« Program Verification by Parametric

 Abstraction and Semi-definite
Programming »

Patrick Cousot
École normale supérieure
45 rue d'Ulm, 75230 Paris cedex 05, France

> Patrick.Cousot@ens.fr WWW.di.ens.fr/~cousot

Logic and Algorithms Workshop "Constraints and Verification" - Isaac Newton Institute for Mathematical Sciences - 8 May 2006

Reference

[1] P. Cousot. - Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming.
In: Proc. Sixth Int. Conf. on Verification, Model Checking and Abstract Interpretation (VMCAI 2005), R. Cousot (Ed.), Paris, France, 17-19 Jan. 2005. pp. 1-24. - Lecture Notes In Computer Science 3385, Springer.

Static analysis

Principle of static analysis

- Define the most precise program property as a fixpoint Ifp F
- Effectively compute a fixpoint approximation:
- iteration-based fixpoint approximation
- constraint-based fixpoint approximation

Iteration-based static analysis

- Effectively overapproximate the iterative fixpoint definition ${ }^{1}$:

$$
\begin{aligned}
\text { Ifp } F & =\bigsqcup_{\lambda \in \mathbb{O}} X^{\lambda} \\
X^{0} & =\perp \\
X^{\lambda} & =\bigsqcup_{\eta<\lambda} F\left(X^{\eta}\right)
\end{aligned}
$$

[^0]
Constraint-based static analysis

- Effectively solve a postfixpoint constraint:

$$
\begin{gathered}
\operatorname{lfp} F=\prod_{\{X \mid F(X) \sqsubseteq X\}} \\
\text { since } F(X) \sqsubseteq X \text { implies Ifp } F \sqsubseteq X
\end{gathered}
$$

- Sometimes, the constraint resolution algorithm is nothing but the iterative computation of Ifp F^{2}
- Constraint-based static analysis is the main subject of this talk.

[^1]
Parametric abstraction

- Parametric abstract domain: $X \in\{f(a) \mid a \in \Delta\}, a$ is an unknown parameter
- Verification condition: X satisfies $F(X) \sqsubseteq X$ if [and only if $] \exists a \in \Delta: F(f(a)) \sqsubseteq f(a)$ that is $\exists a: C_{F}(a)$ where $C_{F} \in \Delta \mapsto \mathbb{B}$ are constraints over the unknown parameter a

Fixpoint versus Constraint-based Approach for Termination Analysis

1. Termination can be expressed in fixpoint form ${ }^{3}$
2. However we know no effective fixpoint underapproximation method needed to overestimation the termination rank
3. So we consider a constraint-based approach abstracting Floyd's ranking function method
[^2]
Overview of the Termination Analysis Method

Proving Termination of a Loop

The main point in this talk is (4).

Proving Termination of a Loop

1. Perform an iterated forward/backward relational static analysis of the loop with termination hypothesis to determine a necessary proper termination precondition
2. Assuming the termination precondition, perform an forward relational static analysis of the loop to determine the loop invariant
3. Assuming the loop invariant, perform an forward relational static analysis of the loop body to determine the loop abstract operational semantics
4. Assuming the loop semantics, use an abstraction of Floyd's ranking function method to prove termination of the loop

Arithmetic Mean Example

$$
\begin{aligned}
& \text { while } \begin{aligned}
& (x<>y) d o \\
x & :=x-1 ; \\
y & :=y+1
\end{aligned} \\
& \text { od }
\end{aligned}
$$

The polyhedral abstraction used for the static analysis of the examples is implemented using Bertrand Jeannet's NewPolka library.

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analysis of the loop with termination hypothesis to determine a necessary proper termination precondition
2. Assuming the termination precondition, perform an forward relational static analysis of the loop to determine the loop invariant
3. Assuming the loop invariant, perform an forward relational static analysis of the loop body to determine the loop abstract operational semantics
4. Assuming the loop semantics, use an abstraction of Floyd's ranking function method to prove termination of the loop

Forward/reachability properties

Example: partial correctness (must stay into safe states)

Backward/ancestry properties

Example: termination (must reach final states)

Forward/backward properties

Example: total correctness (stay safe while reaching final states)

Principle of the iterated forward/backward

 iteration-based approximate analysis- Overapproximate

$$
\text { Ifp } F \sqcap \operatorname{lfp} B
$$

by overapproximations of the decreasing sequence

$$
\begin{aligned}
X^{0} & =\top \\
& \cdots \\
X^{2 n+1} & =\operatorname{Ifp} \lambda Y \cdot X^{2 n} \sqcap F(Y) \\
X^{2 n+2} & =\operatorname{Ifp} \lambda Y \cdot X^{2 n+1} \sqcap B(Y)
\end{aligned}
$$

Arithmetic Mean Example: Termination Precondition (1)

$$
\left.\begin{array}{l}
\{x>=y\} \\
\text { while }(x<>y) \text { do } \\
\{x>=y+2\} \\
x:=x-1 ; \\
\{x>=y+1\} \\
y:=y+1 \\
\{x>=y\}
\end{array}\right\} \begin{aligned}
& \text { od } \\
& \{x=y\}
\end{aligned}
$$

Idea 1

The auxiliary termination counter method

Arithmetic Mean Example: Termination Precondition (2)

$$
\{x=y+2 k, x>=y\}
$$

while (x <> y) do

$$
\{x=y+2 k, x>=y+2\}
$$

$$
\mathrm{k}:=\mathrm{k}-1
$$

 \(\{x=y+2 k+2, x>=y+2\}\)
 \(\mathrm{x}:=\mathrm{x}-1\);
 \(\{x=y+2 k+1, x>=y+1\}\)
 \(\mathrm{y}:=\mathrm{y}+1\)
 \(\{x=y+2 k, x>=y\}\)
 od

```
{x=y,k=0}
```

 assume (\(k=0\))
 $\{x=y, k=0\}$

Add an auxiliary termination counter to enforce (bounded) termination in the backward analysis!

