

Computational Modeling and Analysis for Complex Systems CMACS PI meeting, Arlington, VA, May 16, 2013

Work in Progress Towards Liveness Verification for Infinite Systems by Abstract Interpretation

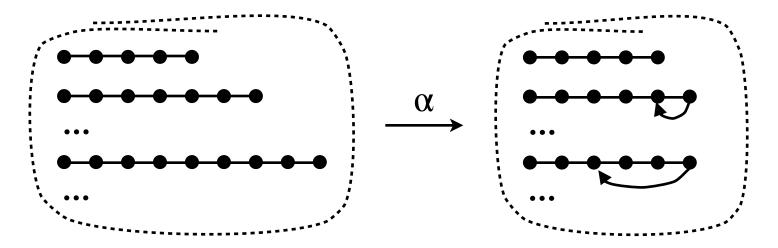
Patrick Cousot

cims.nyu.edu/~pcousot/

Joint work with Radhia Cousot www.di.ens.fr/~rcousot/

Limitations of "abstract and model-check" for liveness

- For unbounded transition systems, finite abstractions are
 - *Incomplete* for termination;
 - Unsound for non-termination;



And so the limitation is similar for *liveness*, no counter-example to infinite program execution

Unless ...

- One is only interested in liveness in the finite abstract (or the concrete is bounded) \rightarrow decidable
- Or, model-checking is used for checking the termination proof inductive argument (e.g. given variant functions) → decidable

Ittai Balaban, Amir Pnueli, Lenore D. Zuck: Ranking Abstraction as Companion to Predicate Abstraction. FORTE 2005: 1-12

- Of very limited interest:
 - Program executions are unbounded \rightarrow undecidable
 - The hardest problem for liveness proofs is to infer the inductive argument, then the proof is "easy"

Origin of the limitations

 Model-checking is impossible because counterexamples are unbounded infinite

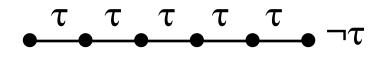
- We need automatic verification not checking
- This requires
 - Infinitary abstractions
 - of well-founded relations / well-orders
 - and effectively computable approximations
 - i.e. Abstract Interpretation

4

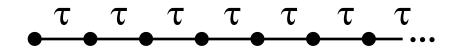
Analysis and verification with well-founded relations and well-orders

Maximal trace operational semantics

- A transition system: $\langle \Sigma, \tau \rangle$ states transition relation
- Maximal trace operational semantics: set of
 - Finite traces:



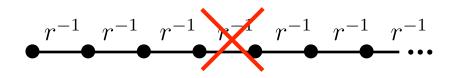
• Infinite traces:



Well-founded relations / Well-orders

• Well-founded relation:

A relation $r \in \wp(\mathbf{X} \times \mathbf{X})$ on a set \mathbf{X} is well-founded if and only if³ there is no infinite descending chain $x_0, x_1, \ldots, x_n, \ldots$ of elements $x_i, i \in \mathbb{N}$ of \mathbf{X} such that $\forall n \in \mathbb{N} : \langle x_{n+1}, x_n \rangle \in r$ (or equivalently $\langle x_n, x_{n+1} \rangle \in r^{-1}$).



• Well-order:

A well-order (or well-order or well-ordering) is a poset $\langle \mathfrak{X}, \sqsubseteq \rangle$, which is well-founded and total.

³Assuming the axiom of choice in set theory.

Relevance to Termination Proof

• Program termination is

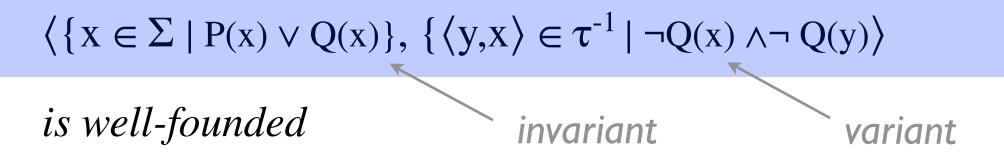
 $\langle \Sigma, \tau^{-1} \rangle$ is well-founded

