
Program Static Analysis:
A Brief Introduction

with Applications to the Internet

Patrick COUSOT
École Normale Supérieure, Paris, France

Patrick.Cousot@ens.fr www.di.ens.fr/˜cousot

� � � �

Patrick.Cousot@ens.fr
mailto:Patrick.Cousot@ens.fr
www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot


Introduction

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 1 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Software Costs

• The cost of software is:
-- huge (e.g. 5 to 15 % of the cost of a plane),
-- increasing rapidly with the size of software (frequently 1
up to 40 000 000 lines!);

• How to cut down costs and enhance software quality?
-- …
-- Automate the reasonings about software (the early idea of
using computers to reason about computers);

-- …

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 2 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Software Costs

• The cost of software is:
-- huge (e.g. 5 to 15 % of the cost of a plane),
-- increasing rapidly with the size of software (frequently 1
up to 40 000 000 lines!);

• How to cut down costs and enhance software quality?
-- …
-- Automate the reasonings about software (the early idea of
using computers to reason about computers);

-- …

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 2 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Reasoning About Programs

We must be able to reason about programs:
-- to design programs;
∗ manually: e.g. coding,
∗ automatically: e.g. program generation;

-- to manipulate programs:
∗ manually: e.g. modification of a reused program,
∗ automatically: e.g. compilation;

-- to check program correctness:
∗ manually: e.g. debuggers,
∗ automatically: e.g. analyzers, provers.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 3 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Reasoning About Programs

We must be able to reason about programs:
-- to design programs;
∗ manually: e.g. coding,
∗ automatically: e.g. program generation;

-- to manipulate programs:
∗ manually: e.g. modification of a reused program,
∗ automatically: e.g. compilation;

-- to check program correctness:
∗ manually: e.g. debuggers,
∗ automatically: e.g. analyzers, provers.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 3 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Reasoning About Programs

We must be able to reason about programs:
-- to design programs;
∗ manually: e.g. coding,
∗ automatically: e.g. program generation;

-- to manipulate programs:
∗ manually: e.g. modification of a reused program,
∗ automatically: e.g. compilation;

-- to check program correctness:
∗ manually: e.g. debuggers,
∗ automatically: e.g. analyzers, provers.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 3 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Basis for Reasoning about Programs:
Semantics

• The semantics of a computer system is the formal description
of the behavior of this computer system when running in
interaction with its environment.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 4 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Undecidability

• All (interesting) questions about the semantics of a program
(written in a non trivial computer language) are undecidable
(i.e. cannot be always and fully automatically answered with
a computer in finite time);

• Examples of undecidable questions:
-- Is my program bug-free? (i.e. correct with respect to a
given specification);

-- Can a program variable take two different values during
execution?

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 5 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Undecidability

• All (interesting) questions about the semantics of a program
(written in a non trivial computer language) are undecidable
(i.e. cannot be always and fully automatically answered with
a computer in finite time);

• Examples of undecidable questions:
-- Is my program bug-free? (i.e. correct with respect to a
given specification);

-- Can a program variable take two different values during
execution?

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 5 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Undecidability

• All (interesting) questions about the semantics of a program
(written in a non trivial computer language) are undecidable
(i.e. cannot be always and fully automatically answered with
a computer in finite time);

• Examples of undecidable questions:
-- Is my program bug-free? (i.e. correct with respect to a
given specification);

-- Can a program variable take two different values during
execution?

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 5 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Coping With Undecidable Questions on the
Semantics

• Consider simple specifications or programs (hopeless);
• Consider decidable questions only or semi-algorithms (e.g.

model-checking);
• Ask the programmer to help (e.g. theorem proving);
• Consider approximations to handle practical complexity limi

tations (the whole purpose of abstract interpretation).

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 6 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Coping With Undecidable Questions on the
Semantics

• Consider simple specifications or programs (hopeless);
• Consider decidable questions only or semi-algorithms (e.g.

model-checking);
• Ask the programmer to help (e.g. theorem proving);
• Consider approximations to handle practical complexity limi

tations (the whole purpose of abstract interpretation).

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 6 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Coping With Undecidable Questions on the
Semantics

• Consider simple specifications or programs (hopeless);
• Consider decidable questions only or semi-algorithms (e.g.

model-checking);
• Ask the programmer to help (e.g. theorem proving);
• Consider approximations to handle practical complexity limi

tations (the whole purpose of abstract interpretation).

