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Software Costs

• The cost of software is:
-- huge (e.g. 5 to 15 % of the cost of a plane),
-- increasing rapidly with the size of software (frequently 1
up to 40 000 000 lines!);

• How to cut down costs and enhance software quality?
-- …
-- Automate the reasonings about software (the early idea of
using computers to reason about computers);

-- …
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Reasoning About Programs

We must be able to reason about programs:
-- to design programs;
∗ manually: e.g. coding,
∗ automatically: e.g. program generation;

-- to manipulate programs:
∗ manually: e.g. modification of a reused program,
∗ automatically: e.g. compilation;

-- to check program correctness:
∗ manually: e.g. debuggers,
∗ automatically: e.g. analyzers, provers.
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Basis for Reasoning about Programs:
Semantics

• The semantics of a computer system is the formal description
of the behavior of this computer system when running in
interaction with its environment.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 4 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Undecidability

• All (interesting) questions about the semantics of a program
(written in a non trivial computer language) are undecidable
(i.e. cannot be always and fully automatically answered with
a computer in finite time);

• Examples of undecidable questions:
-- Is my program bug-free? (i.e. correct with respect to a
given specification);

-- Can a program variable take two different values during
execution?
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Coping With Undecidable Questions on the
Semantics

• Consider simple specifications or programs (hopeless);
• Consider decidable questions only or semi-algorithms (e.g.

model-checking);
• Ask the programmer to help (e.g. theorem proving);
• Consider approximations to handle practical complexity limi

tations (the whole purpose of abstract interpretation).
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Abstract Interpretation
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The Theory of Abstract Interpretation

• Abstract interpretation is a theory of conservative approx
imation of the semantics of computer systems.
Approximation: observation of the behavior of a com

puter system at some level of abstraction, ignoring irrele
vant details;

Conservative: the approximation cannot lead to any erro
neous conclusion.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 8 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


The Theory of Abstract Interpretation

• Abstract interpretation is a theory of conservative approx
imation of the semantics of computer systems.
Approximation: observation of the behavior of a com

puter system at some level of abstraction, ignoring irrele
vant details;

Conservative: the approximation cannot lead to any erro
neous conclusion.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 8 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


The Theory of Abstract Interpretation

• Abstract interpretation is a theory of conservative approx
imation of the semantics of computer systems.
Approximation: observation of the behavior of a com

puter system at some level of abstraction, ignoring irrele
vant details;

Conservative: the approximation cannot lead to any erro
neous conclusion.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 8 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Usefulness of Abstract Interpretation

• Thinking tools: the idea of abstraction is central to reason
ing (in particular on computer systems);

• Mechanical tools: the idea of effective approximation leads
to automatic semantics-based program manipulation tools.
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Example 1 of Abstraction
(Sets of Points)
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Approximations of an [in]finite set of points;
�����

x

y {. . . , 〈19, 78〉, . . . ,
〈20, 01〉, . . .}

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 11 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Effective computable approximations of an
[in]finite set of points; Signs

x

y {
x ≥ 0
y ≥ 0
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Effective computable approximations of an
[in]finite set of points; Intervals

x

y {
x ∈ [19, 78]
y ∈ [20, 33]
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Effective computable approximations of an
[in]finite set of points; Octagons

x

y




1 ≤ x ≤ 9
x + y ≤ 78
1 ≤ y ≤ 9
x − y ≤ 99
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Effective computable approximations of an
[in]finite set of points; Polyhedra

x

y {
19x + 78y ≤ 2000
20x + 01y ≥ 0
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Effective computable approximations of an
[in]finite set of points; Simple congruences

x

y {
x = 19 mod 78
y = 20 mod 99
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Effective computable approximations of an
[in]finite set of points; Linear congruences

x

y {
1x + 9y = 7 mod 8
2x − 1y = 9 mod 9
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Effective computable approximations of an
[in]finite set of points; Trapezoidal linear con-

gruences

x

y {
1x + 9y ∈ [0, 78] mod 10
2x − 1y ∈ [0, 99] mod 11
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Intuition Behind
Sound/Conservative Approximation

for Example 1 (Sets of Points)
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Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
� �������� ��	
������ ���
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Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes
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Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Testing : You never know!

