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Limitations of ‘“abstract and model-check” for liveness

® For unbounded transition systems, finite abstractions
are

® [ncomplete for termination;

® Unsound for non-termination;
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® And so the limitation is similar for liveness, no
counter-example to infinite program execution
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Unless ...

® One is only interested in liveness in the finite abstract
(or the concrete is bounded) — decidable

® Or, model-checking is used for checking the
termination proof inductive argument (e.g. given
variant functions) — decidable

Ittai Balaban, Amir Pnueli, Lenore D. Zuck: Ranking Abstraction as Companion to Predicate
Abstraction. FORTE 2005: 1-12

® Of very limited interest:

e Program executions are unbounded —

® The hardest problem for liveness proofs is to infer
the inductive argument, then the proof is “easy”
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Origin of the limitations

® Model-checking is impossible because counter-

examples are unbounded infinite
oo oo VErsUS eeeeoeo ..
® VWe need automatic verification not checking
® This requires
® |nfinitary abstractions
® of well-founded relations / well-orders
® and effectively computable approximations

i.e. Abstract Interpretation
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Analysis and verification
with well-founded
relations and well-orders



Maximal trace operational semantics

e A transition system: (%, 1)

7N

states transition relation

® Maximal trace operational semantics: set of

® Finite traces:

T T T T 7T
o—eo—o—o—o0o—9o 'l

® [nfinite traces:

T T T T T T 7T
® ® ® ® ® ® @— c-o
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Well-founded relations / VWell-orders

® Well-founded relation:

A relation r € (X x X) on a set X is well-founded if and only if* there is no
infinite descending chain xg,xq,...,%,,... of elements x;, 1 € N of X such
that Yn € N : (x,11, ,) € v (or equivalently {x,, T,11) €17 1).

® Vell-order:

A well-order (or well-order or well-ordering) is a poset (X, C), which is
well-founded and total.

:I:I:IX:I:I:I
—o—+o *—o— ...

3 Assuming the axiom of choice in set theory.

CMACS PI Meeting, May 16th, 2013: Work in Progress Toward Liveness Verification by Abstract Interpretation 7 © P.Cousot



Relevance to Termination Proof

® Program termination is
(X, t1) is well-founded

i.e. no infinite execution ((z')" = 1)

T T 7T T T 7T
® @ @ @ @— ...
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Relevance to LTL verification
e P ] Q for transition system (X, T)

if and only if
({x €2 |Px) VvV QX)}, {{y,x) € T | =Qx) A= Q(y))

is well-founded invariant

T T T T T T T
—o—o A%é *o—o—-..
PA-Q PA-Q PA-Q P -Q PA-Q PA-Q

variant




General idea of the abstraction

® Combine two abstractions:

® Abstraction of a relation to its well-founded part
(to get a necessary condition for wellfoundedness)

® Asbtraction of this well-founded part to a well-
order (to get a sufficient condition for
wellfoundedness)

wf ~©

(P(X X X), C) (X~ 0, 3)



Abstraction of relations
to their well-founded
part



Relations

® We encode relations by a domain and a set of
connections between elements of the domains (some
may be unconnected)

{(D,r)| DepX ArepDxD)}
{(D, r) € &(X) | r € Wf(D)}

A
A

W (X) is the set of well-founded relations on subsets of the set X.

o Well-founded relations do not form a lattice for C:



Well-founded part of a relation

® Example of well-founded part of a relation:

(™ (r))™"  where 8(r) = {a,b}

de be—recC

: 4

a . Y
et T
d o<—>I e - Me
ade be—rec  a ! ;
! (7% o @™ (r)) !
® Formally
o™ (1) (8(r), rN (X x8(r)))  where

AY
r) 2 {zcX|Alx;eX,icN):z=20AVieN:z;r x4}
il wU(BéxﬁD)



Partial order on relations

® Formalize the intuition of over-approximation of
well-founded relations in w(x)
(™ (r)) ! (D, w)

ae be—rec & a e—recC

(X’,x* Ly Ly
"é’ ~\~* 5~*
620<—>I e C M‘e C d . (Ve
ade e——0 C a a
e W C
rt (Y™ (@™ (r))) ! (Y™'((D, w)))™"

® Formal definition:
(D, wy @ (D', w'y & ™D, w)) C ™D, w'))
=D CDAwN (D' xD)Cw Awn (=D xD") =10
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Best abstraction of the well-founded part

® Any relation can be abstracted to its most precise
well-founded part

(P(X X X), C) = (0(X), &)

(87

® The best abstraction provides a necessary and
sufficient condition for well-foundedness

® An & -over-approximation of this best abstraction
yields a sufficient condition for well-foundedness

if a™(r) @ (D, w) then r is well-founded on D



Fixpoint characterization of the well-founded part of a relation

® (1) =1fp~ A (D, w) - (min, (¥) Upre[r]D, wU{(z, y) € r | = € pre[r]|D})
where
pre[r] X ={z X |Vyec X :r(z,y) =y e X}
and (D, w) C (D', w') if and only if D C D' Aw C w'.

