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Astrée
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Astrée objectives

--- Astrée is a static program analyzer [2, 3, 7, 10] based on ab-
stract interpretation [5, 6]
--- Astrée used to prove automatically the absence of run time
errors in C programs 2

--- Astrée is applied to large industrial embedded control/command
safety-critical synchronous real-time software
--- Astrée is efficient and very precise for its application domain
--- Astrée was recently extended [13] to handle other kinds (e.g.
communication) of embedded software, some of which are hand-
written (using union, pointer arithmetics, etc).

2 without recursion, dynamic memory allocation and library calls.
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Astrée design

Astrée was designed using:
--- a syntax-directed representation of the program control flow
(functions, block structures);
--- functional representation of abstract environments with sharing
[2], for memory and time efficiency, and limited support for
analysis parallelization [15];
--- basic abstract domains, tracking variables independently (inte-
ger and floating-point intervals [4] using staged widenings);
--- relational abstract domains tracking dependencies between vari-
ables
– symbolic computation and linearization of expressions [12],
– packed octagons [14],
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– application-aware domains (such as the ellipsoid abstract
domain for digital filters [8] or the arithmetic-geometric
progression abstract domain [9], e.g. to bound potentially
diverging computations);

--- abstract domains tracking dependencies between boolean vari-
ables and other variables (boolean partitioning domain [3]), or
the history of control flow branches and values along the execu-
tion trace (trace partitioning domain [11]);
--- a memory abstract domain [3] recently extended to cope with
unions and pointer arithmetics 3 [13].
--- abstract domains are parametrized 4 and applied locally 5 [3].
3 Contrary to many program analysis systems, Astrée does not have separate phases for pointer/aliasing
analysis and arithmetic analysis.
4 e.g. maximal height of decision trees.
5 e.g. to variables packs.
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Motivation for the
combination of abstract domains
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Different Classes of Run-time Errors

1. Errors terminating the execution 6. Astrée warns and
continues by taking into account only the executions that
did not trigger the error.

2. Errors not terminating the execution with predictable outcome 7.
Astrée warns and continues with worst-case assumptions.

3. Errors not terminating the execution with unpredictable
outcome 8. Astrée warns and continues by taking into ac-
count only the executions that did not trigger the error.

3. is sound with respect to C standard, unsound with respect to
C implementation, unless no false alarm.
6 floating-point exceptions e.g. (invalid operations, overflows, etc.) when traps are activated
7 e.g. overflows over signed integers resulting in some signed integer.
8 e.g. memory corruptionss.
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Origins of False Alarms

1. Imprecise abstract transformer ) fix algorithm
2. Imprecise parametrization ) fix parameters
3. Imprecise widening ) fix algorithm
4. Inepressive combination of abstract domains )
--- must introduce new abstract domain
--- without redesigning existing abstract domains
--- but with interactions and reductions with existing abstract
domains to enhance global precision
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Abstract domains
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Abstract domains

--- Abstract domain role: encapsulate a class of program properties
--- Abstract domain structure:
-- Abstract sets of execution trace fragments, as defined by a
concretization function
-- Data structures for abstract properties encoding concrete prop-
erties of trace fragments
-- Sound algorithms for logical structure (approximation pre-
order, etc.)
-- Sound algorithms for transformers (post-image, etc.)
-- Sound extrapolators (widening/narrowing)
-- Communication channels to implement an approximate re-
duced product of abstractions
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Abstract domain constructors

--- Non-relational lifting: non-relational abstract domain D on val-
ues ‹7 !̀ abstract domain

Q

X2VarD on all variables (using bal-
anced binary trees)
--- Relational lifting: relational abstract domain D(P ) on packs
P „ Var of variables ‹7 !̀ abstract domain D(Var) on all variables
--- Trace partitionning: past history abstraction domain 9 ˆ current
memory state abstraction domain ‹7 !̀ prefix traces abstraction
domain (using maps implemented as trees) [11]
--- Boolean partitionning: prefix traces abstraction domainˆ boolean
variables ‹7 !̀ prefix traces abstraction domain (using decision
trees)

9 (e.g. a sub-sequence of branches taken
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Reductions
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Precondition refinement

--- Use information provided by other abstract domains to improve
the precondition of a transformer

--- Example: ellipsoid domain for filters:

precondition
Y 2 ` a:Y:Z ` b:Z2

6 k2

assignment
X = a0:Y:+ b0:Z + c0`̀ `̀ `̀ `̀ `̀ `̀ `̀ `̀ `̀ !̀

postcondition
X2 ` a00:X:Y ` b00:Y 2

6 (f(k))2

--- If no precondition of the required form is available, so synthesize
one from
-- the interval domain (for Y and Z)
-- the symbolic domain (for Y = Z?)
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Postcondition refinement