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analysis of the loop with termination hypothesis to determine a necessary proper termination precondition
2. Assuming the termination precondition, perform an forward relational static analysis of the loop to determine the loop invariant
3. Assuming the loop invariant, perform an forward relational static analysis of the loop body to determine the loop abstract operational semantics
4. Assuming the loop semantics, use an abstraction of Floyd's ranking function method to prove termination of the loop

Arithmetic Mean Example: Loop Invariant

$$
\left.\begin{array}{l}
\text { assume }((x=y+2 * k) \&(x>=y)) ; \\
\{x=y+2 k, x>=y\} \\
\text { while }(x<>y) d o \\
\{x=y+2 k, x>=y+2\} \\
k:=k-1 ; \\
\{x=y+2 k+2, x>=y+2\} \\
x:=x-1 ; \\
\{x=y+2 k+1, x>=y+1\} \\
y:=y+1
\end{array}\right\} \begin{aligned}
& \{x=y+2 k, x>=y\} \\
& \text { od } \\
& \{\mathrm{x}=0, x=y\}
\end{aligned}
$$

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analysis of the loop with termination hypothesis to determine a necessary proper termination precondition
2. Assuming the termination precondition, perform an forward relational static analysis of the loop to determine the loop invariant
3. Assuming the loop invariant, perform an forward relational static analysis of the loop body to determine the loop abstract operational semantics
4. Assuming the loop semantics, use an abstraction of Floyd's ranking function method to prove termination of the loop

Arithmetic Mean Example: Body Relational Semantics

Case $\mathrm{x}<\mathrm{y}$:

assume $(\mathrm{x}=\mathrm{y}+2 * \mathrm{k}) \&(\mathrm{x}>=\mathrm{y}+2)$; $\{x=y+2 k, x>=y+2\}$
assume $(x<y)$;
empty (6)
assume $(\mathrm{x} 0=\mathrm{x}) \&(\mathrm{yO}=\mathrm{y}) \&(\mathrm{k} 0=\mathrm{k}) ;$ empty (6)
$\mathrm{k}:=\mathrm{k}-1$;
$\mathrm{X}:=\mathrm{X}-1$;
$y:=y+1$
empty (6)

Case x > y:
assume $(x=y+2 * k) \&(x>=y+2)$;
$\{x=y+2 k, x>=y+2\}$
assume $(\mathrm{x}>\mathrm{y})$;
$\{x=y+2 k, x>=y+2\}$
assume $(x 0=x) \&(y 0=y) \&(k 0=k)$;
$\{x=y+2 k 0, y=y 0, x=x 0, x=y+2 k$,
$\mathrm{k}:=\mathrm{k}-1 ; \quad \mathrm{x}>=\mathrm{y}+2\}$
$\mathrm{X}:=\mathrm{X}-1$;
$y:=y+1$
$\{x+2=y+2 k 0, y=y 0+1, x+1=x 0$,

$$
\mathrm{x}=\mathrm{y}+2 \mathrm{k}, \mathrm{x}>=\mathrm{y}\}
$$

Arithmetic Mean Example

1. Perform an iterated forward/backward relational static analysis of the loop with termination hypothesis to determine a necessary proper termination precondition
2. Assuming the termination precondition, perform an forward relational static analysis of the loop to determine the loop invariant
3. Assuming the loop invariant, perform an forward relational static analysis of the loop body to determine the loop abstract operational semantics
4. Assuming the loop semantics, use an abstraction of Floyd's ranking function method to prove termination of the loop

Floyd's method for termination of while B do C
Given a loop invariant I, find an $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown rank function r such that:

- The rank is nonnegative:

$$
\forall x_{0}, x: I\left(x_{0}\right) \wedge \llbracket \mathrm{B} ; \mathrm{c} \rrbracket\left(x_{0}, x\right) \Rightarrow r\left(x_{0}\right) \geq 0
$$

- The rank is strictly decreasing:

$$
\forall x_{0}, x: I\left(x_{0}\right) \wedge \llbracket \mathrm{B} ; \mathrm{C} \rrbracket\left(x_{0}, x\right) \Rightarrow r(x) \leq r\left(x_{0}\right)-\eta
$$

$\eta \geq 1$ for $\mathbb{Z}, \eta>0$ for \mathbb{R} / \mathbb{Q} to avoid Zeno $\frac{1}{2}, \frac{1}{4}, \frac{1}{8} \ldots$

Problems

- How to get rid of the implication \Rightarrow ?
\rightarrow Lagrangian relaxation
- How to get rid of the universal quantification \forall ?
\rightarrow Quantifier elimination/mathematical programming \& relaxation

Algorithmically interesting cases

- linear inequalities
\rightarrow linear programming
- linear matrix inequalities (LMI)/quadratic forms
\rightarrow semidefinite programming
- semialgebraic sets
\rightarrow polynomial quantifier elimination, or
\rightarrow relaxation with semidefinite programming

```
»clear all;
[v0,v]= variales('X','(',',
% linear inequalities
% x0 y0 k0
Ai = [ llll
% x y k
Ai_ = [ 1 1 -1 0]; % x0 - y0 >= 0
bi = [0];
Ranking Function with Semi-
                                    definite Programming
                                    Relaxation
[N Mk(:,:,:)]=linToMk(Ai,Ai_,bi);
% linear equalities
% x0 y0 k0
Ae = [ [ 00 0-2;
        0-1 0;
        -1 0 0;
        0 0 0];
% x y k
Ae_ = [ 1 - 1 0; % x - y - 2*k0 - 2 = 0
        0 1 0; % y - y0 - 1 = 0
        1 0 0; % x - x0 + 1 = 0
        1-1 -2]; % x - y - 2*k = 0
    Input the loop abstract
semantics
be = [2;-1; 1; 0];
[M Mk(:,:,N+1:N+M)]=linToMk(Ae,Ae_,be);
```


Input the loop abstract semantics

```
» display_Mk(Mk, N, v0, v);
    +1.x -1.y >= 0
    -2.k0 +1.x -1.y +2 = 0
    -1.y0 +1.y -1 = 0
    -1.x0 +1.x +1 = 0
    +1.x -1.y -2.k=0
- Display the abstract semantics of the loop while B do C
- compute ranking function, if any
```

```
» [diagnostic,R] = termination(v0, v, Mk, N, 'integer', 'linear');
```

» [diagnostic,R] = termination(v0, v, Mk, N, 'integer', 'linear');
» disp(diagnostic)
» disp(diagnostic)
feasible (bnb)
feasible (bnb)
> intrank(R, v)
> intrank(R, v)
r(x,y,k) = +4.k -2

```
r(x,y,k) = +4.k -2
```


Quantifier Elimination

Quantifier elimination (Tarski-Seidenberg)

- quantifier elimination for the first-order theory of real closed fields:
- F is a logical combination of polynomial equations and inequalities in the variables x_{1}, \ldots, x_{n}
- Tarski-Seidenberg decision procedure
transforms a formula

$$
\forall / \exists x_{1}: \ldots \forall / \exists x_{n}: F\left(x_{1}, \ldots, x_{n}\right)
$$

into an equivalent quantifier free formula

- cannot be bound by any tower of exponentials [Heintz, Roy, Solerno 89]

Quantifier elimination (Collins)

- cylindrical algebraic decomposition method by Collins
- implemented in Mathematica ${ }^{*}$
- worst-case time-complexity for real quantifier elimination is "only" doubly exponential in the number of quantifier blocks
- Various optimisations and heuristics can be used ${ }^{4}$

[^3]
Scaling up

However

- does not scale up beyond a few variables!
- too bad!

