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1. Introduction
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Motivation
• Claims:

-- In model-checking the properties to be checked are a user-defined
parameter of the model checker;

-- In abstract interpretation , the properties to be discovered are wired
in the (generic) static program analyzer;

• Not completely true (see the invariant and intermittent assertions for
abstract testing in [1 , 2]);

• Can we do better? temporal logic specifications.

References

[1] F. Bourdoncle. Abstract Debugging of Higher-Order Imperative Languages. ACM PLDI’93, 46–55,
1993.

[2] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D. Jones, eds,
Program Flow Analysis: Theory and Applications , ch. 10, 303–342. Prentice-Hall, 1981.
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Objective of the talk

• Not a general presentation;
• Just consider a very simple example:

Derive a dataflow analysis by abstract inter­
pretation of its temporal logic specification
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2. Background
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Traditional Dataflow Analysis… [3] 1, 2

• In traditional boolean dataflow analysis, the problem specification for
the flowchart program is left informal;

• Or, it is expressed informally along a program path and then there is
a merge over all paths 3;

• Correctness by intuition (informal arguments).

Reference

[3] T.J. Marlowe and B.G. Ryder. Properties of data flow frameworks: A unified model. Acta Infor­
matica 28, 121–163, 1990.

1 small part of it only!
2 for short, oversimplified!
3 which coincide with fixpoint solutions for distributive frameworks.
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Abstract Interpretation coming in… [4]

• A prefix-closed path semantics of the transition system (program) is
expressed in fixpoint form;

• The dataflow problem specification is by an abstraction function de­
scribing:
-- The property along one path;
-- How path properties are merged;

• Using abstract interpretation techniques, the boolean dataflow fix­
point equations were formally derived by calculational design from the
trace-based semantics. Correctness by construction.

• Only one example (available expressions).
Reference

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. 6th ACM POPL,
269–282, 1979.
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Model-checking coming in… [5]

• The program is a flowchart (with obvious semantics);
• Abstract interpretation is used to derive the transfer functions at the

node level;
• The dataflow problem specification is by a branching time temporal

logic formula;
• Classical model-checking algorithms are used to check the program

model for the temporal formula;
• Correctness by specification.

Reference

[5] B. Steffen. Data flow analysis as model-checking. TACS’91, 346–364, Springer, 1991.
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Model-checking with more Abstract Interpretation… [6]

• The abstract flowchart is proved to be an abstract interpretation of a
trace-based semantics;

• The dataflow problem specification is by a branching time temporal
logic formula;

• It is shown that the algorithms checking the program model for the
temporal formula yield the same result as the dataflow equations;

• Correctness by abstract interpretation (flowchart) and by specification
(dataflow problem).

Reference

[6] D.A. Schmidt. Data-flow analysis is model checking of abstract interpretations. 25th ACM POPL,
1998.
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Bad news…

A Bug!
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Live Variables Analysis is Unsound

Reference

[7] D.A. Schmidt. Data-flow analysis is model checking of abstract interpretations. 25th ACM POPL,
1998 (see Figure 5 and paragraph 7 “Why Some Analyses are Unsound”).
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y := 1
x

x, y deadx == 2

x := y

tt

f
x, y

x, y y
Liveness analysis
claims y to be live
before test which is
wrong when initially
not x == 2! [8]

Reference

[8] D.A. Schmidt. Data-flow analysis is model checking of abstract interpretations. 25th ACM POPL,
1998.
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Questions…

• What should we think of a model-checking based design methodology
which let you design unsound analyzes 7?

• Who is guilty?
-- Abstract interpretation 8?
-- Data flow analysis 9?
-- Model-checking?

7 is everybody as wise as D. Schmidt to find a 25 years old bug? Does B. Steffen tool in Passau effectively signals that bug to the user?
8 I can’t believe it!
9 D. Schmidt forgives them by claiming “Of course, data-flow practitioners are well aware of the above problem, and disaster does not arise in practice

… But we might not be so fortunate in general.”
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My Diagnosis…

• Model-checking is guilty!
• The lacuna is that the model-checking specification by a temporal

logic formula does not take the abstraction process into ac­
count;

• This is common in the model-checking community:
-- who really cares about how the finite model is obtained?
-- the model is the truth, the specification is the truth, model-checking
is only about their concordance!