® By abstraction a(({D, w)) = D, we get a fixpoint characterization of the wellfound-
edness domain.

o(r) =1fp- A X - min,(X) U pre[r] X

® Ve have recent results on under-approximating such
fixpoint equations by using
abstraction and convergence acceleration by
widening/narrowing



Recent results

® Ve have studied in

Patrick Cousot, Radhia Cousot, Manuel Fahndrich, Francesco Logozzo: Automatic Inference
of Necessary Preconditions. VMCAI 2013: 128-148

Patrick Cousot, Radhia Cousot, Francesco Logozzo: Precondition Inference from Intermittent
Assertions and Application to Contracts on Collections. VMCAI 2011: 150-168

the static inference of such under-approximations

® The same infinitary under-approximation techniques
do work for the inference of sufficient conditions for
well-foundedness



Example

anceDemo.InferenceDemo 'I W CallWithMNull() ~B & 0Errors | 1\ 4 Warnings | 1) 4 Messages
i 1 ; ; Eis
ﬁuhllc int InferNotNull({int %, string p) =+ Description Line
if (% >= @) i) 1 CodeContracts: Suggested requires: Contract.Requires((x < 0 || p!= null)); 21
1 — M) 2 CodeContracts: Suggested requires: Contract.Requires(s != null}; 30
) return p.GetHashCode(); 4y 3 CodeContracts: requires is false 35
return -1; = 2 4+ location related to previous warning 30
} & 5+ - Cause requires cbligation: s != null 30
. . . &6+ -- Cause NonMull obligation: p != null 23
public wvoid CallInferMotNull{string s) B | _ _
{ i) 7 CodeContracts: Suggested requires: Contract.Requires(false); 35
InferMotNull(l, s); i) 8 CodeContracts: Checked 7 assertions: 6 correct 1 false 1
h
public wvoid CallWithMull()
1
CallInferMotHull(null);
h

A screenshot of the error reporting with the precondition inference.

® |Implemented in Visual Studio contract checker

Patrick Cousot, Radhia Cousot, Manuel Fiahndrich, Francesco Logozzo: Automatic Inference of Necessary Preconditions. VMCAI 2013: 128-148
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Abstraction of a
relation’s well-founded
part to a well-order



Why well-orders?

® |t is always possible to prove that a relation is well-
founded by abstraction to a well order ({N, <), (O,

<), etc).

® Well-orders are easy to represent in a computer
(while arbitrary well-founded relations may not be)
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Well-order abstraction of a well-founded relation

® Abstraction to a ranking function:

.e \ o----(.:-,'_'____> e
‘s~ € xt ®(
(D, w™) € W(X) v = o (w) () Dw
® Formally
a® € Wf(D)— (D+— O)
ow) 2 AyeD- | Jow+1] (r. y) € w)
7° € (D~ 0)— Wf(D)

Uz, y) € Dx D |v(z) <v(y)}
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Partial order on well-orders

® The length of maximal decreasing chains is over-

approximated
Y1 Vo V3
a a A
o " . 2 . @----nmT > 2 a . :__:__,, 2
' "y 1 ~ > 1 é PP S 1
b C b C 1.- b .. C
¢ . ®-f----- % 0 ‘. ‘\ [ o > 0 ' | o
...... :’i"--_-' ‘el BT TR NPT ...
17 |7 lf
a a q

b
>
>
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Best abstraction

® Any well-founded relation can be abstracted to a
most precise well-order

’YO

(YWf(D), C) ¢ s (D— 0O, )

O ([

(87

® An over-approximation of this best abstraction yields
over estimates of the (transfinite) lengths of maximal
decreasing chains

® The generalized Turing-Floyd method is sound for any
such well-order and complete for the best one.
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Generalized Turing/Floyd Proof method

o (X, ') is well-founded if and only if there exists a

ranking function

veX» 0

(- is for partial functions, the class O of ordinals is a

canonical representative of all well-orders) such that
Vxedom(v):Vye 2:
(X, V) €T = uy) <u(x) Ay € dom(v)

e dom(v) determines the domain of well-foundedness of
tlonX
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Fixpoint characterization of the ranking function