Proving Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming

Idea 2

Express the loop invariant and relational semantics as numerical positivity constraints

Relational semantics of while B do C od loops

- $x_{0} \in \mathbb{R} / \mathbb{Q} / \mathbb{Z}$: values of the loop variables before a loop iteration
- $x \in \mathbb{R} / \mathbb{Q} / \mathbb{Z}$: values of the loop variables after a loop iteration
- $I\left(x_{0}\right)$: loop invariant, $\llbracket \mathrm{B} ; \mathrm{C} \rrbracket\left(x_{0}, x\right)$: relational semantics of one iteration of the loop body
$-I\left(x_{0}\right) \wedge \llbracket \mathrm{B} ; \mathrm{c} \rrbracket\left(x_{0}, x\right)=\bigwedge_{i=1}^{N} \sigma_{i}\left(x_{0}, x\right) \geqslant_{i} 0 \quad\left(\geqslant_{i} \in\{>, \geq,=\}\right)$
- not a restriction for numerical programs

Example of linear program (Arithmetic mean)

$\left[A A^{\prime}\right]\left[x_{0} x\right]^{\top} \geqslant b$

$$
\begin{aligned}
& \{\mathrm{x}=\mathrm{y}+2 \mathrm{k}, \mathrm{x}>=\mathrm{y}\} \\
& \text { while }(\mathrm{x}<>\mathrm{y}) \mathrm{do} \\
& \mathrm{k}:=\mathrm{k}-1 ; \\
& \mathrm{x}:=\mathrm{x}-1 ; \\
& \mathrm{y}:=\mathrm{y}+1
\end{aligned}
$$

od

$$
\begin{aligned}
& +1 \cdot \mathrm{x}-1 \cdot \mathrm{y}>=0 \\
& -2 \cdot \mathrm{k} 0+1 \cdot \mathrm{x}-1 \cdot \mathrm{y}+2=0 \\
& -1 \cdot \mathrm{y} 0+1 \cdot \mathrm{y}-1=0 \\
& -1 \cdot \mathrm{x} 0+1 \cdot \mathrm{x}+1=0 \\
& +1 \cdot \mathrm{x}-1 \cdot \mathrm{y}-2 \cdot \mathrm{k}=0 \\
& {\left[\begin{array}{ccc|ccc}
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & -2 & 1 & -1 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & -2
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
y_{0} \\
k_{0} \\
x \\
y \\
k
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
= \\
-1 \\
0
\end{array}\right]}
\end{aligned}
$$

Example of quadratic form program (factorial)

$$
\begin{aligned}
\mathrm{n} & :=0 \\
\mathrm{f} & :=1
\end{aligned}
$$

while (f <= N) do

$$
\mathrm{n}:=\mathrm{n}+1
$$

$$
\mathrm{f}:=\mathrm{n} * \mathrm{f}
$$

od
$\left[n_{0} f_{0} N_{0} n f N\right]\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}n_{0} \\ f_{0} \\ N_{0} \\ n \\ f \\ N\end{array}\right]+2\left[n_{0} f_{0} N_{0} n f N\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \\ 0\end{array}\right]+0=0$

$$
\left[\begin{array}{c}
n_{0} \\
f_{0} \\
N_{0} \\
n \\
f \\
N
\end{array}\right]+2\left[n_{0} f_{0} N_{0} n f N\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
\frac{1}{2} \\
0
\end{array}\right]+0=0
$$

Constraints and Verification, INI, 8 May 2006

$$
\begin{aligned}
& -1 \cdot \mathrm{f} 0+1 . \mathrm{NO}>=0 \\
& +1 \cdot \mathrm{n} 0>=0 \\
& +1 \cdot \mathrm{f} 0-1>=0 \\
& -1 \cdot \mathrm{n} 0+1 \cdot \mathrm{n}-1=0 \\
& +1 \cdot \mathrm{NO}-1 \cdot \mathrm{~N}=0 \\
& -1 \cdot \mathrm{f} 0 \cdot \mathrm{n}+1 \cdot \mathrm{f}=0
\end{aligned}
$$

Example of semialgebraic program (logistic map)

```
eps = 1.0e-9;
while (0 <= a) & (a <= 1 - eps)
    & (eps <= x) & (x <= 1) do
    x := a*x*(1-x)
od
```


Floyd's method for termination of while B do C
Find an $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown rank function r and $\eta>$
0 such that:

- The rank is nonnegative:

$$
\forall x_{0}, x: \bigwedge_{i=1}^{N} \sigma_{i}\left(x_{0}, x\right) \geqslant_{i} 0 \Rightarrow r\left(x_{0}\right) \geq 0
$$

- The rank is strictly decreasing:

$$
\forall x_{0}, x: \bigwedge_{i=1}^{N} \sigma_{i}\left(x_{0}, x\right) \geqslant_{i} 0 \Rightarrow r\left(x_{0}\right)-r(x)-\eta \geq 0
$$

Idea 3

Eliminate the conjunction \bigwedge and implication \Rightarrow by Lagrangian relaxation

Implication (general case)

$$
\begin{aligned}
& A \Rightarrow B \\
& \Leftrightarrow \\
& \forall x \in A: x \in B
\end{aligned}
$$

Implication (linear case)

$$
\begin{aligned}
& A \Rightarrow B \quad \text { (assuming } \\
\Leftarrow & \text { (soundness) } \\
\Rightarrow & \text { (completeness) } \\
& \text { border of } A \text { parallel to border of } B
\end{aligned}
$$

Lagrangian relaxation (linear case)

Lagrangian relaxation, formally

Let \mathbb{V} be a finite dimensional linear vector space, $N>0$ and $\forall k \in[0, N]: \sigma_{k} \in \mathbb{V} \mapsto \mathbb{R}$.