• In the program analysis community we (should) care: the programming
language semantics is the referential (or should be).
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Which (general) fix cures the
problem in the context of program

analysis?
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Good news… 10

Abstract Interpretation!

10 I am sure you got it right!
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In the rest of the talk, I will explain…

• How to design a dataflow analysis specified by a temporal formula and
an abstraction so that it is correct by construction;

• To do so I just have to show that:

Model-checking is an abstract
interpretation!

and then instanciate for the dataflow analysis problem specified by a
temporal formula;

• Only a very small part is shown (indeed only what is necessary for live
variables analysis);
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3. RTL: Reversible Temporal Logic
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Which Temporal Logic?

• Dataflow analysis people are used to reason on (merge over all) paths
so we prefer a linear time logic (one path at the time) to the branching
time logics considered by Steffen and Schmidt;

• Dataflow analysis people make no essential distinction beetween for­
ward and backward analyses so that one should directly derive one
from the other 15; We introduce a new temporal reversal operator to
make past and future completely symmetric;

• Dataflow analysis people make no essential distinction beetween mini­
mal and maximal flow problem so that one should directly derive one
from the other (using duality 16).

15 as in P. Cousot & R. Cousot Systematic design of program analysis frameworks. 6th ACM POPL, 269–282, 1979 where backward is just forward for
the inverse transition system.

16 as in P. Cousot. Semantic foundations of program analysis. S.S. Muchnick & N.D. Jones, eds, Program Flow Analysis: Theory and Applications ,
ch 10, 303–342. Prentice-Hall, 1981.
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RTL: Reversible Temporal Logic — Syntax

l ∈ L locations
π ∈ S state predicates
π ::= tt true

| ff false
| at(l) at control predicate
| . . .

τ ∈ T transition predicates
τ ::= 1 identity

| τ1−1 inverse
| . . .
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RTL: Reversible Temporal Logic — Syntax (continued)

. . .
ϕ,ψ ∈ F temporal formulae
ϕ ::= π state predicate

| τ transition predicate
| ©ϕ1 next
| ϕ1 U ϕ2 until
| ϕ1 reversal
| ϕ1 ∨ ϕ2 disjunction
| ¬ϕ1 negation
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RTL: Reversible Temporal Logic — Semantic Domains

% set of states
$= ℘(%) semantic domain of state predicates
$= ℘(%× %) semantic domain of transition predicates
$= &→ % paths
$= × computations
$= ℘( ) semantic domain of temporal formulae
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RTL: Reversible Temporal Logic — Semantic functions

∈ S &→ semantics of state predicates
∈ S &→ % &→ (isomorphic alternative)

∈ T &→ semantics of transition predicates
∈ T &→ (%× %) &→ (isomorphic alternative)

∈ F &→ semantics of temporal formulae
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RTL: Reversible Temporal Logic — Semantics

tt $= %

ff $= ∅
. . .

1 $= {〈s, s〉 | s ∈ %}
τ−1 $= ( τ )−1

. . .

π
$= {〈i, σ〉 | σi ∈ π }

τ
$= {〈i, σ〉 | 〈σi, σi+1〉 ∈ τ }
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RTL: Reversible Temporal Logic — Semantics (Continued)

©ϕ1
$= {〈i, σ〉 | 〈i + 1, σ〉 ∈ ϕ1 }

ϕ1 U ϕ2
$= {〈i, σ〉 | ∃k ≥ i : 〈k, σ〉 ∈ ϕ2 ∧

∀j : i ≤ j < k : 〈j, σ〉 ∈ ϕ1 }
ϕ1 ∨ ϕ2

$= ϕ1 ∪ ϕ2

¬ϕ
$= \ ϕ (also written ¬ ϕ )

ϕ
$= {〈−i, λj •σ−j〉 | 〈i, σ〉 ∈ ϕ }

(also written ( ϕ ) )
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RTL: Reversible Temporal Logic — Abbreviations

