
« Combination of Abstractions
in the ASTRÉE Static Analyzer »

Patrick Cousot Radhia Cousot
École normale supérieure CNRS & École polytechnique

45 rue d’Ulm Route de Saclay
75230 Paris cedex 05, France 91440 Palaiseau Cedex, France

Patrick.Cousot@ens.fr Radhia.Cousot@polytechnique.fr

www.di.ens.fr/~cousot www.enseignement.polytechnique.fr/

profs/informatique/Radhia.Cousot/

Visiting IBM T.J. Watson Research Center –— Hawthorne N.Y.

2007 Programming Language Day at Watson — Hawthorne
Monday May 7th, 2007

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 1 — ľ P. Cousot & R. Cousot, 2007

Project Members

Bruno Blanchet 1 Patrick Cousot Radhia Cousot Jérôme Feret

Laurent Mauborgne Antoine Miné David Monniaux Xavier Rival

1 Nov. 2001 — Nov. 2003.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 2 — ľ P. Cousot & R. Cousot, 2007

Astrée

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 3 — ľ P. Cousot & R. Cousot, 2007

Astrée objectives

--- Astrée is a static program analyzer [2, 3, 7, 10] based on ab-
stract interpretation [5, 6]
--- Astrée used to prove automatically the absence of run time
errors in C programs 2

--- Astrée is applied to large industrial embedded control/command
safety-critical synchronous real-time software
--- Astrée is efficient and very precise for its application domain
--- Astrée was recently extended [13] to handle other kinds (e.g.
communication) of embedded software, some of which are hand-
written (using union, pointer arithmetics, etc).

2 without recursion, dynamic memory allocation and library calls.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 4 — ľ P. Cousot & R. Cousot, 2007

Astrée design

Astrée was designed using:
--- a syntax-directed representation of the program control flow
(functions, block structures);
--- functional representation of abstract environments with sharing
[2], for memory and time efficiency, and limited support for
analysis parallelization [15];
--- basic abstract domains, tracking variables independently (inte-
ger and floating-point intervals [4] using staged widenings);
--- relational abstract domains tracking dependencies between vari-
ables
– symbolic computation and linearization of expressions [12],
– packed octagons [14],

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 5 — ľ P. Cousot & R. Cousot, 2007

– application-aware domains (such as the ellipsoid abstract
domain for digital filters [8] or the arithmetic-geometric
progression abstract domain [9], e.g. to bound potentially
diverging computations);

--- abstract domains tracking dependencies between boolean vari-
ables and other variables (boolean partitioning domain [3]), or
the history of control flow branches and values along the execu-
tion trace (trace partitioning domain [11]);
--- a memory abstract domain [3] recently extended to cope with
unions and pointer arithmetics 3 [13].
--- abstract domains are parametrized 4 and applied locally 5 [3].
3 Contrary to many program analysis systems, Astrée does not have separate phases for pointer/aliasing
analysis and arithmetic analysis.
4 e.g. maximal height of decision trees.
5 e.g. to variables packs.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 6 — ľ P. Cousot & R. Cousot, 2007

Motivation for the
combination of abstract domains

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 7 — ľ P. Cousot & R. Cousot, 2007

Different Classes of Run-time Errors

1. Errors terminating the execution 6. Astrée warns and
continues by taking into account only the executions that
did not trigger the error.

2. Errors not terminating the execution with predictable outcome 7.
Astrée warns and continues with worst-case assumptions.

3. Errors not terminating the execution with unpredictable
outcome 8. Astrée warns and continues by taking into ac-
count only the executions that did not trigger the error.