$$
\begin{aligned}
& \forall x \in \mathbb{V}:\left(\bigwedge_{k=1}^{N} \sigma_{k}(x) \geq 0\right) \Rightarrow\left(\sigma_{0}(x) \geq 0\right) \\
& \Leftarrow \text { soundness (Lagrange) } \\
& \Rightarrow \text { completeness (lossless) } \\
& \nRightarrow \quad \text { incompleteness (lossy) } \\
& \exists \lambda \in[1, N] \mapsto \mathbb{R}^{+}: \forall x \in \mathbb{V}: \sigma_{0}(x)-\sum_{k=1}^{N} \lambda_{k} \sigma_{k}(x) \geq 0
\end{aligned}
$$

relaxation $=$ approximation, $\lambda_{i}=$ Lagrange coefficients

Lagrangian relaxation, equality constraints

$$
\begin{aligned}
& \forall x \in \mathbb{V}:\left(\bigwedge_{k=1}^{N} \sigma_{k}(x)=0\right) \Rightarrow\left(\sigma_{0}(x) \geq 0\right) \\
& \Leftarrow \quad \text { soundness (Lagrange) } \\
& \quad \exists \lambda \in[1, N] \mapsto \mathbb{R}^{+}: \forall x \in \mathbb{V}: \sigma_{0}(x)-\sum_{k=1}^{N} \lambda_{k} \sigma_{k}(x) \geq 0 \\
& \wedge \\
& \quad \exists \lambda^{\prime} \in[1, N] \mapsto \mathbb{R}^{+}: \forall x \in \mathbb{V}: \sigma_{0}(x)+\sum_{k=1}^{N} \lambda_{k}^{\prime} \sigma_{k}(x) \geq 0 \\
& \Leftrightarrow \\
& \\
& \quad\left(\lambda^{\prime \prime}=\frac{\lambda^{\prime}-\lambda}{2}\right) \\
& \quad \exists \lambda^{\prime \prime} \in[1, N] \mapsto \mathbb{R}: \forall x \in \mathbb{V}: \sigma_{0}(x)-\sum_{k=1}^{N} \lambda_{k}^{\prime \prime} \sigma_{k}(x) \geq 0 \\
& \text { Constraints and Verification, inI, } 8 \text { May 2006 } \quad-\quad-47-
\end{aligned}
$$

Example: affine Farkas' lemma, informally

- An application of Lagrangian relaxation to the case when A is a polyhedron

Example: affine Farkas' lemma, formally

- Formally, if the system $A x+b \geq 0$ is feasible then

$$
\begin{aligned}
& \forall x: A x+b \geq 0 \Rightarrow c x+d \geq 0 \\
\Leftarrow & (\text { soundness, Lagrange }) \\
\Rightarrow & (\text { completeness, Farkas) } \\
& \exists \lambda \geq 0: \forall x: c x+d-\lambda(A x+b) \geq 0 .
\end{aligned}
$$

Yakubovich's S-procedure, informally

- An application of Lagrangian relaxation to the case when A is a quadratic form

Incompleteness (convex case)

Yakubovich's S-procedure, completeness cases

- The constraint $\sigma(x) \geq 0$ is regular if and only if $\exists \xi \in$ $\mathbb{V}: \sigma(\xi)>0$.
- The S-procedure is lossless in the case of one regular quadratic constraint:

$$
\begin{aligned}
\forall x \in \mathbb{R}^{n}: x^{\top} P_{1} x+2 q_{1}^{\top} x+ & r_{1} \geq 0 \Rightarrow \\
& x^{\top} P_{0} x+2 q_{0}^{\top} x+r_{0} \geq 0
\end{aligned}
$$

$\Leftarrow \quad$ (Lagrange)
$\Rightarrow \quad$ (Yakubovich)

$$
\exists \lambda \geq 0: \forall x \in \mathbb{R}^{n}: x^{\top}\left(\left[\begin{array}{cc}
P_{0} & q_{0} \\
q_{0}^{\top} & r_{0}
\end{array}\right]-\lambda\left[\begin{array}{cc}
P_{1} & q_{1} \\
q_{1}^{\top} & r_{1}
\end{array}\right]\right) x \geq 0
$$

Floyd's method for termination of while B do C
Find an $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown rank function r which is:

- Nonnegative: $\exists \lambda \in[1, N] \mapsto \mathbb{R}^{+}$:

$$
\forall x_{0}, x: r\left(x_{0}\right)-\sum_{i=1}^{N} \lambda_{i} \sigma_{i}\left(x_{0}, x\right) \geq 0
$$

- Strictly decreasing: $\exists \eta>0: \exists \lambda^{\prime} \in[1, N] \mapsto \mathbb{R}^{+i}$:

$$
\forall x_{0}, x:\left(r\left(x_{0}\right)-r(x)-\eta\right)-\sum_{i=1}^{N} \lambda_{i}^{\prime} \sigma_{i}\left(x_{0}, x\right) \geq 0
$$

Idea 4

Parametric abstraction of the ranking function r

Parametric abstraction

- How can we compute the ranking function r ?
\rightarrow parametric abstraction:

1. Fix the form r_{a} of the function r a priori, in term of unkown parameters a
2. Compute the parameters a numerically

- Examples:

$$
\begin{array}{ll}
r_{a}(x)=a \cdot x^{\top} & \text { linear } \\
r_{a}(x)=a \cdot\left(\begin{array}{ll}
x & 1
\end{array}\right)^{\top} & \text { affine } \\
r_{a}(x)=\left(\begin{array}{ll}
x & 1) \cdot a \cdot\left(\begin{array}{ll}
x & 1
\end{array}\right)^{\top}
\end{array}\right. & \text { quadratic }
\end{array}
$$

Floyd's method for termination of while B do C
Find $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown parameters a, such that:

- Nonnegative: $\exists \lambda \in[1, N] \mapsto \mathbb{R}^{+i}$:

$$
\forall x_{0}, x: r_{a}\left(x_{0}\right)-\sum_{i=1}^{N} \lambda_{i} \sigma_{i}\left(x_{0}, x\right) \geq 0
$$

- Strictly decreasing: $\exists \eta>0: \exists \lambda^{\prime} \in[1, N] \mapsto \mathbb{R}^{+i}:$

$$
\forall x_{0}, x:\left(r_{a}\left(x_{0}\right)-r_{a}(x)-\eta\right)-\sum_{i=1}^{N} \lambda_{i}^{\prime} \sigma_{i}\left(x_{0}, x\right) \geq 0
$$

Idea 5

Eliminate the universal quantification \forall using linear matrix inequalities (LMIs)

Mathematical programming
 $$
\exists x \in \mathbb{R}^{n}: \quad \bigwedge_{i=1}^{N} g_{i}(x) \geqslant 0
$$
 [Minimizing $f(x)$]

feasibility problem : find a solution to the constraints
optimization problem : find a solution, minimizing $f(x)$
Example: Linear programming

$$
\begin{array}{ll}
\exists x \in \mathbb{R}^{n}: & A x \geqslant b \\
{[\text { Minimizing }} & c x]
\end{array}
$$

Feasibility

- feasibility problem: find a solution $s \in \mathbb{R}^{n}$ to the opN timization program, such that $\bigwedge g_{i}(s) \geq 0$, or to determine that the problem is infeasible
- feasible set: $\left\{x \mid \bigwedge_{i=1}^{N} g_{i}(x) \geq 0\right\}$
- a feasibility problem can be converted into the optimization program

$$
\min \left\{-y \in \mathbb{R} \mid \bigwedge_{i=1}^{N} g_{i}(x)-y \geq 0\right\}
$$