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 6 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Coping With Undecidable Questions on the
Semantics

• Consider simple specifications or programs (hopeless);
• Consider decidable questions only or semi-algorithms (e.g.

model-checking);
• Ask the programmer to help (e.g. theorem proving);
• Consider approximations to handle practical complexity limi

tations (the whole purpose of abstract interpretation).

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 6 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Abstract Interpretation

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 7 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


The Theory of Abstract Interpretation

• Abstract interpretation is a theory of conservative approx
imation of the semantics of computer systems.
Approximation: observation of the behavior of a com

puter system at some level of abstraction, ignoring irrele
vant details;

Conservative: the approximation cannot lead to any erro
neous conclusion.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 8 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


The Theory of Abstract Interpretation

• Abstract interpretation is a theory of conservative approx
imation of the semantics of computer systems.
Approximation: observation of the behavior of a com

puter system at some level of abstraction, ignoring irrele
vant details;

Conservative: the approximation cannot lead to any erro
neous conclusion.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 8 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


The Theory of Abstract Interpretation

• Abstract interpretation is a theory of conservative approx
imation of the semantics of computer systems.
Approximation: observation of the behavior of a com

puter system at some level of abstraction, ignoring irrele
vant details;

Conservative: the approximation cannot lead to any erro
neous conclusion.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 8 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Usefulness of Abstract Interpretation

• Thinking tools: the idea of abstraction is central to reason
ing (in particular on computer systems);

• Mechanical tools: the idea of effective approximation leads
to automatic semantics-based program manipulation tools.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 9 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Usefulness of Abstract Interpretation

• Thinking tools: the idea of abstraction is central to reason
ing (in particular on computer systems);

• Mechanical tools: the idea of effective approximation leads
to automatic semantics-based program manipulation tools.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 9 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Example 1 of Abstraction
(Sets of Points)

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 10 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Approximations of an [in]finite set of points;
�����

x

y {. . . , 〈19, 78〉, . . . ,
〈20, 01〉, . . .}

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 11 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Effective computable approximations of an
[in]finite set of points; Signs

x

y {
x ≥ 0
y ≥ 0

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 12 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Effective computable approximations of an
[in]finite set of points; Intervals

x

y {
x ∈ [19, 78]
y ∈ [20, 33]

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 13 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Effective computable approximations of an
[in]finite set of points; Octagons

x

y




1 ≤ x ≤ 9
x + y ≤ 78
1 ≤ y ≤ 9
x − y ≤ 99

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 14 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Effective computable approximations of an
[in]finite set of points; Polyhedra

x

y {
19x + 78y ≤ 2000
20x + 01y ≥ 0

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 15 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Effective computable approximations of an
[in]finite set of points; Simple congruences

x

y {
x = 19 mod 78
y = 20 mod 99

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 16 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Effective computable approximations of an
[in]finite set of points; Linear congruences

x

y {
1x + 9y = 7 mod 8
2x − 1y = 9 mod 9

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 17 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Effective computable approximations of an
[in]finite set of points; Trapezoidal linear con-

gruences

x

y {
1x + 9y ∈ [0, 78] mod 10
2x − 1y ∈ [0, 99] mod 11

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 18 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Intuition Behind
Sound/Conservative Approximation

for Example 1 (Sets of Points)

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 19 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
� �������� ��	
������ ���

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 20 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 21 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 21 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Testing : You never know!

?

x

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 22 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Testing : You never know!

?

x

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 22 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 23 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 23 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 24 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 24 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Example 2 of Abstraction
(Texts)

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 25 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Approximations of a Text (Set of Words)

• Choose a thesaurus (set of representative keywords);
• α(text) = text ∩ thesaurus.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 26 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Intuition Behind
Sound/Conservative Approximation

for Example 2 (Texts)

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 27 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Concrete question: Is some word in the text?
• Abstract answer (knowing only α(text)):

-- If word ∈ α(text): Yes
-- If word �∈ α(text): I don’t know

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 28 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Concrete question: Is some word in the text?
• Abstract answer (knowing only α(text)):

-- If word ∈ α(text): Yes
-- If word �∈ α(text): I don’t know

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 28 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Concrete question: Is some word in the text?
• Abstract answer (knowing only α(text)):

-- If word ∈ α(text): Yes
-- If word �∈ α(text): I don’t know

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 28 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Concrete question: Is some word in the text?
• Abstract answer (knowing only α(text)):

-- If word ∈ α(text): Yes
-- If word �∈ α(text): I don’t know

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 28 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conservative Approximation

• Concrete question: Is some word in the text?
• Abstract answer (knowing only α(text)):

-- If word ∈ α(text): Yes
-- If word �∈ α(text): I don’t know

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 28 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Program Static Analysis
by Abstract Interpretation

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 29 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Program Static Analysis

• Static program analysis is the automatic compile-time deter
mination of run-time properties of programs;

• Used in many applications from optimizing compilers, to ab
stract debuggers and semantics based program manipulation
tools (such as partial evaluators, error detection and program
understanding tools).