3. is sound with respect to C standard, unsound with respect to
C implementation, unless no false alarm.
6 floating-point exceptions e.g. (invalid operations, overflows, etc.) when traps are activated
7 e.g. overflows over signed integers resulting in some signed integer.
8 e.g. memory corruptionss.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 8 — ľ P. Cousot & R. Cousot, 2007

Origins of False Alarms

1. Imprecise abstract transformer) fix algorithm
2. Imprecise parametrization) fix parameters
3. Imprecise widening) fix algorithm
4. Inepressive combination of abstract domains)
--- must introduce new abstract domain
--- without redesigning existing abstract domains
--- but with interactions and reductions with existing abstract
domains to enhance global precision

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 9 — ľ P. Cousot & R. Cousot, 2007

Abstract domains

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 10 — ľ P. Cousot & R. Cousot, 2007

Abstract domains

--- Abstract domain role: encapsulate a class of program properties
--- Abstract domain structure:
-- Abstract sets of execution trace fragments, as defined by a
concretization function
-- Data structures for abstract properties encoding concrete prop-
erties of trace fragments
-- Sound algorithms for logical structure (approximation pre-
order, etc.)
-- Sound algorithms for transformers (post-image, etc.)
-- Sound extrapolators (widening/narrowing)
-- Communication channels to implement an approximate re-
duced product of abstractions

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 11 — ľ P. Cousot & R. Cousot, 2007

Abstract domain constructors

--- Non-relational lifting: non-relational abstract domain D on val-
ues ‹7 !̀ abstract domain

Q

X2VarD on all variables (using bal-
anced binary trees)
--- Relational lifting: relational abstract domain D(P) on packs
P „ Var of variables ‹7 !̀ abstract domain D(Var) on all variables
--- Trace partitionning: past history abstraction domain 9 ˆ current
memory state abstraction domain ‹7 !̀ prefix traces abstraction
domain (using maps implemented as trees) [11]
--- Boolean partitionning: prefix traces abstraction domainˆ boolean
variables ‹7 !̀ prefix traces abstraction domain (using decision
trees)

9 (e.g. a sub-sequence of branches taken

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 12 — ľ P. Cousot & R. Cousot, 2007

Reductions

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 13 — ľ P. Cousot & R. Cousot, 2007

Precondition refinement

--- Use information provided by other abstract domains to improve
the precondition of a transformer

--- Example: ellipsoid domain for filters:

precondition
Y 2 ` a:Y:Z ` b:Z2

6 k2

assignment
X = a0:Y:+ b0:Z + c0`̀ `̀ `̀ `̀ `̀ `̀ `̀ `̀ `̀ !̀

postcondition
X2 ` a00:X:Y ` b00:Y 2

6 (f(k))2

--- If no precondition of the required form is available, so synthesize
one from
-- the interval domain (for Y and Z)
-- the symbolic domain (for Y = Z?)

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 14 — ľ P. Cousot & R. Cousot, 2007

Postcondition refinement

--- Use information provided by other abstract domains to improve
the postcondition of a transformer
--- Two cases:
-- Information computed by a domain propagated to its under-
lying domains
-- Information resquested by a domain missing the information

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 15 — ľ P. Cousot & R. Cousot, 2007

Example of postcondition refinement of underlying
domains

Code fragment computing an absolute value:

Program Intervals Octagons
Y 2 [`1;+1]

X=Y; X; Y 2 [`1;+1] X = Y

if (X<0) { X 2 [`1;`1]; Y 2 [`1;+1] X = Y < 0
X=-Y; X; Y 2 [`1;+1] X = `Y > 0

} else { X 2 [0;+1]; Y 2 [`1;+1] X = Y > 0
} X 2 [`1;+1]; Y 2 [`1;+1] `X 6 Y 6 X

if (X<100){ X 2 [`1; 99]; Y 2 [`1;+1] `X 6 Y ^ Y 6 X 6 99
...Y...

}

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 16 — ľ P. Cousot & R. Cousot, 2007

Intervals with postcondition refinement by octagons: the oc-
tagons domains receives ranges of variables from interval domain,
reduce them and send back the result to the interval domain.

Program Reduced intervals Octagons
Y 2 [`1;+1]

X=Y; X; Y 2 [`1;+1] X = Y

if (X<0) { X 2 [`1;`1]; Y 2 [`1;`1] X = Y < 0
X=-Y; X 2 [1;+1]; Y 2 [`1;`1] X = `Y > 0

} else { X 2 [0;+1]; Y 2 [0;+1] X = Y > 0
} X 2 [0;+1]; Y 2 [`1;+1] `X 6 Y 6 X

if (X<100){ X 2 [0; 99]; Y 2 [`99; 99] `X 6 Y ^ Y 6 X 6 99
...Y...