Semidefinite programming

$$
\begin{array}{ll}
\exists x \in \mathbb{R}^{n}: & M(x) \succcurlyeq 0 \\
{[\text { Minimizing }} & c x]
\end{array}
$$

Where the linear matrix inequality (LMI) is

$$
M(x)=M_{0}+\sum_{k=1}^{n} x_{k} M_{k}
$$

with symetric matrices $\left(M_{k}=M_{k}^{\top}\right)$ and the positive semidefiniteness is

$$
M(x) \succcurlyeq 0=\forall X \in \mathbb{R}^{N}: X^{\top} M(x) X \geq 0
$$

Semidefinite programming, once again

Feasibility is:

$$
\exists x \in \mathbb{R}^{n}: \forall X \in \mathbb{R}^{N}: X^{\top}\left(M_{0}+\sum_{k=1}^{n} x_{k} M_{k}\right) X \geq 0
$$

of the form of the formulæ we are interested in for programs which semantics can be expressed as LMIs:

$$
\bigwedge_{i=1}^{N} \sigma_{i}\left(x_{0}, x\right) \geqslant_{i} 0=\bigwedge_{i=1}^{N}\left(x_{0} x 1\right) M_{i}\left(x_{0} x 1\right)^{\top} \geqslant_{i} 0
$$

Floyd's method for termination of while B do C
Find $\mathbb{R} / \mathbb{Q} / \mathbb{Z}$-valued unkown parameters a, such that:

- Nonnegative: $\exists \lambda \in[1, N] \mapsto \mathbb{R}^{+}$:
$\forall x_{0}, x: r_{a}\left(x_{0}\right)-\sum_{i=1}^{N} \lambda_{i}\left(x_{0} x 1\right) M_{i}\left(x_{0} x 1\right)^{\top} \geq 0$
- Strictly decreasing: $\exists \eta>0: \exists \lambda^{\prime} \in[1, N] \mapsto \mathbb{R}^{+}$:
$\forall x_{0}, x:\left(r_{a}\left(x_{0}\right)-r_{a}(x)-\eta\right)-\sum_{i=1}^{N} \lambda_{i}^{\prime}\left(x_{0} x 1\right) M_{i}\left(x_{0} x 1\right)^{\top} \geq 0$

Idea 6

Solve the convex constraints by semidefinite programming

The simplex for linear programming

Dantzig 1948, exponential in worst case, good in practice

Polynomial Methods for Linear Porgramming

Ellipsoid method :

- Shor 1970 and Yudin \& Nemirovskii 1975,
- polynomial in worst case Khachian 1979,
- but not good in practice

Interior point method :

- Kamarkar 1984,
- polynomial for both average and worst case, and
- good in practice (hundreds of thousands of variables)

The interior point method

Interior point method for semidefinite programming

- Nesterov \& Nemirovskii 1988, good in practice (thousands of variables)

- Various path strategies e.g. "stay in the middle"

Semidefinite programming solvers

Numerous solvers available under Mathlab ${ }^{\text {® }}$, a.o.:

- lmilab: P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali
- Sdplr: S. Burer, R. Monteiro, C. Choi
- Sdpt3: R. Tütüncü, K. Toh, M. Todd
- SeDuMi: J. Sturm
- bnb: J. Löfberg (integer semidefinite programming)

Common interfaces to these solvers, a.o.:

- Yalmip: J. Löfberg

Sometime need some help (feasibility radius, shift,...)
Constraints and Verification, INI, 8 May 2006

Linear program: termination of Euclidean division

» clear all
\% linear inequalities
$\% \quad y 0$ q0 r0
$\mathrm{Ai}=\left[\begin{array}{llllll}0 & 0 & 0 ; & 0 & 0 & 0 ; \\ 0 & 0 & 0\end{array}\right]$.
$\% \quad$ y \quad q \quad r
$A i_{-}=\left[\begin{array}{cccc}1 & 0 & 0 ; & \% \\ y & -1>=0\end{array}\right.$
$0 \quad 1 \quad 0 ; \% q-1>=0$
0 0 1]; \% r >= 0
bi $=[-1 ;-1 ; 0]$;
\% linear equalities
$\% \quad$ y0 q0 r0
$A \mathrm{~A}=\left[\begin{array}{lll}0 & -1 & 0 ;\end{array} \%-q 0+q-1=0\right.$
$-100 ; \quad \%-y 0+y=0$
0 0-1]; \% -r0 + y + r = 0
$\% \quad$ y \quad q \quad r
$A e_{-}=\left[\begin{array}{llllll}0 & 1 & 0 ; & 1 & 0 & 0 ;\end{array}\right.$
10 1];
be $=[-1 ; 0 ; 0]$;

Iterated forward/backward polyhedral analysis:

$$
\left.\begin{array}{l}
\{\mathrm{y}>=1\} \\
\mathrm{q}:=0 ; \\
\{\mathrm{q}=0, \mathrm{y}>=1\} \\
\mathrm{r}:=\mathrm{x} ; \\
\{\mathrm{x}=\mathrm{r}, \mathrm{q}=0, \mathrm{y}>=1\} \\
\text { while }(\mathrm{y}<=\mathrm{r}) \text { do } \\
\quad\{\mathrm{y}<=\mathrm{r}, \mathrm{q}>=0\} \\
\mathrm{r}:=\mathrm{r}-\mathrm{y} ; \\
\quad\{\mathrm{r}>=0, \mathrm{q}>=0\} \\
\quad \mathrm{q}:=\mathrm{q}+1
\end{array}\right\} \begin{aligned}
& \{\mathrm{r}>=0, \mathrm{q}>=1\}
\end{aligned}
$$

» $[\mathrm{N} \operatorname{Mk}(:,:,:)]=\operatorname{linToMk}\left(A i, A i_{-}, b i\right) ;$
» $[M \operatorname{Mk}(:,:, N+1: N+M)]=l i n T o M k\left(A e, A e _, b e\right)$;
» [v0, v]=variables('y', 'q', 'r');
» display_Mk(Mk, N, v0, v);
$+1 . y-1>=0$
$+1 . q-1>=0$
$+1 . r>=0$
$-1 . \mathrm{q}^{0}+1 . q-1=0$
$-1 . \mathrm{y} 0+1 . \mathrm{y}=0$
-1.r0 +1.y +1.r = 0
» [diagnostic, R] = termination(v0, $\mathrm{v}, \mathrm{Mk}, \mathrm{N}$, 'integer', 'quadratic');
» disp(diagnostic)
termination (bnb)
》intrank(R, v)
$r(y, q, r)=-2 . y+2 . q+6 . r$
Floyd's proposal $r(x, y, q, r)=x-q$ is more intuitive but requires to discover the nonlinear loop invariant $x=r+q y$.