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 30 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Abstract Interpretation

• Supporting theory;
• General idea: a program static analyzer computes an effective

approximation of the program semantics (semantics = formal
specification of all possible run-time behaviors).

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 31 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Principle of Program Static Analysis

In order to determine runtime properties of a program P , a
static analyzer:
• inputs the program P ;
• builts a system of equations/constraints X � F �P �X;
• solves it A � lfp F ;
• outputs the solution A (in some user understandable form).

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 32 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Example: Interval Analysis 1

program equations solution
x := 1;

1:
while x < 10000 do

2:
x := x + 1

3:
od;

4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]

A1 = [1, 1]
A2 = [1, 9999]
A3 = [2, 10000]
A4 = [10000, 10000]

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 33 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Examples of Applications
to Embedded Systems

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 34 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Estimated Cost of an Arithmetic Overflow
• Bugs can have catastrophic consequences either very

costly or inadmissible (embedded software in trans
portation systems);

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 35 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Estimated Cost of an Arithmetic Overflow
• Bugs can have catastrophic consequences either very

costly or inadmissible (embedded software in trans
portation systems);

• The estimated cost of the Ariane 501 flight failure:
-- $ 500 000 000;

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 35 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Estimated Cost of an Arithmetic Overflow
• Bugs can have catastrophic consequences either very

costly or inadmissible (embedded software in trans
portation systems);

• The estimated cost of the Ariane 501 flight failure:
-- $ 500 000 000;
-- Including indirect costs (delays, lost markets, etc):
$ 2 000 000 000.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 35 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


An Impressive Application of Abstract
Interpretation (1996/97)

• Abstract interpretation is used for the static analysis of the
embedded ADA software of the Ariane 5 launcher 2;

• Automatic detection of the definiteness , potentiality , impos
sibility or inaccessibility of run-time errors ;

• Success for the following Ariane V flights and the ARD .

1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
2 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
3 Atmospheric Reentry Demonstrator: module coming back to earth.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 36 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


An Impressive Application of Abstract
Interpretation (1996/97)

• Abstract interpretation is used for the static analysis of the
embedded ADA software of the Ariane 5 launcher 2;

• Automatic detection of the definiteness , potentiality , impos
sibility or inaccessibility of run-time errors 3;

• Success for the following Ariane V flights and the ARD .

1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
2 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
3 Atmospheric Reentry Demonstrator: module coming back to earth.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 36 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


An Impressive Application of Abstract
Interpretation (1996/97)

• Abstract interpretation is used for the static analysis of the
embedded ADA software of the Ariane 5 launcher 2;

• Automatic detection of the definiteness , potentiality , impos
sibility or inaccessibility of run-time errors 3;

• Success for the following Ariane V flights and the ARD 4.

1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
2 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
3 Atmospheric Reentry Demonstrator: module coming back to earth.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 36 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Examples of Applications
to the Internet

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 37 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Software Attacks

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 38 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Principle of Data Overflow Based Attacks

• Pass data to a system procedure larger than the allocated
memory size;

• If the system procedure does not check for possible overflow ,
that will overwrite some system memory area;

• If the system code is publicly available, the effect of this
overwriting is perfectly understandable;

• This vulnerability can be used to overwrite the system code
at some appropriate address with the attacking code.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 39 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Principle of Data Overflow Based Attacks

• Pass data to a system procedure larger than the allocated
memory size;

• If the system procedure does not check for possible overflow ,
that will overwrite some system memory area;

• If the system code is publicly available, the effect of this
overwriting is perfectly understandable;

• This vulnerability can be used to overwrite the system code
at some appropriate address with the attacking code.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 39 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Principle of Data Overflow Based Attacks

• Pass data to a system procedure larger than the allocated
memory size;

• If the system procedure does not check for possible overflow ,
that will overwrite some system memory area;

• If the system code is publicly available, the effect of this
overwriting is perfectly understandable;

