A Few Remarks on the Abstraction and Equivalence of Semantics

P. Cousot

DMI - École Normale Supérieure 45 rue d'Ulm, 75230 Paris cedex 05, France
cousot@dmi.ens.fr http://www.dmi.ens.fr/~cousot

The Hierarchy of Semantics
\longrightarrow abstraction equivalence

Objective

- Assume that we are given any transition system:

$$
\text { state space } \stackrel{\langle S, t\rangle}{\stackrel{~}{~}} \text { L transition relation }
$$

- We first define all semantics of this given transition system in the hierarchy of semantics as abstractions of the natural trace semantics;
- We then constructively derive fixpoint characterizations of all semantics in the hierarchy by abstraction of a fixpoint characterization of the natural trace semantics of the transition system.
P. Cousot
$-3 / 35-$
WG 2.3, Obermi, September 26, 1997

> Description of the hierarchy of semantics as abstractions of the natural trace semantics

Natural trace semantics

- The system/program we are interested in is assumed to be specified by a transition system:

$$
\text { state space } \stackrel{\langle S, t\rangle}{\stackrel{L}{\hookrightarrow}} \text { transition relation }
$$

- Its natural trace semantics is:

P. Cousot

Natural, Demoniac \& Angelic Semantics

- Natural trace semantics: \mathcal{T}^{\natural};
- Angelic abstraction ':

$$
\begin{aligned}
\alpha\left(\mathcal{T}^{\natural}\right)=\{\bullet & \rightarrow \bullet \\
\bullet & \ldots \rightarrow \bullet \rightarrow \bullet \mid \\
\bullet & \rightarrow \ldots \rightarrow \bullet \rightarrow \in \mathcal{T}\} ;
\end{aligned}
$$

- Demoniac abstraction ${ }^{2}$:

$$
\begin{aligned}
\alpha\left(\mathcal{T}^{\natural}\right)= & \mathcal{T}^{\natural} \\
& \cup\{\bullet \\
& \rightarrow \ldots \rightarrow \bullet \rightarrow \mid \\
& \left.\bullet \rightarrow \bullet \rightarrow \rightarrow \bullet \rightarrow \bullet \ldots \in \mathcal{T}^{\natural}\right\} .
\end{aligned}
$$

The α 's are Galois connections.

$$
\begin{aligned}
& \text { Tliminate all infinite traxses } \\
& 2 \text { Introduce all arbitrary frite }
\end{aligned}
$$

Relational Semantics

$\alpha \in$ Traces $\longmapsto \wp\left(\mathcal{S} \times \mathcal{S}_{\perp}\right), \quad \mathcal{S}_{\perp}=\mathcal{S} \cup\{\perp\}$

$$
\mathcal{R}=\alpha(\mathcal{T})
$$

α is a Galois connection.
P. Cousot
$-7 / 35-$

Non-deterministic Denotational Semantics
$\alpha \in \wp\left(\mathcal{S} \times \mathcal{S}_{\perp}\right) \longmapsto\left(\mathcal{S} \longmapsto \wp\left(\mathcal{S}_{\perp}\right)\right)$
$\mathcal{D}=\alpha(\mathcal{R})$
$=\lambda s \cdot\left\{s^{\prime} \in \mathcal{S}_{\perp} \mid\left\langle s, s^{\prime}\right\rangle \in \mathcal{R}\right\} \quad$ right image
α is a Galois isomorphism.

Predicate Transformer Semantics

$\alpha \in\left(\mathcal{S} \longmapsto \wp\left(\mathcal{S}_{\perp}\right)\right) \longmapsto\left(\wp\left(\mathcal{S}_{\perp}\right) \longmapsto \wp(\mathcal{S})\right)$
$\mathcal{W}=\alpha(\mathcal{D})$
$=\lambda Q \cdot\left\{s \in \mathcal{S} \mid \forall s^{\prime} \in \mathcal{S}_{\perp}: s^{\prime} \in \mathcal{D}(s) \Rightarrow s^{\prime} \in Q\right\}$
α is a Galois injection.

Axiomatic Semantics

$\alpha \in\left(\wp(\mathcal{S}) \longmapsto \wp\left(\mathcal{S}_{\perp}\right)\right) \longmapsto \wp\left(\wp(\mathcal{S}) \times \wp\left(\mathcal{S}_{\perp}\right)\right)$
$\mathcal{H}=\alpha(\mathcal{W})$

$$
=\{\langle P, Q\rangle \mid P \subseteq \mathcal{W}(Q)\}
$$

α is a Galois injection.