}

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 17 — ľ P. Cousot & R. Cousot, 2007

Example of information request

Analysis with the octagon domain

{ Y <= X <= Z }

X = A

{ X = A, Y <= Z }

--- Nothing is known on A whence on X

--- Ask for an interval of A or X to the interval domain 10

--- Because the abstract domains are organized into a hierarchy,
circularities are avoided

10 The octagon domain is more precise than the interval domain but the interval domain might have benefitted
from reductions from other domains.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 18 — ľ P. Cousot & R. Cousot, 2007

Implementation as a
networks of abstract domains

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 19 — ľ P. Cousot & R. Cousot, 2007

Hierarchies of abstract domains

--- Abstract domains are organized in several hierarchies, e.g.

--- Bottom-up evaluation
--- Communication of abstract properties via common ancestor by
communication primitives

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 20 — ľ P. Cousot & R. Cousot, 2007

Abstract domain of messages

--- set IO] of abstract properties (messages sent/received by com-
munication primitives)
--- concretization ‚IO] : IO] ! D (D is the set of concrete execu-
tion trace fragments)
--- communication channels
-- >: initially, no information on channel
-- content read and modified by communication primitives

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 21 — ľ P. Cousot & R. Cousot, 2007

Communication primitives

Each abstract domain (D]; ‚D]) has two communication primi-
tives:
--- Emit abstract information on communication channels:
-- extractD] : D] ˆ IO]! IO]
-- io0 = extractD](c; io):
- io: contents of the output channel before the constraint is
emitted,
- c: abstract element in the abstract domain D],
- io0: content of the channel reduced by information extracted
from c (hence the name extract).

-- ‚D](c)\‚IO](io) „ ‚IO](extractD](c; io)) (reduction of com-
munication channel)

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 22 — ľ P. Cousot & R. Cousot, 2007

--- Receive abstract information on communication channel:
-- refineD] : D] ˆ IO] ! D]
-- c0 = refineD](c; io):
- c: element of the abstract domain
- io: abstract information on the input channel
- c0: refinement for c by the received abstract information
(hence the name refine)

-- ‚D](c)\‚IO](io) „ ‚D](refineD](c; io)) (reduction of abstract
property)

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 23 — ľ P. Cousot & R. Cousot, 2007

Improving the precision of widenings

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 24 — ľ P. Cousot & R. Cousot, 2007

Widening precision improvement strategies

--- Delaying widenings: Replace O by [finitely often
--- Reducing widenings: Reduce result of O using information pro-
vided by other abstract domains

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 25 — ľ P. Cousot & R. Cousot, 2007

Delaying widenings

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 26 — ľ P. Cousot & R. Cousot, 2007

Problem with the delaying of widenings

--- Let O be a widening on an abstract domain D
--- Replacing O by [improves precision
--- However, fair replacement 11 of O by [may no longer ensure
termination

11 any infinite iteration would have an unbounded number of widenings

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 27 — ľ P. Cousot & R. Cousot, 2007

Counter-example

--- D] , fS „ [0; 1] j 0; 1 2 Sg
--- f(S) = S [f 1

2n+1 j 1
2n 2 Sg

--- aOD]b = (a; a [b)
--- (a; b) is obtained by making the convex union of several con-
nected components of b until there are fewer connected compo-
nents than in a, and fewer than five connected components
--- OD] is a widening

12

12 along the abstract iterates the number of connected components decreases until it reaches 1, and the interval
[0; 1] is the only element with one connected component.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 28 — ľ P. Cousot & R. Cousot, 2007

--- The sequence:
8

>

<

>

:

u0 = f0; 1g;
u2n = u2n`1OD]f(u2n`1);

u2n+1 = u2n [f(u2n)

is u2n = f0g [[1
22n; 1] and u2n+1 = f0; 1

22n+1g [[1
22n; 1].