?

x
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Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know
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Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes
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Example 2 of Abstraction
(Texts)
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Approximations of a Text (Set of Words)

• Choose a thesaurus (set of representative keywords);
• α(text) = text ∩ thesaurus.
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Intuition Behind
Sound/Conservative Approximation

for Example 2 (Texts)
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Conservative Approximation

• Concrete question: Is some word in the text?
• Abstract answer (knowing only α(text)):

-- If word ∈ α(text): Yes
-- If word �∈ α(text): I don’t know
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Program Static Analysis
by Abstract Interpretation
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Program Static Analysis

• Static program analysis is the automatic compile-time deter
mination of run-time properties of programs;

• Used in many applications from optimizing compilers, to ab
stract debuggers and semantics based program manipulation
tools (such as partial evaluators, error detection and program
understanding tools).
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Abstract Interpretation

• Supporting theory;
• General idea: a program static analyzer computes an effective

approximation of the program semantics (semantics = formal
specification of all possible run-time behaviors).
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Principle of Program Static Analysis

In order to determine runtime properties of a program P , a
static analyzer:
• inputs the program P ;
• builts a system of equations/constraints X � F �P �X;
• solves it A � lfp F ;
• outputs the solution A (in some user understandable form).
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Example: Interval Analysis 1

program equations solution
x := 1;

1:
while x < 10000 do

2:
x := x + 1

3:
od;

4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]

A1 = [1, 1]
A2 = [1, 9999]
A3 = [2, 10000]
A4 = [10000, 10000]

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Examples of Applications
to Embedded Systems
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Estimated Cost of an Arithmetic Overflow
• Bugs can have catastrophic consequences either very

costly or inadmissible (embedded software in trans
portation systems);
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Estimated Cost of an Arithmetic Overflow
• Bugs can have catastrophic consequences either very

costly or inadmissible (embedded software in trans
portation systems);

• The estimated cost of the Ariane 501 flight failure:
-- $ 500 000 000;
-- Including indirect costs (delays, lost markets, etc):
$ 2 000 000 000.
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An Impressive Application of Abstract
Interpretation (1996/97)

• Abstract interpretation is used for the static analysis of the
embedded ADA software of the Ariane 5 launcher 2;

• Automatic detection of the definiteness , potentiality , impos
sibility or inaccessibility of run-time errors ;

• Success for the following Ariane V flights and the ARD .

1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
2 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
3 Atmospheric Reentry Demonstrator: module coming back to earth.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 36 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


An Impressive Application of Abstract
Interpretation (1996/97)

• Abstract interpretation is used for the static analysis of the
embedded ADA software of the Ariane 5 launcher 2;

• Automatic detection of the definiteness , potentiality , impos
sibility or inaccessibility of run-time errors 3;

• Success for the following Ariane V flights and the ARD .

1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
2 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
3 Atmospheric Reentry Demonstrator: module coming back to earth.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 36 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


An Impressive Application of Abstract
Interpretation (1996/97)

• Abstract interpretation is used for the static analysis of the
embedded ADA software of the Ariane 5 launcher 2;

• Automatic detection of the definiteness , potentiality , impos
sibility or inaccessibility of run-time errors 3;

• Success for the following Ariane V flights and the ARD 4.

1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
2 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
3 Atmospheric Reentry Demonstrator: module coming back to earth.

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 36 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Examples of Applications
to the Internet
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Software Attacks
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Principle of Data Overflow Based Attacks

• Pass data to a system procedure larger than the allocated
memory size;

• If the system procedure does not check for possible overflow ,
that will overwrite some system memory area;

• If the system code is publicly available, the effect of this
overwriting is perfectly understandable;

• This vulnerability can be used to overwrite the system code
at some appropriate address with the attacking code.
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Frequency of Data Overflow Based Attacks

• 60% of the UNIXTM failures reported in the 1995 FUZZ study
are string-manipulation cleanness violations 5;

• In Nov. 1988, the Internet worm incident used a buffer over
flow in fingerid to attack 60,000 computers ;

• CERT advisories indicate that buffer overflows account for
up to 50% of today’s software vulnerabilities .

4 http://www.cs.wisc.edu/˜bart/fuzz/fuzz.html
5 E. Spafford. The Internet worm: Crisis and aftermath. CACM 165, June 1989, pp. 678–687.
6 D. Wagner et al. A first step towards automated detection of buffer vulnerabilities, NDSS’00, San Diego, Feb.