--- Use information provided by other abstract domains to improve
the postcondition of a transformer
--- Two cases:
-- Information computed by a domain propagated to its under-
lying domains
-- Information resquested by a domain missing the information
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Example of postcondition refinement of underlying
domains

Code fragment computing an absolute value:

Program Intervals Octagons
Y 2 [`1;+1]

X=Y; X; Y 2 [`1;+1] X = Y

if (X<0) { X 2 [`1;`1]; Y 2 [`1;+1] X = Y < 0
X=-Y; X; Y 2 [`1;+1] X = `Y > 0

} else { X 2 [0;+1]; Y 2 [`1;+1] X = Y > 0
} X 2 [`1;+1]; Y 2 [`1;+1] `X 6 Y 6 X

if (X<100){ X 2 [`1; 99]; Y 2 [`1;+1] `X 6 Y ^ Y 6 X 6 99
...Y...

}
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Intervals with postcondition refinement by octagons: the oc-
tagons domains receives ranges of variables from interval domain,
reduce them and send back the result to the interval domain.

Program Reduced intervals Octagons
Y 2 [`1;+1]

X=Y; X; Y 2 [`1;+1] X = Y

if (X<0) { X 2 [`1;`1]; Y 2 [`1;`1] X = Y < 0
X=-Y; X 2 [1;+1]; Y 2 [`1;`1] X = `Y > 0

} else { X 2 [0;+1]; Y 2 [0;+1] X = Y > 0
} X 2 [0;+1]; Y 2 [`1;+1] `X 6 Y 6 X

if (X<100){ X 2 [0; 99]; Y 2 [`99; 99] `X 6 Y ^ Y 6 X 6 99
...Y...

}
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Example of information request

Analysis with the octagon domain

{ Y <= X <= Z }

X = A

{ X = A, Y <= Z }

--- Nothing is known on A whence on X

--- Ask for an interval of A or X to the interval domain 10

--- Because the abstract domains are organized into a hierarchy,
circularities are avoided

10 The octagon domain is more precise than the interval domain but the interval domain might have benefitted
from reductions from other domains.
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Implementation as a
networks of abstract domains
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Hierarchies of abstract domains

--- Abstract domains are organized in several hierarchies, e.g.

--- Bottom-up evaluation
--- Communication of abstract properties via common ancestor by
communication primitives

2007 Prog. Lang. Day at Watson, Monday May 7th, 2007 — 20 — ľ P. Cousot & R. Cousot, 2007



Abstract domain of messages

--- set IO] of abstract properties (messages sent/received by com-
munication primitives)
--- concretization ‚IO] : IO] ! D (D is the set of concrete execu-
tion trace fragments)
--- communication channels
-- >: initially, no information on channel
-- content read and modified by communication primitives
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Communication primitives

Each abstract domain (D]; ‚D]) has two communication primi-
tives:
--- Emit abstract information on communication channels:
-- extractD] : D] ˆ IO]! IO]
-- io0 = extractD](c; io):
- io: contents of the output channel before the constraint is
emitted,
- c: abstract element in the abstract domain D],
- io0: content of the channel reduced by information extracted
from c (hence the name extract).

-- ‚D](c)\‚IO](io) „ ‚IO](extractD](c; io)) (reduction of com-
munication channel)
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--- Receive abstract information on communication channel:
-- refineD] : D] ˆ IO] ! D]
-- c0 = refineD](c; io):
- c: element of the abstract domain
- io: abstract information on the input channel
- c0: refinement for c by the received abstract information
(hence the name refine)

-- ‚D](c)\‚IO](io) „ ‚D](refineD](c; io)) (reduction of abstract
property)
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Improving the precision of widenings
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Widening precision improvement strategies

--- Delaying widenings: Replace O by [ finitely often
--- Reducing widenings: Reduce result of O using information pro-
vided by other abstract domains
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Delaying widenings
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Problem with the delaying of widenings

--- Let O be a widening on an abstract domain D
--- Replacing O by [ improves precision
--- However, fair replacement 11 of O by [ may no longer ensure
termination

11 any infinite iteration would have an unbounded number of widenings
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Counter-example

--- D] , fS „ [0; 1] j 0; 1 2 Sg
--- f(S) = S [ f 1

2n+1 j 1
2n 2 Sg

--- aOD]b = (a; a [ b)
--- (a; b) is obtained by making the convex union of several con-
nected components of b until there are fewer connected compo-
nents than in a, and fewer than five connected components
--- OD] is a widening

12

12 along the abstract iterates the number of connected components decreases until it reaches 1, and the interval
[0; 1] is the only element with one connected component.
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--- The sequence:
8

>

<

>

:

u0 = f0; 1g;
u2n = u2n`1OD]f(u2n`1);

u2n+1 = u2n [ f(u2n)

is u2n = f0g [ [ 1
22n; 1] and u2n+1 = f0; 1

22n+1g [ [ 1
22n; 1].