Fixpoint presentation of the semantics in the hierarchy

Fixpoint presentation of a semantics

- Fixpoint presentations of a semantic:

- Problem: find a fixpoint characterization of all semantics in the hierarchy.
- The known fixpoint characterizations look similar ${ }^{3}$;
- So there should be a simple way of transferring/lifting fixpoint definitions through abstractions α (as we do in abstract interpretation [CC77]);
- I failed for some time and will explain some of the crucial steps to have this idea work properly.
[CCT7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In $4^{\text {th }}$ POPL, pages 238-252, Los Angeles, Calif, 1977. ACM Press.
$\overline{3}$ although not complety idential.
P. Cassot
$-13 / 35-$
WG 2.3, Obernai, September 26, 1997

Difficulty 1: Orderings

- Because "natural" semantics describe both finite and infinite behaviors simultaneously, we cannot use lfp for \subseteq. But we could use gfp ${ }^{\subseteq}$;
- Unfortunately the abstraction of the gfp \subseteq fixpoint semantics for natural traces does not lead to Scott's denotational semantics;
- So we resort to two orderings ${ }^{4}$:
$1 . \subseteq$ (approximation, refinement, logical implication, ...) for Galois connections α;
$2 . \sqsubseteq$ (computational ordering) for fixpoints.
${ }^{4}$ They are generally different but may happen to coincide by further abstractions.

NATURAL TRACE FIXPOINT SEMANTICS

Let X and Y be sets of complete traces:

- $X \subseteq Y$,
refinement
- $X \sqsubseteq Y$, computational ordering
$\triangleq X^{+} \subseteq Y^{+} \wedge X^{\omega} \supseteq Y^{\omega}$
$X^{+}=$the finite traces of X
$X^{\omega}=$ the infinite traces of X
- $\quad \mathcal{T}^{\natural}=1 \mathrm{fp}^{\sqsubseteq} \mathcal{F}$

P. Cousot
$-15 / 35-$

Difficulty 2: THE computational ordering

- There is only one approximation ordering;
- There are many possible computational orderings;
- Theorem (very rough sketch) lfp ${ }^{\sqsubseteq} \mathcal{F}=1 f \underline{\underline{\sqsubseteq}}^{\prime} \mathcal{F}$ iff when ordering the transfinite iterates of \mathcal{F} from \perp by \sqsubseteq and \sqsubseteq^{\prime}, the respective lubs will lead to the same limit.

More precisely ...

Fixpoint Iterates Reordering

- Let $\langle\langle D, \sqsubseteq, \perp, \sqcup\rangle, F\rangle$
be a fixpoint semantic specification;
- let E be a set and \preceq be a binary relation on E, such that:

1. \preceq is a pre-order on E;
2. all iterates $F^{\delta}, \delta \in \mathbb{O}$ of F belong to E;
3. \perp is the \preceq-infimum of E;
4. the restriction $\left.F\right|_{E}$ of F to E is \preceq-monotone;
5. for all $x \in E$, if λ is a limit ordinal and $\forall \delta<\lambda: F^{\delta} \preceq x$ then $\bigsqcup_{\delta<\lambda} F^{\delta} \preceq x$.

- Then $1 \mathrm{fp} \stackrel{\sqsubseteq}{\sqsubseteq} F=\left.\mathrm{lfp}_{\perp}^{\preceq} F\right|_{E} \in E$.

Orderings for the Nondeterministic

Denotational Semantics, $S=\{a, b\}$

Computational ordering \sqsubseteq

Egli-Milner ordering $\sqsubseteq^{\mathrm{EM}}$
_ـ: possible iterates of \mathcal{F}

Kleene Fixpoint Transfer Theorem

If $\langle\mathcal{D}, F\rangle$ and $\left\langle\mathcal{D}^{\sharp}, F^{\sharp}\right\rangle$ are semantic specifications and

$$
\begin{gathered}
\alpha(\perp)=\perp^{\sharp} \\
F^{\sharp} \circ \alpha=\alpha \circ F
\end{gathered}
$$

$\forall \sqsubseteq$-increasing chains $X_{k}, \kappa \in \Delta: \alpha\left(\bigsqcup_{\kappa \in \Delta}^{\natural} X_{k}\right)=\bigsqcup_{\kappa \in \Delta}^{\sharp} \alpha\left(X_{k}\right)$
then

$$
\alpha\left(\mathrm{lfp}^{\sqsubseteq} F\right)=\mathrm{lfp}^{\complement^{\sharp}} F^{\sharp}
$$

Note 1: The condition $F^{\sharp} \circ \alpha=\alpha \circ F$ provides guidelines for designing F^{\sharp} when knowing F and α;
Note 2: F^{\sharp} convergence is faster than that of F.