• This vulnerability can be used to overwrite the system code
at some appropriate address with the attacking code.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 39 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Principle of Data Overflow Based Attacks

• Pass data to a system procedure larger than the allocated
memory size;

• If the system procedure does not check for possible overflow ,
that will overwrite some system memory area;

• If the system code is publicly available, the effect of this
overwriting is perfectly understandable;

• This vulnerability can be used to overwrite the system code
at some appropriate address with the attacking code.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 39 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Frequency of Data Overflow Based Attacks

• 60% of the UNIXTM failures reported in the 1995 FUZZ study
are string-manipulation cleanness violations 5;

• In Nov. 1988, the Internet worm incident used a buffer over
flow in fingerid to attack 60,000 computers ;

• CERT advisories indicate that buffer overflows account for
up to 50% of today’s software vulnerabilities .

4 http://www.cs.wisc.edu/˜bart/fuzz/fuzz.html
5 E. Spafford. The Internet worm: Crisis and aftermath. CACM 165, June 1989, pp. 678–687.
6 D. Wagner et al. A first step towards automated detection of buffer vulnerabilities, NDSS’00, San Diego, Feb.

2000.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 40 — [] � — ���� © P. Cousot

http://www.cs.wisc.edu/~bart/fuzz/fuzz.html
http://www.di.ens.fr/


Frequency of Data Overflow Based Attacks

• 60% of the UNIXTM failures reported in the 1995 FUZZ study
are string-manipulation cleanness violations 5;

• In Nov. 1988, the Internet worm incident used a buffer over
flow in fingerid to attack 60,000 computers 6;

• CERT advisories indicate that buffer overflows account for
up to 50% of today’s software vulnerabilities .

4 http://www.cs.wisc.edu/˜bart/fuzz/fuzz.html
5 E. Spafford. The Internet worm: Crisis and aftermath. CACM 165, June 1989, pp. 678–687.
6 D. Wagner et al. A first step towards automated detection of buffer vulnerabilities, NDSS’00, San Diego, Feb.

2000.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 40 — [] � — ���� © P. Cousot

http://www.cs.wisc.edu/~bart/fuzz/fuzz.html
http://www.di.ens.fr/


Frequency of Data Overflow Based Attacks

• 60% of the UNIXTM failures reported in the 1995 FUZZ study
are string-manipulation cleanness violations 5;

• In Nov. 1988, the Internet worm incident used a buffer over
flow in fingerid to attack 60,000 computers 6;

• CERT advisories indicate that buffer overflows account for
up to 50% of today’s software vulnerabilities 7.

4 http://www.cs.wisc.edu/˜bart/fuzz/fuzz.html
5 E. Spafford. The Internet worm: Crisis and aftermath. CACM 165, June 1989, pp. 678–687.
6 D. Wagner et al. A first step towards automated detection of buffer vulnerabilities, NDSS’00, San Diego, Feb.

2000.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 40 — [] � — ���� © P. Cousot

http://www.cs.wisc.edu/~bart/fuzz/fuzz.html
http://www.di.ens.fr/


Static Analysis of Data Overflow

• Present-day program static analysis technology can cope with
data overflow;

• Abstraction:
-- α(Data) = Data size ,
-- α(Set of vectors of integers) = Convex hull;

• Quite effective: very few false alarms (I don’t know) on Unix
code 8.

7 N. Dor, M. Rodeh and M. Sagiv. In SAS’01, LNCS 2126, Springer, Jul. 2001, pp. 194–212.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 41 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Cryptographic Protocols

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 42 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Cryptographic Protocols

• Cryptographic protocole: specifications for sequences of mes
sages to be exchanged by machines on an insecure network
to establish private or authenticated communication;

• Used to distribute sensitive information (classified material,
credit card numbers or trade secrets) or to create digital sig
natures;

• Flaws in cryptographic protocols: an intruder who is able to
read, suppress and forge messages can get sensitive informa
tion or take someone else identity;

• Even when assuming perfect cryptography.
SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 43 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Cryptographic Protocols

• Cryptographic protocole: specifications for sequences of mes
sages to be exchanged by machines on an insecure network
to establish private or authenticated communication;

• Used to distribute sensitive information (classified material,
credit card numbers or trade secrets) or to create digital sig
natures;

• Flaws in cryptographic protocols: an intruder who is able to
read, suppress and forge messages can get sensitive informa
tion or take someone else identity;

• Even when assuming perfect cryptography.
SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 43 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Cryptographic Protocols

