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Motivation
e Claims:
- In model-checking the properties to be checked are a user-defined
parameter of the model checker;
- In abstract interpretation, the properties to be discovered are wired
in the (generic) static program analyzer;
e Not completely true (see the invariant and intermittent assertions for
abstract testing in [1, 2]);
e Can we do better? temporal logic specifications.

References

[1] F. Bourdoncle. Abstract Debugging of Higher-Order Imperative Languages. ACM PLDI'93, 46-55,
1993.

[2] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D. Jones, eds,
Program Flow Analysis: Theory and Applications, ch. 10, 303-342. Prentice-Hall, 1981.
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1. Introduction

Dagstuhl Seminar on Program Analysis, April 11-16, 1999 o —2—1 U © P. & R. CousoT

Objective of the talk

e Not a general presentation;

e Just consider a very simple example:

Derive a dataflow analysis by abstract inter-
pretation of its temporal logic specification
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2. Background
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Abstract Interpretation coming in... [4]

e A prefix-closed path semantics of the transition system (program) is
expressed in fixpoint form;

e The dataflow problem specification is by an abstraction function de-
scribing:
- The property along one path;
- How path properties are merged;

e Using abstract interpretation techniques, the boolean dataflow fix-
point equations were formally derived by calculational design from the
trace-based semantics. Correctness by construction.

e Only one example (available expressions).
__ Reference

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. 6" ACM POPL,
269-282, 1979.
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Traditional Dataflow Analysis... [3]"?

e In traditional boolean dataflow analysis, the problem specification for
the flowchart program is left informal;

e Or, it is expressed informally along a program path and then there is
a merge over all paths?;

e Correctness by intuition (informal arguments).

__ Reference

[3] T.J. Marlowe and B.G. Ryder. Properties of data flow frameworks: A unified model. Acta Infor-
matica 28, 121-163, 1990.

1 small part of it only!

for short, oversimplified!
which coincide with fixpoint solutions for distributive frameworks.
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Model-checking coming in... [5]

e The program is a flowchart (with obvious semantics);

e Abstract interpretation is used to derive the transfer functions at the
node level;

e The dataflow problem specification is by a branching time temporal
logic formula;

o Classical model-checking algorithms are used to check the program
model for the temporal formula;

e Correctness by specification.

__ Reference

[5] B. Steffen. Data flow analysis as model-checking. TACS'91, 346-364, Springer, 1991.
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Model-checking with more Abstract Interpretation... [6]

e The abstract flowchart is proved to be an abstract interpretation of a
trace-based semantics;

e The dataflow problem specification is by a branching time temporal
logic formula;

e It is shown that the algorithms checking the program model for the
temporal formula yield the same result as the dataflow equations;

o (flowchart)
(dataflow problem).

___ Reference

[6] D.A. Schmidt. Data-flow analysis is model checking of abstract interpretations. 25" ACM POPL,
1998.
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Bad news...

Live Variables Analysis is Unsound

Reference

[7] D.A. Schmidt. Data-flow analysis is model checking of abstract interpretations. 25™ ACM POPL,
1998 (see Figure 5 and paragraph 7 “Why Some Analyses are Unsound”).

Liveness analysis
claims y to be live
before test which is
wrong when initially
not x == 2! [§]

___ Reference

[8] D.A. Schmidt. Data-flow analysis is model checking of abstract interpretations. 25™ ACM POPL,
1998.




Questions...

e What should we think of a model-checking based design methodology
which let you design unsound analyzes’?

e Who is guilty?
- Abstract interpretation °7
- Data flow analysis°?
- Model-checking?

7 is everybody as wise as D. Schmidt to find a 25 years old bug? Does B. Steffen tool in Passau effectively signals that bug to the user?

8 | can't believe it!
9 D. Schmidt forgives them by claiming “Of course, data-flow practitioners are well aware of the above problem, and disaster does not arise in practice

-.. But we might not be so fortunate in general.”
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My Diagnosis...

o Model-checking is guilty!

e The lacuna is that the model-checking specification by a temporal
logic formula does not take the abstraction process into ac-
count;

e This is common in the model-checking community:

- who really cares about how the finite model is obtained?
- the model is the truth, the specification is the truth, model-checking
is only about their concordance!

e In the program analysis community we (should) care: the programming
language semantics is the referential (or should be).
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In the rest of the talk, | will explain...

e How to design a dataflow analysis specified by a temporal formula and
an abstraction so that it is correct by construction;

e To do so | just have to show that:

Model-checking is an abstract
interpretation!

and then instanciate for the dataflow analysis problem specified by a
temporal formula;
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3. RTL: Reversible Temporal Logic
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In the rest of the talk, | will explain...

e How to design a dataflow analysis specified by a temporal formula and
an abstraction so that it is correct by construction;

e To do so | just have to show that:

Model-checking is an abstract
interpretation!

and then instanciate for the dataflow analysis problem specified by a
temporal formula;

e Only a very small part is shown (indeed only what is necessary for live
variables analysis);
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Which Temporal Logic?

e Dataflow analysis people are used to reason on (merge over all) paths
so we prefer a linear time logic (one path at the time) to the branching
time logics considered by Steffen and Schmidt;

e Dataflow analysis people make no essential distinction beetween for-
ward and backward analyses so that one should directly derive one
from the other®; We introduce a new temporal reversal operator to
make past and future completely symmetric;

e Dataflow analysis people make no essential distinction beetween mini-
mal and maximal flow problem so that one should directly derive one
from the other (using duality *).

15 a5in P. Cousot & R. Cousot Systematic design of program analysis frameworks. 6 ACM POPL, 269-282, 1979 where backward is just forward for

the inverse transition system
16 a5 in P. Cousot. Semantic foundations of program analysis. S.S. Muchnick & N.D. Jones, eds, Program Flow Analysis: Theory and Applications,

ch 10, 303-342. Prentice-Hall, 1981.
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RTL: Reversible Temporal Logic — Syntax

lel

TedS

s =t
| ff
| at(l)
|

TeT

T =1
i
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locations
state predicates
true
false
at control predicate

transition predicates

identity

inverse
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RTL: Reversible Temporal Logic — Semantic Domains

set of states

A . . .
3= p(X) semantic domain of state predicates
N . . " .
D= p(X x ) semantic domain of transition predicates
- A —
f=EI Y paths

Ao .
D= EXE computations
— A ~ . .
* = p(0) semantic domain of temporal formulae
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RTL: Reversible Temporal Logic — Syntax (continued)
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temporal formulae
state predicate
transition predicate
next
until
reversal
disjunction
negation
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RTL: Reversible Temporal Logic — Semantic functions

S eSS0
eS—=YX—=

TeT—"T
ET—HEXxY)—z

geF—=
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semantics of state predicates
(isomorphic alternative)

semantics of transition predicates
(isomorphic alternative)

semantics of temporal formulae
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RTL: Reversible Temporal Logic — Semantics

T[1] = {(s, s) | s € 2}
312 (5]
371 = {(i, o) | 0; € &[x]}
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RTL: Reversible Temporal Logic — Abbreviations

V1 A @2 = (2 V) conjunction

1 — P2 & =(p1) Vg implication

S 2 ttUep sometime or eventually
Coe 2 mEkoInl® always or henceforth
P1= P2 2 C(o1 — ¢2) entailment

01 W g 2 (1 Upa) VI unless or waiting-for
op 2 (0¢ ) previous

©1S @2 = (g1 Uy ) since

Ey 2 (Ce) has always been
Se = (Cv)

©1 B @ 2 (1 W ) back to
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RTL: Reversible Temporal Logic — Semantics (Continued)

Flowd £ {(i, o) | (i+1, o) € L]}
§lorUps] 2 {(i, o) | Tk > i: (k. 0) € Flpa] A
Viii<j<k:(j, o) € Fel}
Flo1] U &lea]
TN\ Fled (also written = F[¢])

{(=1, Ajro—j) | (i, o) € §[e]}
(also written (F[¢]) ")

Fle1 V]
[ ]
Fle ]

e e e
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Implication and Equivalence of Temporal Formulae

w1 => 9

¥Y1 = ¥2

> 1

(= is a conguence on F).
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Fle1] € §lea]  Implication

Fle1] = w2l Equivalence
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RTL: Reversible Temporal Logic — Fixpoint Semantics

301U o] = lip- AX-Flpa] U3l ] NprelX]) (1)
where
pre[X] 2 {(i — 1, o) | i, o) € X}
so that F[0 ¢] = pre[&[¢]] whence:

01 Upa = 2V (1 AO(p1 U )
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4. The Semantics of Programs
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RTL: Reversible Temporal Logic — Fixpoint Semantics
(Continued)

All other cases directly follows by:
e Lattice duality:

gfpE F = lfpg F
e Park negation duality
=(gfp F) = fp AX-—F(=X)
e Reversal duality:

(Ifp F)" = Ifp AX(F(X7))”

17 in the complete boolean lattice *
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Small Step Operational Semantics

Transition predicate:

trans € T

Final states are the only possible blocking states and they are repeated
forever:

A
final = = trans AN 1
and symmetrically for the initial states:

init 2 o(—trans) ANE 1
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Trace-Based Operational Semantics
e \We define the forward and backward transition predicates as:

ftrans, btrans € T
A
ftrans = trans V final
A .
btrans = o© trans V init

e The trace-based operational semantics of a program is (including non-
termination and symmetrically non intialization):

In one definition...