Imposing a feasibility radius

Quadratic program: termination of factorial

Program:

$$
\begin{aligned}
& \mathrm{n}:=0 ; \\
& \mathrm{f}:=1 ; \\
& \text { while }(\mathrm{f}<=\mathrm{N}) \text { do } \\
& \mathrm{n}:=\mathrm{n}+1 ; \\
& \mathrm{f}:=\mathrm{n} * \mathrm{f} \\
& \mathrm{od}
\end{aligned}
$$ LMI semantics:

$$
\begin{aligned}
& -1 . \mathrm{f} 0+1 . \mathrm{N} 0>=0 \\
& +1 . \mathrm{n} 0>=0 \\
& +1 . \mathrm{f} 0-1>=0 \\
& -1 . \mathrm{n} 0+1 . \mathrm{n}-1=0 \\
& +1 . \mathrm{NO}-1 . \mathrm{N}=0 \\
& -1 . \mathrm{f} 0 . \mathrm{n}+1 . \mathrm{f}=0
\end{aligned}
$$

$$
r(n, f, N)=-9.993455 e-01 . n+4.346533 e-04 . f
$$

$$
+2.689218 \mathrm{e}+02 . \mathrm{N}+8.744670 \mathrm{e}+02
$$

Idea 7

Convex abstraction of non-convex constraints

Semidefinite programming relaxation for polynomial programs

```
eps = 1.0e-9;
while (0 <= a) & (a <= 1 - eps)
        & (eps <= x) & (x <= 1) do
    x := a*x*(1-x)
```

od

Write the verification conditions in polynomial form, use SOS solver to relax in semidefinite programming form. SOStool+SeDuMi:

$$
r(x)=1.222356 \mathrm{e}-13 . \mathrm{x}+1.406392 \mathrm{e}+00
$$

Considering More General Forms of Programs

Handling disjunctive loop tests and tests in loop body

- By case analysis
- and "conditional Lagrangian relaxation" (Lagrangian relaxation in each of the cases)

Loop body with tests

```
while (x < y) do
    if (i >= 0) then
        x := x+i+1
    else
        y := y+i
    fi
od
```

 \(\longrightarrow\) case analysis: \(\left\{\begin{array}{l}i \geq 0 \\ i<0\end{array}\right.\)
 lmilab:
$r(i, x, y)=-2.252791 e-09 . i-4.355697 e+07 . x+4.355697 e+07 . y$
$+5.502903 e+08$

Quadratic termination of linear loop

$$
\begin{aligned}
& \{n>=0\} \\
& \text { i }:=n ; j:=n \text {; } \\
& \text { while }(i<>0) \text { do } \\
& \quad \text { if }(j>0) \text { then } \\
& \quad j:=j-1 \\
& \text { else } \\
& \quad j:=n ; \text { i }:=i-1 \\
& \quad \text { fi } \\
& \text { od }
\end{aligned}
$$

\longleftarrow termination precondition determined by iterated forward/backward polyhedral analysis

sdplr (with feasibility radius of $1.0 e+3$):

$$
\begin{aligned}
r(n, i, j)= & +7.024176 e-04 . n^{\wedge} 2+4.394909 e-05 . n . i \ldots \\
& -2.809222 e-03 . n . j+1.533829 e-02 . n \ldots \\
& +1.569773 e-03 . i^{\wedge} 2+7.077127 e-05 . i . j \\
& +3.093629 e+01 . i-7.021870 e-04 . j \wedge 2 \ldots \\
& +9.940151 e-01 . j+4.237694 e+00 \\
& \text { Ranking function }
\end{aligned}
$$

Successive values of $r(n, i, j)$ for $n=10$ on loop entry

Handling nested loops

- by induction on the loop depth
- use an iterated forward/backward symbolic analysis to get a necessary termination precondition
- use a forward symbolic symbolic analysis to get the semantics of a loop body
- use Lagrangian relaxation and semidefinite programming to get the ranking function

Example of termination of nested loops: Bubblesort inner loop

```
+1.i' -1 >= 0
+1.j' -1 >= 0
+1.n0' -1.i' >= 0
-1.j +1.j' -1 = 0
-1.i +1.i' = 0
-1.n +1.n0' = 0
+1.n0-1.n0' = 0
+1.n0' -1.n' = 0
```

Iterated forward/backward polyhedral analysis followed by forward analysis of the body:

```
assume (n0 = n & j >= 0 & i >= 1 & n0 >= i & j <> i);
{n0=n, i>=1,j>=0,n0>=i}
assume (n01 = n0 & n1 = n & i1 = i & j1 = j);
{j=j1,i=i1,n0=n1,n0=n01,n0=n,i>=1,j>=0,n0>=i}
j := j + 1
{j=j1+1,i=i1,n0=n1,n0=n01,n0=n,i>=1,j>=1,n0>=i}
```

termination (lmilab)
$r(n 0, n, i, j)=+434297566 . n 0+226687644 . n-72551842 . i$
$-2 . j+2147483647$

Example of termination of nested loops: Bubblesort outer loop

```
+1.i' +1 >= 0
```

Iterated forward/backward polyhedral analysis
$+1 . \mathrm{n} 0,-1 . \mathrm{i}^{\prime}-1>=0$ followed by forward analysis of the body:
$+1 . i \prime-1 . j{ }^{\prime}+1=0 \quad$ assume $(n 0=n \& i>=0 \& n>=i \& i<>0)$;
$-1 \cdot i+1 \cdot i^{\prime}+1=0 \quad\{n 0=n, i>=0, n 0>=i\}$
$-1 . n+1 . n 0^{\prime}=0$
$+1 . n 0-1 . n 0^{\prime}=0$
$+1 . n 0^{\prime}-1 . n^{\prime}=0$
assume (n01=n0 \& n1=n \& i1=i \& j1=j) ;
$\{j 1=j, i=i 1, n 0=n 1, n 0=n 01, n 0=n, i>=0, n 0>=i\}$
j : = 0;
while (j <> i) do
$j:=j+1$
od;
i := i - 1
$\{i+1=j, i+1=i 1, n 0=n 1, n 0=n 01, n 0=n, i+1>=0, n 0>=i+1\}$
termination (lmilab)
$r(n 0, n, i, j)=+24348786 . n 0+16834142 . n+100314562 . i+65646865$

Handling nondeterminacy

- By case analysis
- Same for concurrency by interleaving
- Same with fairness by nondeterministic interleaving with encoding of an explicit bounded round-robin scheduler (with unknown bound)