i.e. no infinite execution $((\tau^{-1})^{-1} = \tau)$

Relevance to LTL verification

• **P** \bigcup **Q** for transition system $\langle \Sigma, \tau \rangle$

if and only if



General idea of the abstraction

- Combine two abstractions:
 - Abstraction of a relation to its well-founded part (to get a *necessary* condition for wellfoundedness)
 - Asbtraction of this well-founded part to a wellorder (to get a sufficient condition for wellfoundedness)

$$\langle \wp(\mathbf{X} \times \mathbf{X}), \subseteq \rangle \xleftarrow{\gamma^{\mathbf{w}f}}_{\alpha^{\mathbf{w}f}} \langle \mathbf{W}(\mathbf{X}), \oplus \rangle \xleftarrow{\gamma^{\mathbf{o}}}_{\alpha^{\mathbf{o}}} \langle \mathbf{X} \not\mapsto \mathbb{O}, \rightleftharpoons \rangle$$

$$relation \qquad \qquad \text{well-founded} \qquad \text{well-order on} \\ part \qquad \qquad \text{founded part}$$

Abstraction of relations to their well-founded part

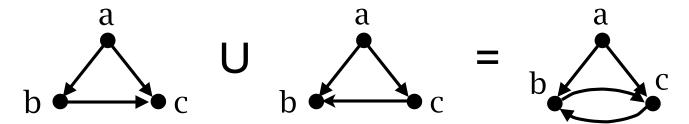
Relations

 We encode relations by a domain and a set of connections between elements of the domains (some may be unconnected)

$$\begin{aligned} \mathbf{\mathfrak{X}}(\mathbf{\mathfrak{X}}) &\triangleq \{ \langle D, r \rangle \mid D \in \wp(\mathbf{\mathfrak{X}}) \land r \in \wp(D \times D) \} \\ \mathbf{\mathfrak{W}}(\mathbf{\mathfrak{X}}) &\triangleq \{ \langle D, r \rangle \in \mathbf{\mathfrak{X}}(\mathbf{\mathfrak{X}}) \mid r \in \mathbf{\mathfrak{Wf}}(D) \} \end{aligned}$$

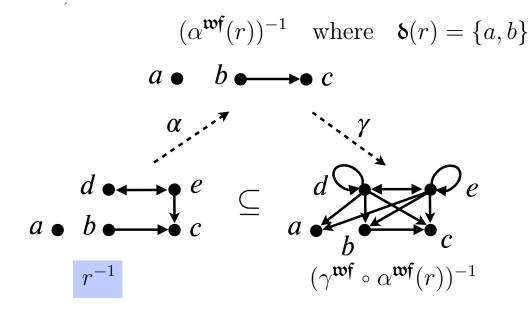
 $\mathfrak{W}(\mathfrak{X})$ is the set of well-founded relations on subsets of the set \mathfrak{X} .

• Well-founded relations do not form a lattice for \subseteq :



Well-founded part of a relation

• Example of well-founded part of a relation:



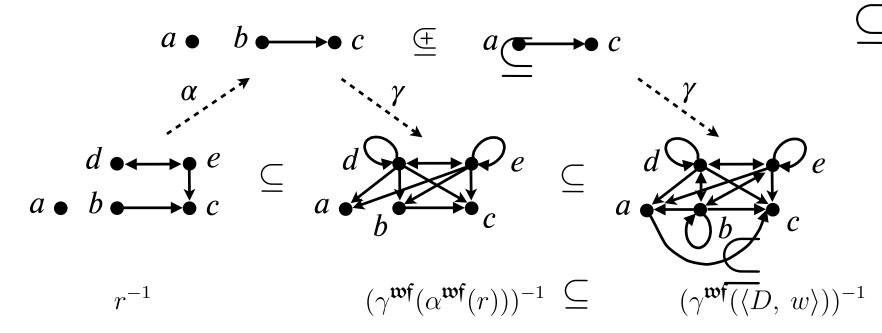
• Formally

$$\alpha^{\mathbf{wf}}(r) \triangleq \langle \mathbf{\delta}(r), r \cap (\mathbf{X} \times \mathbf{\delta}(r)) \rangle \quad \text{where} \\ \mathbf{\delta}(r) \triangleq \{ x \in \mathbf{X} \mid \not\exists \langle x_i \in \mathbf{X}, i \in \mathbb{N} \rangle : x = x_0 \land \forall i \in \mathbb{N} : x_i r^{-1} x_{i+1} \} \\ \gamma^{\mathbf{wf}}(\langle D, w \rangle) \triangleq w \cup (\mathbf{X} \times \neg D)$$