--- Whence it is not ultimately stationary.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 29 — ľ P. Cousot & R. Cousot, 2007

Reducing widenings

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 30 — ľ P. Cousot & R. Cousot, 2007

Problem with the reduction of widenings

--- Let O1 be a widening on an abstract domain D1

--- Let O2 be a widening on an abstract domain D2

--- O1 ˆ O2 is a widening on the product D1 ˆD2
13

--- However, O1ˆO2may no longer ensure termination of the analy-
sis in case of interdomain reductions

13 interpreted as a conjunction in the concrete

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 31 — ľ P. Cousot & R. Cousot, 2007

Counter-example

{ A:[100, 100], X:[0,0], Y:[0, +oo] }

while (X < Y) { X = X + 1 }

[0; 0] [((X \ [`1;max(Y)]) + [1; 1]) „ X inequation F (X) „ X
X0 = ?, Xn = Xn`1 O F (Xn`1) until F (Xn) „ Xn
Iterates with widening and no reduction:

X = ?
X = ? O [0; 0] = [0; 0]
X = [0; 0]O [0; 1] = [0;+1]
X = [0;+1] O [0;+1] = [0;+1] stable

Widening always enforces termination

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 32 — ľ P. Cousot & R. Cousot, 2007

{ A:[100, 100], X:[0,0], Y:[0, +oo] }

while (X < Y) { X = X + 1 }

[0; 0] [((X \ [`1;max(Y)]) + [1; 1]) „ X inequation F (X) „ X
Iterates with widening and reduction by X 6 A:
X = ?
X = ? O [0; 0] = [0; 0]
X = [0; 0]O [0; 1] = [0;+1]
X ! [0; 99] reduction by octagons
X = [0; 99]O [0; 100] = [0;+1] unstable [0;+1] 6„ [0; 99]
X ! [0; 99] reduction by octagons
X = [0; 99]O [0; 100] = [0;+1] unstable [0;+1] 6„ [0; 99]
: : :
Widening no longer enforces termination because of reductions

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 33 — ľ P. Cousot & R. Cousot, 2007

Convergence enforcement with
delayed and reduced widenings

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 34 — ľ P. Cousot & R. Cousot, 2007

Abstract domains hierarchy

--- The analysis is performed using a finite product

D] =
Y

i2I
D
]
i

of totally ordered abstract domains (D
]
i;v
]
i)i2I

14

--- Each D]i has a widening operator Oi
--- The infimum is ? = (?i)i2I
--- Let FD] 2 D]! D] be the fixpoint transformer

14 A domain is larger than its underlying domains.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 35 — ľ P. Cousot & R. Cousot, 2007

Strengthened definition of widenings

Each Oi on D
]
i is such that:

--- for any a; b 2 D]i, we have both a v
]
i aOib and b v

]
i aOib

--- Define the relation !0i
15 as

“for any a; d 2 D]i, a!i d if and only if there exist
b; c 2 D]i such that a v

]
i b and d = bOic”

--- !0i is well-founded.

15 read a!i d as “a can be widened to d”

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 36 — ľ P. Cousot & R. Cousot, 2007

Iterates with widenings

--- Let ((bi)n) 2 (ffalse; truegI)N be a family of booleans such that
8i 2 I, the sequence ((bi)n)n2N takes the value true an un-
bounded number of times.
--- Let (i)i2I 2 D] be a finite family of abstract elements.
--- Then, the sequence:

8

>

>

>

>

>

<

>

>

>

>

>

:

(wi)0 = ?i;
un+1 = FD](wn);

(vi)n+1 =

(

maxv]i
((wi)n; (ui)n+1) whenever (bi)n = false;

(wi)nOi(ui)n+1 otherwise ;
(wi)n+1 = minv]i

((vi)n+1; i);

is ultimately stationary (and sound).