Termination of a concurrent program

```
[| 1: while \([\mathrm{x}+2<\mathrm{y}]\) do
    2: \(\quad[\mathrm{x}:=\mathrm{x}+1]\)
        od
    \(3:\)
||
    1: while \([\mathrm{x}+2\) < y\(]\) do
    2: \(\quad[y:=y-1]\)
        od
    \(3:\)
interleaving
                                    while ( \(x+2<y\) ) do
    if \(?=0\) then
        \(\mathrm{x}:=\mathrm{x}+1\)
    else if \(?=0\) then
        \(y:=y-1\)
    else
        \(\mathrm{x}:=\mathrm{x}+1\);
        \(\mathrm{y}:=\mathrm{y}-1\)
    fi fi
    od
```

penbmi: $r(x, y)=2.537395 e+00 . x+-2.537395 e+00 . y^{+}$
-2.046610e-01

Termination of a fair parallel program

```
    [[ while [(x>0)|(y>0) do x := x - 1] od ||
        while [(x>0)|(y>0) do }y:=y-1] od ]
```

interleaving + scheduler

```
    {m>=1}}\leftarrow termination precondition determined by iterated
    s := ?;
    assume ((1 <= s) & (s <= m));
    while ((x > 0) | (y > 0)) do
        if (t = 1) then
        x := x - 1
        else
        y := y - 1
    fi;
    s := s - 1;
```

```
if (s = 0) then
```

if (s = 0) then

```
if (s = 0) then
        if (t = 1) then
        if (t = 1) then
        if (t = 1) then
            t := 0
            t := 0
            t := 0
        else
        else
        else
```

 t := 1
    ```
            t := 1
```

 t := 1
 fi;
 fi;
 fi;
 S := ?;
 S := ?;
 S := ?;
 assume ((1<= s) & (s <= m))
 assume ((1<= s) & (s <= m))
 assume ((1<= s) & (s <= m))
 else
 else
 else
 skip
 skip
 skip
 fi
 fi
 fi
 od;;

```
od;;
```

od;;

```
penbmi: \(r(x, y, m, s, t)=+1.000468 \mathrm{e}+00 . \mathrm{x}+1.000611 \mathrm{e}+00 . \mathrm{y}\) +2.855769e-02.m -3.929197e-07.s +6.588027e-06.t +9.998392e+03
(C) P. Cousot

\section*{Relaxed Parametric Invariance Proof Method}

\section*{Floyd's method for invariance}

Given a loop precondition \(P\), find an unkown loop invariant \(I\) such that:
- The invariant is initial:
\[
\forall x: P(x) \Rightarrow I(x)
\]
- The invariant is inductive:
\[
\forall x, x^{\prime}: I(x) \wedge \llbracket \mathrm{B} ; \mathrm{C} \rrbracket\left(x, x^{\prime}\right) \Rightarrow I\left(x^{\prime}\right)
\]
???

\section*{Abstraction}
- Express loop semantics as a conjunction of LMI constraints (by relaxation for polynomial semantics)
- Eliminate the conjunction and implication by Lagrangian relaxation
- Fix the form of the unkown invariant by parametric abstraction
. . . we get . . .

\section*{Floyd's method for numerical programs}

Find \(\mathbb{R} / \mathbb{Q} / \mathbb{Z}\)-valued unkown parameters \(a\), such that:
- The invariant is initial: \(\exists \mu \in \mathbb{R}^{+}\):
\[
\forall x: I_{a}(x)-\mu \cdot P(x) \geq 0
\]
- The invariant is inductive: \(\exists \lambda \in[0, N] \longrightarrow \mathbb{R}^{+}:\)
\[
\begin{gathered}
\forall x, x^{\prime}: I_{a}\left(x^{\prime}\right)-\lambda_{0} \cdot I_{a}(x)-\sum_{k=1}^{N} \lambda_{k} \cdot \sigma_{k}\left(x, x^{\prime}\right) \geq 0 \\
\uparrow \uparrow \text { bilinear in } \lambda_{0} \text { and } a
\end{gathered}
\]

\section*{Idea 8}

\section*{Solve the bilinear matrix inequality (BMI) by semidefinite programming}

\section*{Bilinear matrix inequality (BMI) solvers}
\(\exists x \in \mathbb{R}^{n}: \bigwedge_{i=1}^{m}\left(M_{0}^{i}+\sum_{k=1}^{n} x_{k} M_{k}^{i}+\sum_{k=1}^{n} \sum_{\ell=1}^{n} x_{k} x_{\ell} N_{k \ell}^{i} \succcurlyeq 0\right)\)
[Minimizing \(\left.x^{\top} Q x+c x\right]\)
Two solvers available under Mathlab:
- PenBMI: M. Kočvara, M. Stingl
- bomi.bnb: J. Löfberg

Common interfaces to these solvers:
- Yalmip: J. Löfberg

\section*{Example: linear invariant}
```

Program: - Invariant:
i := 2; j := 0;
while (??) do
if (??) then
i:= i + 4 - Less natural than i-2j-2\geq0
else
i := i + 2; - Alternative:
j := j + 1
fi
od;

- Invariant:
$+2.14678 e-12 * i-3.12793 e-10 * j+0.486712>=0$
- Less natural than $i-2 j-2 \geq 0$
- Alternative:
- Determine parameters (a) by other methods (e.g. random interpretation)
- Use BMI solvers to check for invariance

```


\section*{Constraint resolution failure}
- infeasibility of the constraints does not mean "non termination" or "non invariance" but simply failure
- inherent to abstraction!

\section*{Numerical errors}
- LMI/BMI solvers do numerical computations with rounding errors, shifts, etc
- ranking function is subject to numerical errors
- the hard point is to discover a candidate for the ranking function
- much less difficult, when the ranking function is known, to re-check for satisfaction (e.g. by static analysis)
- not very satisfactory for invariance (checking only ???)

\section*{Related anterior work}
- Linear case (Farkas lemma):
- Invariants: Sankaranarayanan, Spima, Manna (CAV'03, SAS'04, heuristic solver)
- Termination: Podelski \& Rybalchenko (VMCAI'03, Lagrange coefficients eliminated by hand to reduce to linear programming so no disjunctions, no tests, etc)
- Parallelization \& scheduling: Feautrier, easily generalizable to nonlinear case

\section*{Related posterior work}
- Termination using Lyapunov functions: Roozbehani, Feron \& Megrestki (HSCC 2005)

\section*{Seminal work}
- LMI case, Lyapunov 1890, "an invariant set of a differential equation is stable in the sense that it attracts all solutions if one can find a function that is bounded from below and
 decreases along all solutions outside the invariant set".

\section*{THE END, THANK YOU}

More details and references in the VMCAI'05 paper.