Partial order on relations

• Formalize the intuition of over-approximation of well-founded relations in $\mathfrak{w}(\mathfrak{X})$

 $\left(\underbrace{\mathcal{C}}_{\mathcal{T}}^{\mathsf{wf}}(r)\right)^{-1}$



 $\langle D, w \rangle \subseteq$

• Formal definition:

 $\langle D, w \rangle \subseteq \langle D', w' \rangle \triangleq \gamma^{\mathfrak{wf}}(\langle D, w \rangle) \subseteq \gamma^{\mathfrak{wf}}(\langle D', \underline{w}' \rangle)$ $= D' \subseteq D \land w \cap (D' \times D') \subseteq w' \land w \cap (\neg D' \times D') = \emptyset$

Best abstraction of the well-founded part

 Any relation can be abstracted to its most precise well-founded part

$$\langle \wp(\mathfrak{X} \times \mathfrak{X}), \subseteq \rangle \xrightarrow[\alpha]{\alpha \mathfrak{wf}} \langle \mathfrak{W}(\mathfrak{X}), \cong \rangle$$

- The best abstraction provides a necessary and sufficient condition for well-foundedness
- An <u> \oplus -over-approximation</u> of this best abstraction yields a *sufficient* condition for well-foundedness

if $\alpha^{\mathfrak{wf}}(r) \subseteq \langle D, w \rangle$ then r is well-founded on D

Fixpoint characterization of the well-founded part of a relation

• $\alpha^{\mathfrak{wf}}(r) = \mathbf{lfp}^{\subseteq} \boldsymbol{\lambda} \langle D, w \rangle \cdot \langle \min_{r}(\boldsymbol{\mathfrak{X}}) \cup \widetilde{\mathbf{pre}}[\![r]\!]D, w \cup \{ \langle x, y \rangle \in r \mid x \in \widetilde{\mathbf{pre}}[\![r]\!]D \} \rangle$

where

- $\widetilde{\mathbf{pre}}[\![r]\!]X = \{ x \in \mathbf{X} \mid \forall y \in \mathbf{X} : r(x, y) \Rightarrow y \in X \}$ and $\langle D, w \rangle \subseteq \langle D', w' \rangle$ if and only if $D \subseteq D' \land w \subseteq w'$.
- By abstraction $\alpha(\langle D, w \rangle) = D$, we get a fixpoint characterization of the wellfoundedness domain.

 $\boldsymbol{\delta}(r) = \mathbf{lfp}^{\subseteq} \boldsymbol{\lambda} X \cdot \min_{r}(\boldsymbol{\mathfrak{X}}) \cup \widetilde{\mathbf{pre}}[\![r]\!] X$

 We have recent results on under-approximating such fixpoint equations by Abstract Interpretation using abstraction and convergence acceleration by widening/narrowing

Recent results

• We have studied in

Patrick Cousot, Radhia Cousot, Manuel Fähndrich, Francesco Logozzo: Automatic Inference of Necessary Preconditions. VMCAI 2013: 128-148

Patrick Cousot, Radhia Cousot, Francesco Logozzo: Precondition Inference from Intermittent Assertions and Application to Contracts on Collections. VMCAI 2011: 150-168

the static inference of such under-approximations

• The same infinitary under-approximation techniques do work for the inference of sufficient conditions for well-foundedness

Example

anceDemo.InferenceDemo 👻 =🍳 CallWithNull()		0 Errors 4 Warnings i 4 Messages		
<pre>public int InferNotNull(int x, string p) </pre>	÷	Description	Line	
if(x >= 0)	1	CodeContracts: Suggested requires: Contract.Requires((x < 0 p != null));	21	
<pre>{ return p.GetHashCode(); } return -1; } public void CallInferNotNull(string s) {</pre>	i 2	CodeContracts: Suggested requires: Contract.Requires(s != null);	30	
	🔺 3	3 CodeContracts: requires is false		
	= 🔺 4	4 + location related to previous warning		
	1 5	+ - Cause requires obligation: s != null	30	
	🔺 6	5 + Cause NonNull obligation: p != null		
	· 7	CodeContracts: Suggested requires: Contract.Requires(false);	35	
InferNotNull(1, s);	i 8	CodeContracts: Checked 7 assertions: 6 correct 1 false	1	
}				
<pre>public void CallWithNull()</pre>				
{				
CallInferNotNull(null);				
}				

A screenshot of the error reporting with the precondition inference.