ϕ1 ∧ ϕ2
$= ¬(¬ϕ1 ∨ ¬ϕ2) conjunction

ϕ1 → ϕ2
$= ¬(ϕ1) ∨ ϕ2 implication

ϕ
$= tt U ϕ sometime or eventually

ϕ
$= ¬ ¬ϕ always or henceforth

ϕ1 ⇒ ϕ2
$= (ϕ1 → ϕ2) entailment

ϕ1 W ϕ2
$= (ϕ1 U ϕ2) ∨ ϕ1 unless or waiting-for

−©ϕ
$= (©ϕ ) previous

ϕ1 S ϕ2
$= (ϕ1 U ϕ2 ) since

− ϕ $= ( ϕ ) has always been
− ϕ $= ( ϕ ) once
ϕ1 B ϕ2

$= (ϕ1 W ϕ2 ) back to
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Implication and Equivalence of Temporal Formulae

ϕ1 ≡) ϕ2
$= ϕ1 ⊆ ϕ2 Implication

ϕ1 ≡ ϕ2
$= ϕ1 = ϕ2 Equivalence

(≡ is a conguence on F).
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RTL: Reversible Temporal Logic — Fixpoint Semantics

ϕ1 U ϕ2 = lfp
⊆
λX • ϕ2 ∪ ( ϕ1 ∩ pre[X ]) (1)

where

pre[X ] $= {〈i− 1, σ〉 | 〈i, σ〉 ∈ X}

so that ©ϕ = pre[ ϕ ] whence:

ϕ1 U ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ ©(ϕ1 U ϕ2))
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RTL: Reversible Temporal Logic — Fixpoint Semantics
(Continued)

All other cases directly follows by:
• Lattice duality:

gfp
4

F = lfp
5

F

• Park negation duality 17:

¬(gfp F ) = lfpλX • ¬F (¬X)

• Reversal duality:

(lfp F ) = lfpλX •(F (X ))

17 in the complete boolean lattice
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4. The Semantics of Programs
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Small Step Operational Semantics

Transition predicate:

trans ∈ T

Final states are the only possible blocking states and they are repeated
forever:

final $= ¬ trans ∧ 1

and symmetrically for the initial states:

init $= −©(¬ trans) ∧ − 1
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Trace-Based Operational Semantics
• We define the forward and backward transition predicates as:

ftrans, btrans ∈ T
ftrans $= trans ∨ final
btrans $= −© trans ∨ init

• The trace-based operational semantics of a program is (including non­
termination and symmetrically non intialization):

fsem $= ftrans forward operational semantics

bsem $= − btrans backward operational semantics

sem $= fsem ∧ bsem operational semantics
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5. Abstract Interpretation
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In one definition…

We use the following notation:

〈M, 7〉 −−−→←−−−α
γ
〈L, 4〉

for Galois connections:

∀x ∈M, y ∈ L : α(x) 4 y ⇐⇒ x 7 γ(y)

We write 〈M, 7〉 −−→−→←−−−−
α

γ
〈L, 4〉 when α is surjective, 〈M, 7〉 −−−−→←←−−−α

γ
〈L, 4〉 when

α is injective and 〈M, 7〉 −−→−→←←−−−α
γ
〈L, 4〉 when α is bijective.
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… and one theorem

Theorem 1 If 〈M, 7 , 0 , ∨〉 is a cpo, the pair 〈α, γ〉 is a Galois
connection 〈M, 7〉 −−−→←−−−α

γ
〈L, 4〉 , F ∈ M

mon&−→ M and G ∈ L
mon&−→ L

are monotonic and satisfy the semi-commutation condition

∀y ∈ L : γ(y) 7 lfp
7

F =⇒ α ◦ F ◦ γ(y) 4 G(y)
or equivalently ∀x ∈M : γ ◦ α(x) 7 lfp

7
F ⇒ α ◦ F(x) 4 G ◦ α(x)

or equivalently ∀y ∈ L : γ(y) 7 lfp
7

F =⇒ F ◦ γ(y) 7 γ ◦ G(y)
then

lfp
7

F 7 γ(lfp
4

G)
and equivalently α(lfp

7
F) 4 lfp

4
G.
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6. The Model-Checking Abstractions
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Boolean Universal Abstraction

The boolean universal satisfaction abstraction α∀ ϕ (M ) checks all com­
putations of the model M for the temporal formula ϕ:

α∀ ∈ F &→ &→ γ∀ ∈ F &→ &→
α∀ ϕ (M ) $= M ϕ γ∀ ϕ (b) $= ((b ? ϕ ¿ ))