\section*{ANNEX}
- Main steps in a typical soundness/completeness proof
- SOS relaxation principle

\section*{Main steps in a typical soundness/completeness proof}
\[
\begin{gathered}
\exists r: \forall x, x^{\prime}: \llbracket B ; C \rrbracket\left(x x^{\prime}\right) \Rightarrow r\left(x, x^{\prime}\right) \geq 0 \\
\Longleftrightarrow \exists r: \forall x, x^{\prime}: \bigwedge_{k=1}^{N} \sigma_{k}\left(x, x^{\prime}\right) \geq 0 \Rightarrow r\left(x, x^{\prime}\right) \geq 0
\end{gathered}
\]
\[
\text { 2Lagrangian relaxation }(\Longrightarrow \text { if lossless }) \text { ) }
\]
\[
\begin{aligned}
& \exists r: \exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}: \forall x, x^{\prime} \in \mathbb{D}^{n}: r\left(x, x^{\prime}\right)- \\
& \sum_{k=1}^{N} \lambda_{k} \sigma_{k}\left(x x^{\prime}\right) \geq 0
\end{aligned}
\]
\(\Longleftarrow \quad\) Semantics abstracted in LMI form \((\Longrightarrow\) if exact abstraction) \(S\)
\[
\begin{aligned}
& \exists r: \exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}: \forall x, x^{\prime} \in \mathbb{D}^{n}: r\left(x, x^{\prime}\right)- \\
& \sum_{1}^{N} \lambda_{k}\left(x x^{\prime} 1\right) M_{k}\left(x x^{\prime} 1\right)^{\top} \geq 0
\end{aligned}
\]
\[
\Longleftrightarrow \quad \text { Choose form of } r\left(x, x^{\prime}\right)=\left(x x^{\prime} 1\right) M_{0}\left(x x^{\prime} 1\right)^{\top} S
\]
\[
\Longleftrightarrow \exists M_{0}: \exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}: \forall x, x^{\prime} \in \mathbb{D}^{n}:
\]
\[
\left(x x^{\prime} 1\right) M_{0}\left(x x^{\prime} 1\right)^{\top}-\sum_{k=1}^{N} \lambda_{k}\left(x x^{\prime} 1\right) M_{k}\left(x x^{\prime} 1\right)^{\top} \geq 0
\]
\(\Longleftrightarrow \exists M_{0}: \exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}: \forall x, x^{\prime} \in \mathbb{D}^{(n \times 1)}:\)
\[
\left[\begin{array}{c}
x \\
x^{\prime} \\
1
\end{array}\right]^{\top}\left(M_{0}-\sum_{k=1}^{N} \lambda_{k} M_{k}\right)\left[\begin{array}{c}
x \\
x^{\prime} \\
1
\end{array}\right] \geq 0
\]

2if \((x 1) A(x 1)^{\top} \geq 0\) for all \(x\), this is the same as \((y t) A(y t)^{\top} \geq 0\) for all \(y\) and all \(t \neq 0\) (multiply the original inequality by \(t^{2}\) and call \(x t=y\) ). Since the latter inequality holds true for all \(x\) and all \(t \neq 0\), by continuity it holds true for all \(x, t\), that is, the original inequality is equivalent to positive semidefiniteness of \(A S\)
\[
\begin{aligned}
& \exists M_{0}: \exists \lambda \in[1, N] \mapsto \mathbb{R}_{*}:\binom{\left.M_{0}-\sum_{k=1}^{N} \lambda_{k} M_{k}\right) \succcurlyeq 0}{\quad \text { }} \succcurlyeq \text { LMI solver provides } M_{0}(\text { and } \lambda) \rho
\end{aligned}
\]

\section*{SOS Relaxation Principle}
- Show \(\forall x: p(x) \geq 0\) by \(\forall x: p(x)=\sum_{i=1}^{k} q_{i}(x)^{2}\)
- Hibert's 17th problem (sum of squares)
- Undecidable (but for monovariable or low degrees)
- Look for an approximation (relaxation) by semidefinite programming

\section*{General relaxation/approximation idea}
- Write the polynomials in quadratic form with monomials as variables: \(p(x, y, \ldots)=z^{\top} Q z\) where \(Q \succcurlyeq 0\) is a semidefinite positive matrix of unknowns and \(z=\) \(\left[\ldots x^{2}, x y, y^{2}, \ldots x, y, \ldots 1\right]\) is a monomial basis
- If such a \(Q\) does exist then \(p(x, y, \ldots)\) is a sum of squares \({ }^{5}\)
- The equality \(p(x, y, \ldots)=z^{\top} Q z\) yields LMI contrains on the unkown \(Q: z^{\top} M(Q) z \succcurlyeq 0\)

\footnotetext{
\({ }^{5}\) Since \(Q \succcurlyeq 0, Q\) has a Cholesky decomposition \(L\) which is an upper triangular matrix \(L\) such that \(Q=L^{\top} L\). It follows that \(p(x)=z^{\top} Q z=z^{\top} L^{\top} L z=(L z)^{\top} L z=\left[L_{i,:} \cdot z\right]^{\top}\left[L_{i,:} \cdot z\right]=\sum_{i}\left(L_{i,:} \cdot z\right)^{2}\) (where \(\cdot\) is the vector dot product \(x \cdot y=\sum_{i} x_{i} y_{i}\), proving that \(p(x)\) is a sum of squares whence \(\forall x: p(x) \geq 0\), which eliminates the universal quantification on \(x\).
}
- Instead of quantifying over monomials values \(x, y\), replace the monomial basis \(z\) by auxiliary variables \(X\) (loosing relationships between values of monomials)
- To find such a \(Q \succcurlyeq 0\), check for semidefinite positiveness \(\exists Q: \forall X: X^{\top} M(Q) X \geq 0\) i.e. \(\exists Q: M(Q) \succcurlyeq 0\) with LMI solver
- Implement with SOStools under Mathlab of Prajna, Papachristodoulou, Seiler and Parrilo
- Nonlinear cost since the monomial basis has size \(\binom{n+m}{m}\) for multivariate polynomials of degree \(n\) with \(m\) variables

Constraints and Verification, INI, 8 May 2006```


[^0]:    1 under Tarski's fixpoint theorem hypotheses

[^1]:    2 An example is set-based analysis as shown in Patrick Cousot \& Radhia Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis by Abstract Interpretation. In Conference Record of FPCA '95 ACM Conference on Functional Programming and Computer Architecture, pages 170-181, La Jolla, California, U.S.A., 25-28 June 1995.

[^2]:    ${ }^{3}$ See Sect. 11.2 of Patrick Cousot. Constructive Design of a hierarchy of Semantics of a Transition System by Abstract Interpretation. Theoret. Comput. Sci. 277(1-2):47-103, 2002. © Elsevier Science.

[^3]:    4 See e.g. RedLog http://www.fmi.uni-passau.de/~redlog/