Implemented in Visual Studio contract checker

Patrick Cousot, Radhia Cousot, Manuel Fähndrich, Francesco Logozzo: Automatic Inference of Necessary Preconditions. VMCAI 2013: 128-148

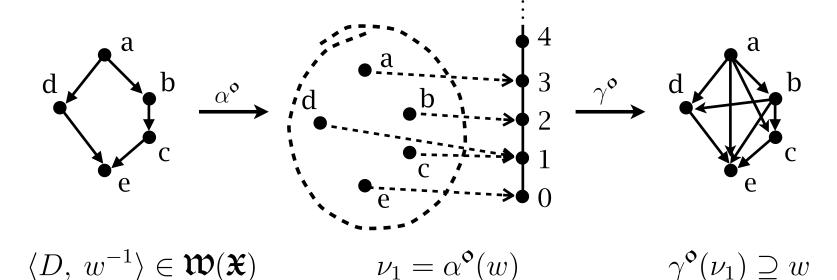
Abstraction of a relation's well-founded part to a well-order

Why well-orders?

- It is always possible to prove that a relation is well-founded by abstraction to a well order (⟨ℕ, <⟩, ⟨□, <⟩, etc).
- Well-orders are easy to represent in a computer (while arbitrary well-founded relations may not be)

Well-order abstraction of a well-founded relation

• Abstraction to a ranking function:

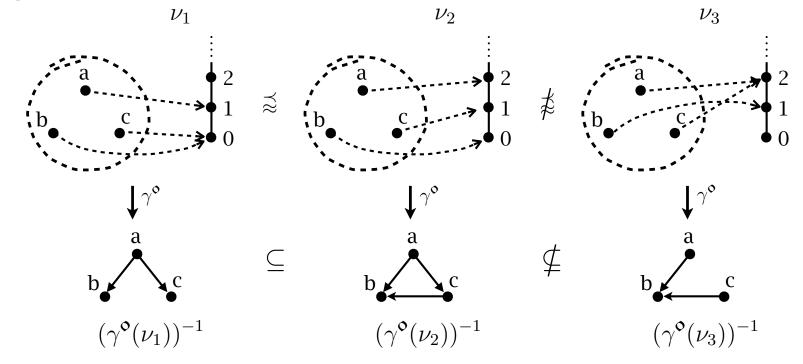


• Formally

$$\begin{aligned} \alpha^{\circ} &\in \mathfrak{Wf}(D) \mapsto (D \mapsto \mathbb{O}) \\ \alpha^{\circ}(w) &\triangleq \lambda y \in D \cdot \bigcup \{ \alpha^{\circ}(w)x + 1 \mid \langle x, y \rangle \in w \} \\ \gamma^{\circ} &\in (D \mapsto \mathbb{O}) \mapsto \mathfrak{Wf}(D) \\ \gamma^{\circ}(\nu) &\triangleq \{ \langle x, y \rangle \in D \times D \mid \nu(x) < \nu(y) \} \end{aligned}$$

Partial order on well-orders

 The length of maximal decreasing chains is overapproximated



• Formally

$f \stackrel{\scriptstyle{\sim}}{\approx} g \triangleq \gamma^{\circ}(f) \subseteq \gamma^{\circ}(g)$

Best abstraction

 Any well-founded relation can be abstracted to a most precise well-order

$$\langle \mathfrak{Wf}(D), \subseteq \rangle \xleftarrow{\gamma^{\mathfrak{o}}}_{\alpha^{\mathfrak{o}}} \langle D \mapsto \mathbb{O}, \rightleftharpoons \rangle$$

- An over-approximation of this best abstraction yields over estimates of the (transfinite) lengths of maximal decreasing chains
- The generalized Turing-Floyd method is sound for any such well-order and complete for the best one.