= M ⊆ ϕ

This is a generic Galois connection parameterized by the temporal for­
mula ϕ:

〈 , ⊆〉 −−−−−→←−−−−−
α∀ ϕ

γ∀ ϕ
〈 , ⇐=〉
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By Dualization: Four Different Abstractions

α∀ ϕ (M ) $= M ⊆ ϕ 〈 , ⊆〉 −−−−−→←−−−−−
α∀ ϕ

γ∀ ϕ 〈 , ⇐=〉 Universal

α∃ ϕ (M ) $= ¬α∀ ¬ϕ (M ) 〈 , ⊆〉 −−−−−→←−−−−−
α∃ ϕ

γ∃ ϕ 〈 , =⇒〉 Existential

α∀̃ ϕ (M ) $= ¬α∀ ϕ (¬M ) 〈 , ⊇〉 −−−−−→←−−−−−
α∀̃ ϕ

γ ∀̃ ϕ 〈 , =⇒〉 Dual
Universal

α∃̃ ϕ (M ) $= ¬α∃ ϕ (¬M ) 〈 , ⊇〉 −−−−−→←−−−−−
α∃̃ ϕ

γ ∃̃ ϕ 〈 , ⇐=〉 Dual
Existential
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More on the Existential Satisfaction Abstraction

α∃ ϕ (M ) $= ¬α∀ ¬ϕ (M )

= . . . easing calculation

= (M ∩ ϕ ) == ∅

(2)

The boolean existential satisfaction abstraction α∃ ϕ (M ) checks that
some computations of the model M do satisfy the temporal formula ϕ.
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State Static Partitionning

• Let’s check the model for each state;
• State projection:

•↓• ∈ &→ % &→
M↓s

$= {〈i, σ〉 ∈M | σi = s}
• Static state partitionning abstraction:

α%(M ) $= λs• M↓s γ%(S) $=
⋃

s∈%
S(s)↓s

• Galois isomorphism 18:

〈 , ⊆〉 −−−−→−→←←−−−−−
α%

γ% 〈
∏

s∈%
↓s, ⊆̇〉

18 so no information is lost.
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State Partionned Satisfaction Abstractions

α̇∀
%̈
ϕ

$= ˙α∀ ϕ ◦ α%

γ̇∀
%̈
ϕ

$= γ% ◦ ˙γ∀ ϕ

〈 , ⊆〉 −−−−−→←−−−−−
α̇∀
%̈ ϕ

γ̇∀
%̈ ϕ

〈% &→ , ⇐̇=〉

α̇∀̃
%̈
ϕ

$= ˙α∀̃ ϕ ◦ α̃%
19

γ̇ ∀̃
%̈
ϕ

$= γ̃% ◦
˙γ ∀̃ ϕ

〈 , ⊇〉 −−−−−→←−−−−−
α̇∀̃
%̈ ϕ

γ̇ ∀̃
%̈ ϕ

〈% &→ , ˙=⇒〉

α̇∃
%̈
ϕ

$= ˙α∃ ϕ ◦ α%

γ̇∃
%̈
ϕ

$= γ% ◦ ˙γ∃ ϕ

〈 , ⊆〉 −−−−−→←−−−−−
α̇∃
%̈ ϕ

γ̇∃
%̈ ϕ

〈% &→ , ˙=⇒〉

α̇∃̃
%̈
ϕ

$= ˙α∃̃ ϕ ◦ α̃%

γ̇ ∃̃
%̈
ϕ

$= γ̃% ◦
˙γ ∃̃ ϕ

〈 , ⊇〉 −−−−−→←−−−−−
α̇∃̃
%̈ ϕ

γ̇ ∃̃
%̈ ϕ

〈% &→ , ⇐̇=〉

19 α̃! is the dual of α!.
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Location Static Partitionning

• Let’s now have a coarser partition according to locations (program
points, call strings, contours, … 20);

• The locations are assumed to cover all states:

∀s ∈ % : ∃l ∈ L : s ∈ at(l) (3)

20 need not be finite!
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Location Static Partitionning Abstraction

• Location partitionning:

α∀L
$= λf •λl•

∧

s∈ at(l)

f (s) 〈% &→ , ⇐̇=〉 −−−→←−−−
α∀L

γ∀L 〈L &→ , ⇐̇=〉

γ∀L
$= λg•λs•

∨

s∈ at(l)

g(l)

• Dually α∃L and γ∃L such that:

〈% &→ , ˙=⇒〉 −−−→←−−−
α∃L

γ∃L 〈L &→ , ˙=⇒〉
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Location Partionned Satisfaction Abstractions

α̇∀
L̈ ϕ

$= α∀L ◦ α̇∀
%̈
ϕ

γ̇∀
L̈ ϕ

$= γ̇∀
%̈
ϕ ◦ γ∀L

〈 , ⊆〉 −−−−−→←−−−−−
α̇∀

L̈ ϕ

γ̇∀
L̈ ϕ

〈L &→ , ⇐̇=〉

α̇∀̃
L̈ ϕ

$= α∃L ◦ α̇∀̃
%̈
ϕ

γ̇ ∀̃
L̈ ϕ

$= γ̇ ∀̃
%̈
ϕ ◦ γ∃L

〈 , ⊇〉 −−−−−→←−−−−−
α̇∀̃

L̈ ϕ

γ̇ ∀̃
L̈ ϕ

〈L &→ , ˙=⇒〉

α̇∃
L̈ ϕ

$= α∃L ◦ α̇∃
%̈
ϕ

γ̇∃
L̈ ϕ

$= γ̇∃
%̈
ϕ ◦ γ∃L

〈 , ⊆〉 −−−−−→←−−−−−
α̇∃

L̈ ϕ

γ̇∃
L̈ ϕ

〈L &→ , ˙=⇒〉 (4)

α̇∃̃
L̈ ϕ

$= α∀L ◦ α̇∃̃
%̈
ϕ

γ̇ ∃̃
L̈ ϕ

$= γ̇ ∃̃
%̈
ϕ ◦ γ∀L

〈 , ⊇〉 −−−−−→←−−−−−
α̇∃̃

L̈ ϕ

γ̇ ∃̃
L̈ ϕ

〈L &→ , ⇐̇=〉
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7. The Calculational Design of the Abstract
Model-Checking Algorithms by Abstract
Interpretation
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Location Partionned Existential Satisfaction Abstractions of
the Forward Trace Semantics

• Assume we are interested in checking for any location l ∈ L whether
there is a computation from l such that τ1 will hold until eventually τ2
does hold;

• Formally we want to calculate/compute:

α̇∃
L̈ τ1Uτ2 ( fsem ) (5)

• Design strategy:
-- Express this as the abstraction of a fixpoint (see (1))
-- Use the fixpoint approximation Theorem 1 with the Galois connection
(4) (or dual forms).
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Fixpoint Abstraction

α̇∃
L̈ τ1Uτ2 ( fsem )

= . . . skipping 12 lines of hand computation using (1)

= α̇∃
L̈ fsem (lfp

⊆
λX • τ2 ∪ ( τ1 ∩ pre[X ]))
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Calculating the Semi-commuting Abstract Transformer

We assume:

X = τ2 ∪ ( τ1 ∩ pre[X ])
, = ftrans ∧ ©,

and calculate:

α̇∃
L̈ fsem ( τ2 ∪ ( τ1 ∩ pre[X ]))

˙=⇒ . . . skipping 25 lines of hand computation

= F -(α̇∃
L̈ fsem (X))

so that Theorem 1 with the Galois connection (4) , we conclude …/…
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…/…

α̇∃
L̈ τ1Uτ2 ( fsem ) = α̇∃

L̈ fsem (lfp
⊆
λX • τ2 ∪ ( τ1 ∩ pre[X ]))

˙=⇒ lfp
˙=⇒

F -

where

F -(X) $= λl•(∃l′ : ∃
L τ2 (l, l′)) ∨

∨

l′∈succ(l)

∃
L τ1 (l, l′) ∧X(l′)

and
succ(l) $= {l′ | ∃s ∈ at(l) : ∃s′ ∈ at(l′) : ftrans (s, s′)}

∃
L τ (l, l′) $=

∨

s ∈ at(l) ∧ ftrans (s, s′) ∧ s′ ∈ at(l′)

τ (s, s′)
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8. Application to Live-Variables Analysis

“In live-variable analysis we wish to know for variable x and point p
whether the value of x at p could be used along some path in the flow
graph starting at p. If so, we say x is live at p; otherwise x is dead at
p ” [9 , p. 631].