--- Whence it is not ultimately stationary.
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Reducing widenings
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Problem with the reduction of widenings

--- Let O1 be a widening on an abstract domain D1

--- Let O2 be a widening on an abstract domain D2

--- O1 ˆ O2 is a widening on the product D1 ˆD2
13

--- However, O1ˆO2may no longer ensure termination of the analy-
sis in case of interdomain reductions

13 interpreted as a conjunction in the concrete
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Counter-example

{ A:[100, 100], X:[0,0], Y:[0, +oo] }

while (X < Y) { X = X + 1 }

[0; 0] [ ((X \ [`1;max(Y )]) + [1; 1]) „ X inequation F (X) „ X
X0 = ?, Xn = Xn`1 O F (Xn`1) until F (Xn) „ Xn
Iterates with widening and no reduction:

X = ?
X = ? O [0; 0] = [0; 0]
X = [0; 0]O [0; 1] = [0;+1]
X = [0;+1] O [0;+1] = [0;+1] stable

Widening always enforces termination
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{ A:[100, 100], X:[0,0], Y:[0, +oo] }

while (X < Y) { X = X + 1 }

[0; 0] [ ((X \ [`1;max(Y )]) + [1; 1]) „ X inequation F (X) „ X
Iterates with widening and reduction by X 6 A:
X = ?
X = ? O [0; 0] = [0; 0]
X = [0; 0]O [0; 1] = [0;+1]
X ! [0; 99] reduction by octagons
X = [0; 99]O [0; 100] = [0;+1] unstable [0;+1] 6„ [0; 99]
X ! [0; 99] reduction by octagons
X = [0; 99]O [0; 100] = [0;+1] unstable [0;+1] 6„ [0; 99]
: : :
Widening no longer enforces termination because of reductions
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Convergence enforcement with
delayed and reduced widenings
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Abstract domains hierarchy

--- The analysis is performed using a finite product

D] =
Y

i2I
D
]
i

of totally ordered abstract domains (D
]
i;v
]
i)i2I

14

--- Each D]i has a widening operator Oi
--- The infimum is ? = (?i)i2I
--- Let FD] 2 D]! D] be the fixpoint transformer

14 A domain is larger than its underlying domains.
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Strengthened definition of widenings

Each Oi on D
]
i is such that:

--- for any a; b 2 D]i, we have both a v
]
i aOib and b v

]
i aOib

--- Define the relation !0i
15 as

“for any a; d 2 D]i, a!i d if and only if there exist
b; c 2 D]i such that a v

]
i b and d = bOic”

--- !0i is well-founded.

15 read a!i d as “a can be widened to d”
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Iterates with widenings

--- Let ((bi)n) 2 (ffalse; truegI)N be a family of booleans such that
8i 2 I, the sequence ((bi)n)n2N takes the value true an un-
bounded number of times.
--- Let (i)i2I 2 D] be a finite family of abstract elements.
--- Then, the sequence:

8

>

>

>

>

>

<

>

>

>

>

>

:

(wi)0 = ?i;
un+1 = FD](wn);

(vi)n+1 =

(

maxv]i
((wi)n; (ui)n+1) whenever (bi)n = false;

(wi)nOi(ui)n+1 otherwise ;
(wi)n+1 = minv]i

((vi)n+1; i);

is ultimately stationary (and sound).
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Convergence of the analysis

--- To avoid cyclic reductions between components of the product
domain: after a widening step, a domain can only refine its
underlying domains.
--- The abstract iterates in the abstract domains that are at the
top of the hierarchy are ultimately stationary.
--- Once the abstract properties in the domains that are above one
domain are stable, the reduction of abstract properties in this
domain can be seen as an intersection with a constant abstract
property.
--- Thus, its abstract iterates are ultimately stationary.
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Conclusion
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The power of widenings

--- Infinite abstractions with widenings are provably superior to
finite abstractions
--- The precision of widenings can be improved by fairly delaying its
applications and reducing its extrapolations (while still ensuring
convergence)
--- The abstract domains can be organized in hierarchical networks
to minimize programming efforts when introducing new abstrac-
tions and reductions in the static analyzer
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THE END, THANK YOU
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