Generalized Turing/Floyd Proof method

• $\langle \Sigma, \tau^{-1} \rangle$ is well-founded if and only if there exists a ranking function

 $\nu \in \Sigma \not\rightarrow \mathbb{O}$

($\not\rightarrow$ is for *partial* functions, the class \mathbb{O} of ordinals is a canonical representative of all well-orders) such that

$$\forall x \in \mathbf{dom}(\nu): \forall y \in \Sigma:$$

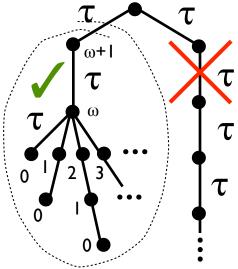
 $\langle \mathbf{x}, \mathbf{y} \rangle \in \tau \Longrightarrow \nu(\mathbf{y}) < \nu(\mathbf{x}) \land \mathbf{y} \in \mathbf{dom}(\nu)$

• dom(ν) determines the domain of well-foundedness of τ^{-1} on Σ

Fixpoint characterization of the ranking function

• The best/most precise ranking function is

Lfp^{\subseteq} $\lambda X \cdot \{ \langle x, 0 \rangle \mid x \in \Sigma \land \forall y \in \Sigma: \langle x, y \rangle \notin \tau \} \bigcup$ $\{ \langle x, \bigcup \{ \delta + 1 \mid \exists \langle y, \delta \rangle \in X: \langle x, y \rangle \in \tau \} \rangle \mid x \in \Sigma \land$ $\exists \langle y, \delta \rangle \in X: \langle x, y \rangle \in \tau \land \forall y \in \Sigma: \langle x, y \rangle \in \tau \Longrightarrow \exists \delta \in$ $: \langle y, \delta \rangle \in X \}$



Recent results

• We have recent results on approximating such fixpoint equations by *Abstract Interpretation* using abstraction and convergence acceleraion by widening/narrowing

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

• Combined with segmentation

Patrick Cousot, Radhia Cousot, Francesco Logozzo: A parametric segmentation functor for fully automatic and scalable array content analysis. POPL 2011: 105-118

these techniques have been successfully implemented for termination proofs

Catarina Urban, The Abstract Domain of Segmented Ranking Functions, to appear in SAS 2013.

• The same techniques do work for the inference of ranking functions in any other contexts.

Examples

• Segmented ranking function abstract domain:

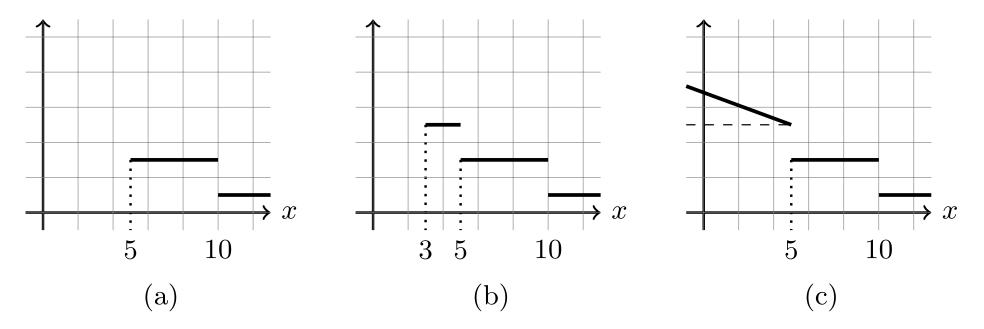
while
$${}^{1}(x \ge 0)$$
 do $f \in \mathbb{Z} \mapsto \mathbb{N}$ (a)
 ${}^{2}x := -2x + 10$
 ${}^{3} f(x) = 0$
 $f(x) = \begin{cases} 1 & x < 0 \\ 5 & 0 \le x \le 2 \\ 9 & x = 3 \\ 7 & 4 \le x \le 5 \\ 3 & x > 5 \end{cases}$