2000.
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Static Analysis of Data Overflow

• Present-day program static analysis technology can cope with
data overflow;

• Abstraction:
-- α(Data) = Data size ,
-- α(Set of vectors of integers) = Convex hull;

• Quite effective: very few false alarms (I don’t know) on Unix
code 8.

7 N. Dor, M. Rodeh and M. Sagiv. In SAS’01, LNCS 2126, Springer, Jul. 2001, pp. 194–212.
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Cryptographic Protocols
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Cryptographic Protocols

• Cryptographic protocole: specifications for sequences of mes
sages to be exchanged by machines on an insecure network
to establish private or authenticated communication;

• Used to distribute sensitive information (classified material,
credit card numbers or trade secrets) or to create digital sig
natures;

• Flaws in cryptographic protocols: an intruder who is able to
read, suppress and forge messages can get sensitive informa
tion or take someone else identity;

• Even when assuming perfect cryptography.
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Abstraction of Cryptographic Protocols

• Impossible to check all possible sequences of messages that
can be exchanged between principals and their possible cor
ruptions by an intruder;

• Abstract into a superset (using tree automata) and compute
an overestimation of all concrete possibilities;

• The abstract model is infinite so use convergence acceleration
to enforce the abstract computations to be finite;
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Example of Possible Intrusion

• Otway-Rees protocol 9:
-- encrypt(pair(Na; pair(M;pair(A;B)));Kas): an in
truder can discover the secret message;

-- encrypt(pair(pair(Na;M); pair(A;B));Kas): intru
sion impossible;

• A very subtle error.

8 D. Monniaux, Abstracting Cryptographic Protocols with Tree Automata, SAS’99, LNCS 1694, Springer, pp.
149–163.
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Mobility
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On the Evolution of the Internet

• The Internet protocols have evolved from:
Static: e.g. email path routing;

Dynamic:
Data driven: e.g. fixed software + routing tables,

Software driven: (future) mobile software routing.
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Data Confidentiality in Mobile Processes 5

A

4 J. Feret, SAS’00, ENTCS Vol. 39

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 48 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Data Confidentiality in Mobile Processes 5

A

P

A

4 J. Feret, SAS’00, ENTCS Vol. 39

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 48 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Data Confidentiality in Mobile Processes 5

A

P

A

P

A

P

4 J. Feret, SAS’00, ENTCS Vol. 39

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 48 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Data Confidentiality in Mobile Processes 5

A

P

A

P

A

P

P

A

P

4 J. Feret, SAS’00, ENTCS Vol. 39

SSGRR’2001, L’Aquila, Italy , August 6–12, 2001 ���� — 48 — [] � — ���� © P. Cousot

http://www.di.ens.fr/


Data Confidentiality in Mobile Processes 5
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Cookies
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Present Criteria for Accepting Cookies

• Possible choices:
1. Refuse all cookies;
2. Accept all cookies;
3. Accept all cookies of a site;
4. Decide online when a cookie is loaded.

• 4. seems a good choice, but:
-- Cookies can arrive at a high rate (several per minute);
-- The information to decide about acceptable cookies is
poor.
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Which Information is Available on Cookies?

• Example of cookie properties:
Name : B
Server : yahoo.com
Path : /

Value : 7fe7d2otmjhbg&b=2
Expires on : Tue 15 Apr 2010 20:00 GMT

Secured : No
State : Activated

• How can I decide anything about this cookie with such poor
information?
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Choosing Cookies According to their Behavior

• The ideal situation would be an acceptance/refusal decision
that would be:
-- online (since some sites only work well with cookies);
-- automatic (to cope with high incoming rates);
-- based on the cookie behavior.

• Automatic checking of acceptable cookies is possible with
present-day static program analysis technology.
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Example of Behavioral Acceptance/Refusal
Decision Criteria

• Possible user-defined acceptance criterion:
Always in the future:

if Read private data then afterwards
Never in the future:
Send message on the Internet

• Such security policies might be predefined for casual users.
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Conclusion
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Future of Internet

• From data to software (services);
• Towards mobility and global computing;
• From naive to sophisticated internauts;
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Future of Static Analysis by Abstract
Interpretation on the Internet

• Precaution principle:
Never run any software which potential disastrous ef
fects cannot be anticipated.

• Software static analysis is a good candidate for such online
verification (simple analyzes are already present in the JVM);

• Abstract Interpretation is the supporting theory of a corrob
orative practice.
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THE END, THANK YOU.
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