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 37 — ľ P. Cousot & R. Cousot, 2007

Convergence of the analysis

--- To avoid cyclic reductions between components of the product
domain: after a widening step, a domain can only refine its
underlying domains.
--- The abstract iterates in the abstract domains that are at the
top of the hierarchy are ultimately stationary.
--- Once the abstract properties in the domains that are above one
domain are stable, the reduction of abstract properties in this
domain can be seen as an intersection with a constant abstract
property.
--- Thus, its abstract iterates are ultimately stationary.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 38 — ľ P. Cousot & R. Cousot, 2007

Conclusion

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 39 — ľ P. Cousot & R. Cousot, 2007

The power of widenings

--- Infinite abstractions with widenings are provably superior to
finite abstractions
--- The precision of widenings can be improved by fairly delaying its
applications and reducing its extrapolations (while still ensuring
convergence)
--- The abstract domains can be organized in hierarchical networks
to minimize programming efforts when introducing new abstrac-
tions and reductions in the static analyzer

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 40 — ľ P. Cousot & R. Cousot, 2007

THE END, THANK YOU

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 41 — ľ P. Cousot & R. Cousot, 2007

Reference

Presentation based on:
[1] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, & X. Rival.
Combination of Abstractions in the ASTRÉE Static Analyzer. In 11th Annual Asian
Computing Science Conference (ASIAN’06), National Center of Sciences, Tokyo,
Japan, December 6—8, 2006. LNCS, Springer (to appear).

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 42 — ľ P. Cousot & R. Cousot, 2007

Bibliography

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. Design and implementation of a special-purpose static program analyzer
for safety-critical real-time embedded software, invited chapter. In T. Mogensen, D.A.
Schmidt, and I.H. Sudborough, editors, The Essence of Computation: Complexity,
Analysis, Transformation. Essays Dedicated to Neil D. Jones, LNCS 2566, pages
85–108. Springer, 2002.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proc. ACM
SIGPLAN ’2003 Conf. PLDI, pages 196–207, San Diego, 2003. ACM Press.

[4] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In
Proceedings of the Second International Symposium on Programming, pages 106–
130, Paris, France, 1976. Dunod, Paris, France.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th ACM POPL,
pages 238–252, January 1977.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 43 — ľ P. Cousot & R. Cousot, 2007

[6] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2(4):511–547, August 1992.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The Astrée analyzer. In M. Sagiv, editor, Proc. 14th ESOP ’2005, Edinburgh, LNCS
3444, pages 21–30. Springer, 4–8 Apr. 2005.

[8] J. Feret. Static analysis of digital filters. In D. Schmidt, editor, Proc. 30th ESOP ’2004,
Barcelona, LNCS 2986, pages 33–48. Springer, Mar. 27 – Apr. 4, 2004.

[9] J. Feret. The arithmetic-geometric progression abstract domain. In R. Cousot, editor,
Proc. 6th VMCAI ’2005, Paris, LNCS 3385, pages 2–58. Springer, Jan. 17–19, 2005.

[10] L. Mauborgne. Astrée: Verification of absence of run-time error. In P. Jacquart,
editor, Building the Information Society, chapter 4, pages 385–392. Kluwer Academic
Publishers, 2004.

[11] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based static
analyzers. In M. Sagiv, editor, Proc. 14th ESOP ’2005, Edinburgh, LNCS 3444, pages
21–30. Springer, 4–8 Apr. 2005.

[12] A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In
VMCAI’06, volume 3855 of LNCS, pages 348–363. Springer, 2002.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 44 — ľ P. Cousot & R. Cousot, 2007

[13] A. Miné. Field-sensitive value analysis of embedded C programs with union types and
pointer arithmetics. In Proc. LCTES 2006, Ottawa, Ontario, Canada, 14–16 June 2006,
pages 54–63. ACM Press, 2006.

[14] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19:31–100, 2006.

[15] David Monniaux. The parallel implementation of the Astrée static analyzer. In
Kwangkeun Yi, editor, APLAS, volume 3780 of LNCS. Springer, 2005.

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 45 — ľ P. Cousot & R. Cousot, 2007