Na widoning		1st iteration	2nd iteration	 5th/6th iteration
No widening:	3	f(x) = 0	f(x) = 0	 f(x) = 0
	3[x < 0]	$f(x) = \begin{cases} 1 & x < 0 \\ \bot & x \ge 0 \end{cases}$	$f(x) = \begin{cases} 1 & x < 0 \\ \bot & x \ge 0 \end{cases}$	 $f(x) = \begin{cases} 1 & x < 0 \\ \bot & x \ge 0 \end{cases}$
	1	$f(x) = \begin{cases} 1 & x < 0 \\ \bot & x \ge 0 \end{cases}$	$f(x) = \begin{cases} 1 & x < 0 \\ \bot & 0 \le x \le 5 \\ 3 & x > 5 \end{cases}$	 $f(x) = \begin{cases} 1 & x < 0 \\ \bot & x \ge 0 \end{cases}$ $f(x) = \begin{cases} 1 & x < 0 \\ 5 & 0 \le x \le 2 \\ 9 & x = 3 \\ 7 & 4 \le x \le 5 \\ 3 & x > 5 \end{cases}$
	2	$f(x) = \begin{cases} \bot & x \le 5\\ 2 & x > 5 \end{cases}$	$f(x) = \begin{cases} 4 & x \le 2 \\ \bot & 3 \le x \le 5 \\ 2 & x > 5 \end{cases}$	 $f(x) = \begin{cases} 4 & x \le 2 \\ 8 & x = 3 \\ 6 & 4 \le x \le 5 \\ 2 & x > 5 \end{cases}$
	$2[x \ge 0]$	$f(x) = \begin{cases} \bot & x \le 5\\ 3 & x > 5 \end{cases}$	$f(x) = \begin{cases} \bot & x < 0\\ 5 & 0 \le x \le 2\\ \bot & 3 \le x \le 5\\ 3 & x > 5 \end{cases}$	 $f(x) = \begin{cases} \bot & x < 0\\ 5 & 0 \le x \le 2\\ 9 & x = 3\\ 7 & 4 \le x \le 5\\ 3 & x > 5 \end{cases}$

Caterina Urban: The Abstract Domain of Segmented Ranking Functions. SAS 2013: 43-62

Widening

Example of widening of abstract piecewise-defined ranking functions. The result of widening $v_1^{\#}$ (shown in (a)) with $v_2^{\#}$ (shown in (b) is shown in (c).



• Widenings enforce convergence (at the cost of loss of precision on the termination domain and maximal number of steps before termination)

CMACS PI Meeting, May 16th, 2013: Work in Progress Toward Liveness Verification by Abstract Interpretation

Caterina Urban: The Abstract Domain of Segmented Ranking Functions. SAS 2013: 43-62

Widening (cont'd)

• Example of loss of precision by widening on the termination domain $(X \in \mathbb{Q})$

while
$${}^{1}(x < 10)$$
 do
 ${}^{2}x := 2x$
od³
 $f(x) = \begin{cases} 3 & 5 \le x < 10 \\ 1 & 10 \le x \end{cases}$

(terminates iff x > 0), at least a partial result!

• But with $X \in \mathbb{Z}$,

$$f(x) = \begin{cases} 9 & x = 1 \\ 7 & x = 2 \\ 5 & 3 \le x \le 4 \\ 3 & 5 \le x \le 9 \\ 1 & 10 \le x \end{cases}$$

CMACS PI Meeting, May 16th, 2013: Work in Progress Toward Liveness Verification by Abstract Interpretation

Caterina Urban: The Abstract Domain of Segmented Ranking Functions. SAS 2013: 43-62

Conclusion

- For well-foundedness/liveness, Abstract interpretation with infinitary abstractions and convergence acceleration >>> finitary abstractions
- The well-foundedness/liveness analysis:
 - requires no given satisfaction precondition [1],
 - requires no special form of loops (e.g. linear, no test in [1])
 - is not restricted to linear ranking functions [1],
 - always terminate thanks to the widening (which is not the case of ad-hoc methods à la Terminator and its numerous derivators based on the search of lasso counter-examples along a single path at a time) [2]

[1] Andreas Podelski, Andrey Rybalchenko: A Complete Method for the Synthesis of Linear Ranking Functions. VMCAI 2004: 239-251

[2] Byron Cook, Andreas Podelski, Andrey Rybalchenko: Proving program termination. Commun. ACM 54(5): 88-98 (2011)

What Next?

- Verification of LTL specifications for infinite unbounded transition systems (including software)
- Full automatic verification not debugging/bounded checking/etc (there are no counter-examples for infinite unbounded non-wellfoundedness)