{\sharp} \alpha \circ F$ • $\forall y \in \mathcal{D}^{\sharp} : F^{\sharp}(y) \sqsubseteq^{\sharp} y \Rightarrow \exists x \in \mathcal{D} : \alpha(x) = y \land F(x) \sqsubseteq^{\sharp} x$ then $\alpha(\operatorname{lfp}^{\sqsubseteq} F) = \operatorname{lfp}^{\sqsubseteq^{\sharp}} F^{\sharp}$	DIFFICULTY 4: PREDICATE TRANSFORMER TRANSFORMER • For the predicate transformer semantics, the fixpoint char- acterization has the form: $W = lfp^{\stackrel{\frown}{=}} \mathcal{F}$ $\uparrow \qquad \uparrow$ predicate transformer predicate transformer $\psi = lfp^{\stackrel{\frown}{=}} \mathcal{F}$
P. Causot - 22/35- WG 2.3, Obernai, September 25, 1997	P. Consot – 24/35– WG 2.3, Obernai, September 25, 1997

CONCLUSION

- Synthetic and uniformizing (although somewhat contemplative) work;
- Shows that abstract interpretation formalizes semantics abstraction nicely;
- Help to compare abstract interpretation based program analysis methods;
- Help to understand their limitations (e.g. denotational semantics $+ \subseteq = \sqsubseteq \Rightarrow$ failure for binding time analysis + strictness analysis);

REFERENCE

For technical details and references, see:

 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. *Electronic Notes in Theoretical Computer Science*, 6, 1997, 25 pages.
 URL: http://www.elsevier.nl/locate/entcs/volume6.html.

- 35/35-

WG 2.3, Obernai, September 26, 1997

Research work

- 33/35-

- Extend the hierarchy to other semantics of transition systems;
- Extend to a programming calculus with interpretations at all levels in the hierarchy;
- Extend at higher-order to the λ -calculus⁵.

- 34/35-

 $^5\,$ This should work, but is it really worth a long effort?

P. Cousot

P. Cousot

WG 2.3, Obernai, September 26, 1997

P. Cousot