Tarski Fixpoint Transfer Theorem

If $\langle\mathcal{D}, \sqsubseteq, \perp, \sqcup\rangle$ and $\left\langle\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp}, \perp^{\sharp},\left\llcorner^{\sharp}\right\rangle\right.$ are complete lattices, $F \in \mathcal{D} \stackrel{\mathrm{~m}}{\longmapsto} \mathcal{D}, F^{\sharp} \in \mathcal{D}^{\sharp} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}^{\sharp}$ are monotonic and

- α is a complete Π-morphism
- $F^{\sharp} \circ \alpha \sqsubseteq^{\sharp} \alpha \circ F$
- $\forall y \in \mathcal{D}^{\sharp}: F^{\sharp}(y) \sqsubseteq^{\sharp} y \Rightarrow \exists x \in \mathcal{D}: \alpha(x)=y \wedge F(x) \sqsubseteq^{\natural}$ x
then

$$
\alpha\left(\mathrm{lfp}^{\sqsubseteq} F\right)=\operatorname{lfp}^{\complement^{\sharp}} F^{\sharp}
$$

Example: Traces to relation abstraction

- Problem for $\alpha \in$ Traces \longmapsto Relation:
- α is continuous for \subseteq,
- α is not continuous for \sqsubseteq :
\Rightarrow Kleene fixpoint transfer not applicable,
\Rightarrow But applicable to finite traces;
- α is not a complete Π-morphism (because not complete \cap-morphism):
\Rightarrow Tarski fixpoint transfer not applicable,
\Rightarrow But applicable to infinite traces (since α is a a complete U-morphism) ,
- Solution: split, transfer by parts, combine.
pr.comat
$-23 / 35-$

Difficulty 4: Predicate transformer TRANSFORMER

- For the predicate transformer semantics, the fixpoint characterization has the form:

$$
\underset{\uparrow}{\mathcal{W}} \underset{\uparrow}{\mathcal{L}}=\operatorname{lfp}^{\stackrel{\grave{\epsilon}}{\mathcal{F}}} \underset{\uparrow}{\uparrow}
$$

predicate transformer
predicate transformer transformer

- Use the further abstraction:

$$
\begin{gathered}
\alpha_{Q} \in\left(\wp\left(S_{\perp}\right) \longmapsto \wp(S)\right) \longmapsto \wp(S) \\
\alpha_{Q}(\mathcal{W})=\mathcal{W}(Q)
\end{gathered}
$$

which consists in fixing the postcondition $Q \subseteq S_{\perp}$ to get Dijkstra's fixpoint:

$$
\mathcal{W}=\lambda Q \cdot \mathrm{lfp}^{\sqsubset} \mathcal{F}(Q)
$$

predicate transformer predicate transformer

Difficulty 5: Healthiness conditions

- Healthiness conditions follow from the requirement that the abstraction α should be surjective;
- More precisely by characterizing the image of the semantic domain by the abstraction function α;
- Galois injections now become Galois isomorphisms.

Example 1: Predicate transformers
Predicate
Denotational transformer

$$
\begin{aligned}
& \left(S \longmapsto \wp\left(S_{\perp}\right)\right) \longmapsto \longmapsto\left(\wp\left(S_{\perp}\right) \longmapsto \wp(S)\right) \\
& +\alpha \text { surjective } \\
\Rightarrow & \left(S \longmapsto \wp\left(S_{\perp}\right)\right) \longmapsto\left(\wp\left(S_{\perp}\right) \longmapsto \wp(S)\right)
\end{aligned}
$$

Example 2: Hoare logics

$$
\begin{aligned}
& \text { Predicate Hoare } \\
& \text { transformer logic } \\
& \left(\wp\left(S_{\perp}\right) \stackrel{\cup}{\longmapsto} \wp(S)\right) \stackrel{\alpha}{\longmapsto} \wp\left(\left(\wp(S) \times \wp\left(S_{\perp}\right)\right)\right) \\
& +\alpha \text { surjective } \\
& \Rightarrow \\
& \left(\wp\left(S_{\perp}\right) \longmapsto \wp(S)\right) \longmapsto \prec \wp(S) \otimes \gamma\left(S_{\perp}\right)
\end{aligned}
$$

Exercice: what is \otimes ?