® The best/most precise ranking function is

LfpS AX-{(x, 0) | x €eZAVyeZ (x,vV)¢r1}
{(x, J{d+1]|3(y,8) € X: (X, y)eT}) | XEZ A
I(y, ) e X:(X,y)eTAVYyEZ (X, y)ET=3d €
(Y, 8) € X}

® Examples:
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Recent results

® Ve have recent results on approximating such fixpoint equations
by Abstract Interpretation using abstraction and convergence
acceleraion by widening/narrowing

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

® Combined with segmentation

Patrick Cousot, Radhia Cousot, Francesco Logozzo: A parametric segmentation functor for fully automatic and scalable array content
analysis. POPL 2011: 105-118

[0,100]

[-100,100]

[-100,-1]

0

a

b

TA.length

these techniques have been successfully implemented for
termination proofs

Catarina Urban, The Abstract Domain of Segmented Ranking Functions, to appear in SAS 2013.

® The same techniques do work for the inference of ranking
functions in any other contexts.
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Examples
® Segmented ranking function abstract domain:

while ! (z > 0) do fez=N (at point 1)
1 <0
20 = —22 + 10 5 0<z<2
flx) =<9 =23
Odg\f(x):() 7 4<<5

3 T>5
NO Widenin . ’ H \ 1st iteration \ 2nd iteration \\ 5th/6th iteration ‘
g' 3 L f(z)=0 flz)=0 flz)=10
1 <0 1 <0 1 <0
3z <0]|| L f(x)_{J_mEO f(gg)_{J_mEO f(x):{szo
1 <0
1 0 1 <0 5 0<x<2
1 L f(:c):{Lmio fl@)=< L 0<az<5|...|f(&)=49 2=3
v= 3 z>5 74<2<5
3 >5
4 4 <2
La<s B 8 z=3
2 |1 f(:v)={2 x>5f(m){2L Sossl|f0=00 L, o
2 x>5
1 x<0 Loe<0
1 z<5 5 0<x<2 5 0ses2
2[z > 0]|| L f($)={3 g fz) = 1 3<e<5 (@) = 3 Z;3<5
3 2>5 =7
3 >5

Caterina Urban: The Abstract Domain of Segmented Ranking Functions. SAS 2013: 43-62
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Widening

® Example of widening of abstract piecewise-defined ranking functions. The
result of widening v¥ (shown in (a)) with v¥ (shown in (b) is shown in (c).
~
— - == —T
: > L —T > T _ > X
5 10 3 5 10 5 10

(a) (b) (c)

® \Widenings enforce convergence (at the cost of loss
of precision on the termination domain and maximal
number of steps before termination)

Caterina Urban: The Abstract Domain of Segmented Ranking Functions. SAS 2013: 43-62

CMACS PI Meeting, May 16th, 2013: Work in Progress Toward Liveness Verification by Abstract Interpretation 28 © P.Cousot



Widening (cont’d)

® Example of loss of precision by widening on the
termination domain (X € Q)

T .= 2x

while *(z < 10) do 3 5<x2<10
) flz) =
1 10< ¢

od?

(terminates iff X > 0), at least a partial result!

;

9 z=1
7T x=2
flx)=45 3<x<4
3 9<x<9
\1 10<

e But with xe 7,

Caterina Urban: The Abstract Domain of Segmented Ranking Functions. SAS 2013: 43-62
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Conclusion

® For well-foundedness/liveness, with
infinitary abstractions and convergence acceleration >>

finitary abstractions
® The well-foundedness/liveness analysis:

® requires no given satisfaction precondition [1],
® requires no special form of loops (e.g. linear, no test in

[1])

® is not restricted to linear ranking functions [I],

® always terminate thanks to the widening (which is not the
case of ad-hoc methods a la Terminator and its numerous
derivators based on the search of lasso counter-examples
along a single path at a time) [2]

[I7 Andreas Podelski, Andrey Rybalchenko: A Complete Method for the Synthesis of Linear Ranking Functions. VMCALI 2004: 239-251

[2] Byron Cook, Andreas Podelski, Andrey Rybalchenko: Proving program termination. Commun. ACM 54(5): 88-98 (2011)
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What Next?

® Verification of LTL specifications for infinite
unbounded transition systems (including software)

® Full automatic verification not debugging/bounded

checking/etc (there are no counter-examples for
infinite unbounded non-wellfoundedness)
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