References

[9] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Technique and Tools. Addison-Wesley,
1986.
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Live-Variables Analysis is a Sound Location Partionned
Model-Checking Existential Abstraction of the Trace

Semantics
• For a single flowchart node:

mod(x) : transitions potentially modifying variable x
used(x) : transitions definitively using the value of variable x

• Along one path: Variable x is live at the origin of a computation iff it
will not be modified until it is used:

isLive(x) $= (¬ mod(x)) U used(x)

• Merge over some path: Variable x is live at location l if and only if it
is live on some computation path starting from that location:

Live(x) $= α̇∃
L̈ isLive(x) ( fsem )
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The Classical Live-Variables Dataflow Equations are
Definitely Sound

Live(x) ˙=⇒ Live-(x)
$= lfp

˙=⇒
λX •λl• (∃l′ : ∃

L used(x) (l, l′)) ∨
∨

l′∈succ(l)

∃
L (¬ mod(x)) (l, l′) ∧X(l′)

• Note: ˙=⇒ , not ⇐̇=!
• Hence Dead-(x) $= ¬Live-(x) ˙=⇒ ¬Live(x) $= Dead(x);
• So Dave forgives the practitionners!
• And now the practitionners forgive Dave!
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So what is Unsound?

• Live-variables analysis is a location partionned model-checking existen­
tial/merge over some paths abstraction of the trace semantics;

• It is unsound to reason on live-variables analysis as if it were a location
partionned model-checking universal/merge over all paths abstraction
of the trace semantics;

• Model-checking is unsound in that it does not make explicit which of
the abstractions is involved (and there are many such as α̇∀

L̈
, α̇∀̃

L̈
, α̇∃

L̈
and α̇∃̃

L̈
).
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9. Conclusion
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Conclusion (on Live-Variables Analysis Being Unsound)

• Data-flow analysis was not guilty;
• Model-Checking was guilty , by not taking the abstraction process into

account;
• Abstract Interpretation was the rescuer:

-- Which abstractions are used is made explicit;
-- Abstraction is used for the formal calculational design of correct al­
gorithms;

-- Abstract Interpretation provides an unambiguous understanding of
what is going on.
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Conclusion (on Model-Checking Design by Abstract
Interpretation)

• In this talk, we have chosen to handle a striking example rather than
present formally the full theory;

• In full generality, we have to handle any α ϕ ( ψ ) for α in the
cube of abstractions and all possible RTL formulae ϕ,ψ ∈ F (to get
interleaved fixpoints);

• A more general and debatable question:
Is model-checking of any practical use in program static
analysis? 23

23 In G. Nelson talk the invariant were 10% of the program size. Who will write the invariants for his 30000 lines Java program in the form of a 3000
lines temporal formula? Isn’t abstract debugging/testing with invariant/intermittent assertions (virtually) included in the program text much better?
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A final advertising…

What can abstract interpretation do for you?
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Abstract Interpretation…

In one single formal framework, abstract interpretation lets you meta-understand
the foundational aspects of:
• Data flow analysis;
• Constraint based program analysis;
• Types and effect systems;
• …
• Relationships between semantics;
• …
and now:
• Model-Checking;
• Including its use in the design of sound program analyzes!
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Abstract Interpretation…

Abstract interpretation is a theory of discrete approximation
of semantics, not only a peculiar static program analysis
method.
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More on the Calculational Design
of Abstract Interpretations

A complete calculational design of an abstract interpreter:

P. Cousot.
Calculational System Design.
chapter “The Calculational Design of a Generic Abstract Interpreter”.
NATO ASI Series F. IOS Press, Amsterdam, 1999.

and its OCAML implementation:

P. Cousot.
The Marktoberdorf’98 generic abstract interpreter.
http://www.dmi.ens.fr/˜cousot/Marktoberdorf98.shtml
November 1998.
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THE END

Dagstuhl Seminar on Program Analysis , April 11–16, 1999 — 78 — © P. & R. Cousot


