
Scaling up with abstract interpretation

Patrick Cousot and Radhia Cousot

Usable Verification
Savannah, GA
Jan. 20, 2009

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

Safety/mission critical software is everywhere

2

etc...

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

Bugs are also everywhere

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

• Unsound debugging: testing, bug-pattern finding,
bounded model-checking,...

• not difficult, useful, and so popular

• scales up easily

• Sound verification: deductive methods, exhaustive
abstract model-checking of safety properties, static
analysis,...

• useful, difficult, and so rare

• ultimately indispensable for safety/mission
criticality

• [Un]soundness should be clearly stated

Verification versus debugging

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

Principle of abstraction-based verification (cont’d)

OK

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

Principle of abstraction-based verification (cont’d)

False alarm

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

• Polyspace verifier (The MathWorks)

• Stack analyzer (AbsInt)

• AiT (WCET analyzer by AbsInt)

• Astrée:

• Sound

• Scales to 10 LOCs of C code

• Effective (5mn to 35h) with no false alarms for control/command
applications

• To be commercialized by AbsInt

Abstract interpretation-based static
verification is successful in industry

6

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

The difficulty of program verification

• Relatively ‘‘easy’’ in the small:

• By exhaustive enumeration (e.g. model-checking)

• User guided deductive proofs (e.g. proof checkers)

• Very difficult in the large:

• Safety/mission critical software is routinely millions
of lines

• Approximate abstractions are necessary

• Bug-finding helpful but unsatisfactory

• False alarms as a result of undecidability
Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

How to scale up ?

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

I don’t know(1)

(1) typical answer in abstract interpretation
Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

I don’t know(1)

(1) typical answer in abstract interpretation

A few modest suggestions only!

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

cost of
anal

ysis
precision of
abstraction

provably impossible
abstraction

trivial abstraction
‘‘I don’t known’’

cost/precision effective
abstractions

cost of
analysis

number of
false alarms

Choose the right abstraction
for the right problem

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

• Analyze programs by parts

• may be difficult to discover the parts

• may be difficult to discover the interfaces

• needs costly relational analyzes

• Analyze program globally

• simpler abstractions

• which can be very efficient

• Program parts may unavailable → stubbing & input
configuration is necessary

Consider modularity (of the analysis)

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

• Can be very hard to guess the right abstraction:

• experimentation is required to find the
appropriate cost/precision balance

• so easy modifiability of the verifier is indispensable

• Extensible modular verifier:

• many (parametric) abstractions

• abstractions are modular with common interfaces

• abstractions can be inserted/changed/replaced

• abstractions can be combined

Consider modularity (of the analyzer)

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

• General representations: formulae in logic/
theorem provers, BDDs in model-checking, bit-
vectors in dataflow analysis, ...

• no universal encoding of data does always
scale up in algorithmics

• Abstraction specific representations:

• efficient algorithms require adequate data
representations

Choose efficient representations of
abstract properties

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

Combine universal & domain-specific abstractions

• Universal abstractions:
• designed once and for all
• useful as an everywhere usable basis
• can produce many false alarms (e.g.

Polyspace verifier)
• acceptable when over-approximation is

acceptable (compiler optimization, WCET
analyzer, etc.)

• Domain/problem-specific abstractions:
• designed ‘on demand’
• very precise
• necessary to reach no false alarm

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

• Global abstraction: same abstraction is used
everywhere in the program, e.g.

• Data flow analysis

• Local abstraction: different abstractions are
used in different program regions
(depending on estimate of required
precision) e.g.

• Manual proof

• Astrée

• Necessary to balance cost/precision

Consider local (better than global) abstractions

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

• The weaskest inductive argument necessary to
make the proof is not expressible within the
abstraction

• No way out of a required refinement

• Automatic refinement does not scale

• Requires to go to the concrete semantics

• The most abstract refinement is fixpoint
computable but not convergent

• Ultimately equivalent to a fixpoint computation
in the concrete

Understand the sources of imprecisions

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

• Manuel refinement can be intelligent

• User-guided refinement through directives:

• Ajust precision of parametric abstractions

• Hints to analyzer on where to use which
abstractions

• Designer refinement:

• Add new abstractions combined with existing
ones to enhance precision

• The analyzer must be designed to be modular

Refine by adjusting and combining abstractions

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

Conclusion

To scale, you must be quasi-linear!

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

The end, thank you for your attention

Usable verification, Savannah,GA, 01/20/2009 © P. Cousot