We use the following notation:

(M, =) =55 (L, ©)

(,V

for Galois connections:

Vie MiyeL:a(z)Cy <= z=27(y)

A . .
fsem = [C ftrans forward operational semantics
A . :
bsem = [E btrans backward operational semantics
A . . v
sem = fsem A bsem operational semantics We write (M, =) ——s _» (L, E) when o is surjective, (M, =) €= (L, ) when
« is injective and (M, <) «:» (L, C) when « is bijective.
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. and one theorem
Theorem 1 If (M, <, 0, V) is a cpo, the pair {«, 7y) is a Galois
connection (M, <) % (L,CY, FeM ™ MandGe L™ L
are monotonic and satisfy the semi-commutation condition
5.  Abstract Interpretation <
VyeL:vy(y) 2lp” F=acFeoqyC ( )
. =
or equivalently Nr € M :yoa(z) <lUp” F=aocF(x)CGoalx)
<
or equivalently Yy e L:~(y) <1fp” F= Fory(y) Xvyo Q(y)
then
= c
lfp” F < A(lfp~ G)
=< C
and equivalently a(lfp” F) C Ifp G.
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6. The Model-Checking Abstractions
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By Dualization: Four Different Abstractions

av[¢](M) S McC Fle] (*, ©) % (=, <=) Universal
3.
o) (M) = 2a’[ (M) (7, C) == (3, =) Existential
v A — e =
av[¢](M) = ﬁav[(fj](ﬁM) <..', 2> 9*9*—} (=, ¢> Du'al
> Universal
- A _ ’Yé';: _
aa[vo](M) = ﬁ(lel[gp](—h]\f) <u‘, 2> <::> <A::, <:> Dual
s Existential
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Boolean Universal Abstraction

The boolean universal satisfaction abstraction " ’ (M) checks all com-
putations of the model M for the temporal formula ¢:

av

(M)

Ve FsZ X

(b7 §[e] &7)

Fr 3= v

M1 o Y71 (0)
= M C §l¢]

€
2

1> m

This is a generic Galois connection parameterized by the temporal for-
mula ¢:
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More on the Existential Satisfaction Abstraction

>

(M) = 2l ) (M)
=. easing calculation

(M N §[e]) #0

(2)

The boolean existential satisfaction abstraction o’ (M) checks that
some computations of the model M do satisfy the temporal formula .
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State Static Partitionning

e Let's check the model for each state;

e State projection:

K I

{(i, o) € M | 0; = s}
e Static state partitionning abstraction:

as(M) £ As My, (S) = | S(s)y
sEY

.\l/.

S
A
M, =

e Galois isomorphism *:

18 56 no information is lost.
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Location Static Partitionning

e Let's now have a coarser partition according to locations (program
points, call strings, contours, ...»);

e The locations are assumed to cover all states:

VseX:3dle L :se &[at(l)] (3)

20 need not be finite!
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State Partionned Satisfaction Abstractions

a T
SV = Vo o - - .
Lyl = alyoay (7, ©) %T} (=3 <)
. A ; Qo
V.. 2 v. . -
A/EAPA =Tz K"
V..
v A g ~ 1 — Tyl - .
Qi = alyoay (7, D) <—T) (=23 =)
I eyl
A s _ Ao -
Gy = @y (7, ©) <—?> (-2 =)
3. . A o A3 . SN
A/i_\;_ =Tz K"
oA s~ _ g -
Gl = Qoo (7, D) <q:> (B3 &)
= I I eyl
’Yz_\',a_ =Tz K
19 4y is the dual of as
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Location Static Partitionning Abstraction

e | ocation partitionning:

ol 2L N\ fls) meE e ”_%Mcmf, )
se&[at(l)] £

S agas \) )
se&[at(l)]

e Dually a7 and ~7 such that:

E I =) e (L3 =)
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Location Partionned Satisfaction Abstractions

. Vi
Ly D Ly — -
Otﬁ_»,_ = Qpo° at-*’- <_‘ g> —><\1 <£ = <:>
X AL &l
V.. 2 AV, Y i
7£_p_ = 'Yi_,v ° Y )
.V
-y A 3 -y —_ Yl
& L adedl, (7 D) s (Lo F =)
o o W7
; A Qv -
S e 3 .
Vil T Vel e £
. Vil
23, . 8 3 ET - ¢
OLL.»’. = ope aiﬁ_ <"7 g> — <‘C = :>> (4>
(3. . A 3. 3 G
Vel T Veldl 0 e
E A 72&'
N B S 3 - - <
QL = Qo Gy (7, D) <—3—> (L= 7 <)
2 A 5 a- -
3. . 2 &30 . v [P
FYC_cp = Vel
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Location Partionned Existential Satisfaction Abstractions of
the Forward Trace Semantics

e Assume we are interested in checking for any location [ € £ whether
there is a computation from [ such that 7 will hold until eventually 7

does hold;

e Formally we want to calculate/compute:
& Uy (8Lfsem]) 5)

e Design strategy:
- Express this as the abstraction of a fixpoint (see (1))