• Cryptographic protocole: specifications for sequences of mes
sages to be exchanged by machines on an insecure network
to establish private or authenticated communication;

• Used to distribute sensitive information (classified material,
credit card numbers or trade secrets) or to create digital sig
natures;

• Flaws in cryptographic protocols: an intruder who is able to
read, suppress and forge messages can get sensitive informa
tion or take someone else identity;

• Even when assuming perfect cryptography.
SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 43 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Cryptographic Protocols

• Cryptographic protocole: specifications for sequences of mes
sages to be exchanged by machines on an insecure network
to establish private or authenticated communication;

• Used to distribute sensitive information (classified material,
credit card numbers or trade secrets) or to create digital sig
natures;

• Flaws in cryptographic protocols: an intruder who is able to
read, suppress and forge messages can get sensitive informa
tion or take someone else identity;

• Even when assuming perfect cryptography.
SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 43 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Abstraction of Cryptographic Protocols

• Impossible to check all possible sequences of messages that
can be exchanged between principals and their possible cor
ruptions by an intruder;

• Abstract into a superset (using tree automata) and compute
an overestimation of all concrete possibilities;

• The abstract model is infinite so use convergence acceleration
to enforce the abstract computations to be finite;

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 44 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Abstraction of Cryptographic Protocols

• Impossible to check all possible sequences of messages that
can be exchanged between principals and their possible cor
ruptions by an intruder;

• Abstract into a superset (using tree automata) and compute
an overestimation of all concrete possibilities;

• The abstract model is infinite so use convergence acceleration
to enforce the abstract computations to be finite;

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 44 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Abstraction of Cryptographic Protocols

• Impossible to check all possible sequences of messages that
can be exchanged between principals and their possible cor
ruptions by an intruder;

• Abstract into a superset (using tree automata) and compute
an overestimation of all concrete possibilities;

• The abstract model is infinite so use convergence acceleration
to enforce the abstract computations to be finite;

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 44 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Example of Possible Intrusion

• Otway-Rees protocol 9:
-- encrypt(pair(Na; pair(M;pair(A;B)));Kas): an in
truder can discover the secret message;

-- encrypt(pair(pair(Na;M); pair(A;B));Kas): intru
sion impossible;

• A very subtle error.

8 D. Monniaux, Abstracting Cryptographic Protocols with Tree Automata, SAS’99, LNCS 1694, Springer, pp.
149–163.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 45 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Example of Possible Intrusion

• Otway-Rees protocol 10:
-- encrypt(pair(Na; pair(M;pair(A;B)));Kas): an in
truder can discover the secret message;

-- encrypt(pair(pair(Na;M); pair(A;B));Kas): intru
sion impossible;

• A very subtle error.

9 D. Monniaux, Abstracting Cryptographic Protocols with Tree Automata, SAS’99, LNCS 1694, Springer, pp.
149–163.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 45 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Mobility

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 46 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


On the Evolution of the Internet

• The Internet protocols have evolved from:
Static: e.g. email path routing;

Dynamic:
Data driven: e.g. fixed software + routing tables,

Software driven: (future) mobile software routing.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 47 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Data Confidentiality in Mobile Processes 5

A

4 J. Feret, SAS’00, ENTCS Vol. 39

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 48 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Data Confidentiality in Mobile Processes 5

A

P

A

4 J. Feret, SAS’00, ENTCS Vol. 39

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 48 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Data Confidentiality in Mobile Processes 5

A

P

A

P

A

P

4 J. Feret, SAS’00, ENTCS Vol. 39

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 48 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Data Confidentiality in Mobile Processes 5

A

P

A

P

A

P

P

A

P

4 J. Feret, SAS’00, ENTCS Vol. 39

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 48 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Data Confidentiality in Mobile Processes 5

No exchange

A

P

A

P

A

P

P

A

P No exchange

No exchange

4 J. Feret, SAS’00, ENTCS Vol. 39

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 48 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Cookies

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 49 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Present Criteria for Accepting Cookies

• Possible choices:
1. Refuse all cookies;
2. Accept all cookies;
3. Accept all cookies of a site;
4. Decide online when a cookie is loaded.

• 4. seems a good choice, but:
-- Cookies can arrive at a high rate (several per minute);
-- The information to decide about acceptable cookies is
poor.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 50 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Present Criteria for Accepting Cookies

• Possible choices:
1. Refuse all cookies;
2. Accept all cookies;
3. Accept all cookies of a site;
4. Decide online when a cookie is loaded.