- Tensor product:

$$
\langle D, \sqsubseteq\rangle \otimes\left\langle D^{\sharp}, \sqsubseteq^{\sharp}\right\rangle \triangleq\left\{H \in \wp\left(D \times D^{\sharp}\right) \mid(1) \wedge(2) \wedge(3)\right\}
$$

where the conditions are:

1. $\left(X \sqsubseteq X^{\prime} \wedge\left\langle X^{\prime}, Y^{\prime}\right\rangle \in H \wedge Y^{\prime} \sqsubseteq^{\sharp} Y\right) \Rightarrow(\langle X, Y\rangle \in$ $H)$; (consequence rule of Hoare logic)
2. $(\forall i \in \Delta:\langle X i, Y\rangle \in H) \Rightarrow\left(\left\langle U_{i \in \Delta} X_{i}, Y\right\rangle \in H\right)$;
3. $\left(\forall i \in \Delta:\left\langle X, Y_{i}\right\rangle \in H\right) \Rightarrow\left(\left\langle X, \sqcap_{i \in \Delta} Y_{i}\right\rangle \in H\right)$
(by induction on the program structure, 2 and 3 follow from Hoare logic rules).

Galois Connection Commutative Diagram

$$
\begin{array}{rrr}
1(\langle\alpha, \gamma\rangle) \triangleq \alpha & \mathrm{HA}(\alpha) \triangleq\left\{\langle x, y\rangle \in D \times D^{\sharp} \mid \alpha(x) \sqsubseteq^{\sharp} y\right\} \\
2(\langle\alpha, \gamma\rangle) \triangleq \gamma & \mathrm{HC}(\gamma) \triangleq\left\{\langle x, y\rangle \in D \times D^{\sharp} \mid x \sqsubseteq \gamma(y)\right\} \\
\mathrm{AC}(\gamma) \triangleq \lambda \cdot \sqcap^{\sharp}\{y \mid x \sqsubseteq \gamma(y)\} & \mathrm{AH}(H) \triangleq \lambda x \bullet \sqcap^{\sharp}\{y \mid\langle x, y\rangle \in H\} \\
\mathrm{CA}(\alpha) \triangleq \lambda y \bullet \sqcup\left\{x \mid \alpha(x) \sqsubseteq^{\sharp} y\right\} & \mathrm{CH}(H) \triangleq \lambda y \cdot \sqcup\{x \mid\langle x, y\rangle \in H\}
\end{array}
$$

Difficulty 6: From fixpoint To proof Rule SEMANTICS

1) For safety/invariance, use Park induction (F monotonic on complete lattice) :

$$
\begin{aligned}
& \mathrm{lfp}^{\sqsubseteq} F \sqsubseteq P \\
\Longleftrightarrow & \exists I: F(I) \sqsubseteq I \wedge I \sqsubseteq P
\end{aligned}
$$

2) For inevitability/liveness, use Scott induction ? No (F monotonic on cpo):

$$
\begin{aligned}
& P \sqsubseteq l \operatorname{lf}_{\perp}^{\sqsubseteq} F \\
\Longleftrightarrow & \exists \epsilon \in \mathbb{O} \vdots \\
& \exists I \in(\epsilon+1) \longmapsto \wp(\Sigma): \\
& I^{0} \sqsubseteq \perp \\
& \wedge \forall \delta: 0<\delta \leq \epsilon: I^{\delta} \sqsubseteq F\left(\cup_{\beta<\delta} I^{\beta}\right) \\
& \wedge P \subseteq I^{\epsilon}
\end{aligned}
$$

CONCLUSION

- Synthetic and uniformizing (although somewhat contemplative) work;
- Shows that abstract interpretation formalizes semantics abstraction nicely;
- Help to compare abstract interpretation based program analysis methods;
- Help to understand their limitations (e.g. denotational semantics $+\subseteq=\sqsubseteq \Rightarrow$ failure for binding time analysis + strictness analysis);

Research work

- Extend the hierarchy to other semantics of transition systems;
- Extend to a programming calculus with interpretations at all levels in the hierarchy;
- Extend at higher-order to the λ-calculus ${ }^{5}$.

Reference

For technical details and references, see:

- P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation.
Electronic Notes in Theoretical Computer Science, 6, 1997, 25 pages.
URL: http://www.elsevier.nl/locate/entcs/volume6.html.
P. Conot