- Use the fixpoint approximation Theorem 1 with the Galois connection
(4) (or dual forms).
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7. The Calculational Design of the Abstract
Model-Checking Algorithms by Abstract
Interpretation
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Fixpoint Abstraction

& 11 Un(BTfsem])

= ... skipping 12 lines of hand computation using (1)

= di[fsem] (1fpg AX-F[m] U (3] Npre[X]))
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Calculating the Semi-commuting Abstract Transformer

We assume:

X = §[r] U (§[n] N pre[X])
U = ftrans N\OV

and calculate:

& oo (812] U (3] N prel X))

= ... skipping 25 lines of hand computation

= Fﬁ(ai[fsem](X))
so that Theorem 1 with the Galois connection (4), we conclude /..
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8. Application to Live-Variables Analysis

“In live-variable analysis we wish to know for variable x and point p
whether the value of x at p could be used along some path in the flow
graph starting at p. If so, we say x is live at p; otherwise x is dead at
p"[9, p. 631].
References
[9] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Technique and Tools. Addison-Wesley,
1986.
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e

ai [ Um] (&[fsem]) = ai[fse71z] (Hpg AX-F[m] U (§[m1] Npre[X]))

— 1y F
where
FHX) 2 NE 32 ml ) v\ 3nl ) AX (D)
I'esuce(l)
and

suce(l) 2 {U'|3s € &[at(D)] : 3’ € &[at()] : Tftrans](s, ')}

V T[r](s, )

s € lat(l)T A ftrans (s, ') A s e lat(l')]

T 71T

Dagstuhl Seminar on Program Analysis, April 11-16, 1999 o —54—1 1 © P. & R. CousoT

Live-Variables Analysis is a Sound Location Partionned
Model-Checking Existential Abstraction of the Trace
Semantics

e For a single flowchart node:

mod(x) : transitions potentially modifying variable x
used(x) : transitions definitively using the value of variable x

e Along one path: Variable x is live at the origin of a computation iff it
will not be modified until it is used:

isLive(x) 2 (—mod(x)) U used(x)

e Merge over some path: Variable x is live at location [ if and only if it
is live on some computation path starting from that location:

Live(x) 2 a£[|sL|ve (E[f“m])
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The Classical Live-Variables Dataflow Equations are
Definitely Sound

Live(x) == Live*(x)
2 9y AXAL (A T [used(x)] (1 1) V
= lip Al (3 T [used(x)](1,1))

\  TZ[(=mod(x))](1, ) A X (1)

l'esucce(l)

e Note: ==, not <!

e Hence Dead*(x) S Live*(x) == — Live(x) 2 Dead(x);
e So Dave forgives the practitionners!

e And now the practitionners forgive Dave!
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9. Conclusion
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So what is Unsound?

e Live-variables analysis is a location partionned model-checking existen-
tial/merge over some paths abstraction of the trace semantics;

e |t is unsound to reason on live-variables analysis as if it were a location
partionned model-checking universal/merge over all paths abstraction
of the trace semantics;

e Model-checking is unsound in that it does not make explicit which of

the abstractions is involved (and there are many such as c'x\z A, af

: L' L
and &?).
L
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Conclusion (on Live-Variables Analysis Being Unsound)

e Data-flow analysis was not guilty;
e Model-Checking was guilty, by not taking the abstraction process into
account;
e Abstract Interpretation was the rescuer:
- Which abstractions are used is made explicit;
- Abstraction is used for the formal calculational design of correct al-
gorithms;
- Abstract Interpretation provides an unambiguous understanding of
what is going on.
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Conclusion (on Model-Checking Design by Abstract
Interpretation)

e In this talk, we have chosen to handle a striking example rather than
present formally the full theory;

e In full generality, we have to handle any a[<p](3[1/)]) for ac in the
cube of abstractions and all possible RTL formulae ¢, ¢ € F (to get
interleaved fixpoints);

e A more general and debatable question:

Is model-checking of any practical use in program static
analysis?

23 In G. Nelson talk the invariant were 10% of the program size. Who will write the invariants for his 30000 lines Java program in the form of a 3000
lines temporal formula? lIsn't abstract debugging/testing with invariant/intermittent assertions (virtually) included in the program text much better?
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A final advertising...

Abstract Interpretation...

Abstract Interpretation...




Abstract Interpretation...

THE END
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More on the Calculational Design
of Abstract Interpretations