• 4. seems a good choice, but:
-- Cookies can arrive at a high rate (several per minute);
-- The information to decide about acceptable cookies is
poor.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 50 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Which Information is Available on Cookies?

• Example of cookie properties:
Name : B
Server : yahoo.com
Path : /

Value : 7fe7d2otmjhbg&b=2
Expires on : Tue 15 Apr 2010 20:00 GMT

Secured : No
State : Activated

• How can I decide anything about this cookie with such poor
information?

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 51 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Which Information is Available on Cookies?

• Example of cookie properties:
Name : B
Server : yahoo.com
Path : /

Value : 7fe7d2otmjhbg&b=2
Expires on : Tue 15 Apr 2010 20:00 GMT

Secured : No
State : Activated

• How can I decide anything about this cookie with such poor
information?

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 51 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Choosing Cookies According to their Behavior

• The ideal situation would be an acceptance/refusal decision
that would be:
-- online (since some sites only work well with cookies);
-- automatic (to cope with high incoming rates);
-- based on the cookie behavior.

• Automatic checking of acceptable cookies is possible with
present-day static program analysis technology.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 52 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Choosing Cookies According to their Behavior

• The ideal situation would be an acceptance/refusal decision
that would be:
-- online (since some sites only work well with cookies);
-- automatic (to cope with high incoming rates);
-- based on the cookie behavior.

• Automatic checking of acceptable cookies is possible with
present-day static program analysis technology.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 53 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Example of Behavioral Acceptance/Refusal
Decision Criteria

• Possible user-defined acceptance criterion:
Always in the future:

if Read private data then afterwards
Never in the future:
Send message on the Internet

• Such security policies might be predefined for casual users.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 54 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Example of Behavioral Acceptance/Refusal
Decision Criteria

• Possible user-defined acceptance criterion:
Always in the future:

if Read private data then afterwards
Never in the future:
Send message on the Internet

• Such security policies might be predefined for casual users.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 54 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Conclusion

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 55 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Future of Internet

• From data to software (services);
• Towards mobility and global computing;
• From naive to sophisticated internauts;

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 56 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Future of Static Analysis by Abstract
Interpretation on the Internet

• Precaution principle:
Never run any software which potential disastrous ef
fects cannot be anticipated.

• Software static analysis is a good candidate for such online
verification (simple analyzes are already present in the JVM);

• Abstract Interpretation is the supporting theory of a corrob
orative practice.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 57 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


THE END, THANK YOU.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 58 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


THE END, THANK YOU.

x

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 58 — [] � — ���� © P. Cousot

http://www.di.ens.fr/

	Introduction
	Software costs
	Reasoning about programs
	Basis for reasoning about programs: semantics
	Undecidability
	Coping with undecidable questions on the semantics
	Abstract Interpretation
	The theory of abstract interpretation
	Usefulness of abstract interpretation
	Example 1 of Abstraction (Sets of Points)
	Approximations of an [in]finite set of points
	Example 1: signs
	Example 2: intervals
	Example 3: octagons
	Example 4: polyhedra
	Example 5: simple congruences
	Example 6: linear congruences
	Example 7: trapezoidal linear congruences
	Intuition Behind Sound/Conservative Approximation for Example 1 (Sets of Points)
	Conservative approximation
	Example 2 of Abstraction (Texts)
	Approximations of a Text (Set of Words)
	Intuition Behind Sound/Conservative Approximation for Example 2 (Texts)
	Conservative Approximation
	Program Static Analysis by Abstract Interpretation
	Program Static Analysis
	Abstract Interpretation
	Principle of Program Static Analysis
	Example: Interval Analysis
	Examples of Applications to Embedded Systems
	Estimated Cost of an Arithmetic Overflow
	Examples of Applications to the Internet
	Software Attacks
	Principle of Data Overflow Based Attacks
	Frequency of Data Overflow Based Attacks
	Static Analysis of Data Overflow
	Cryptographic Protocols
	Cryptographic Protocols
	Abstraction of Cryptographic Protocols
	Example of Possible Intrusion
	Mobility
	On the Evolution of the Internet
	Data Confidentiality in Mobile Processes
	Cookies
	Present Criteria for Accepting Cookies
	Which Information is Available on Cookies?
	Choosing Cookies According to their Behavior
	Example of Behavioral Acceptance/Refusal Decision Criteria
	Conclusion
	Future of Internet
	Future of Static Analysis by Abstract Interpretation on the Internet

