Formalization of
Program Transformation
by Abstract Interpretation

Patrick COUSOT Radhia COUSOT
Ecole Normale Supérieure Ecole Polytechnique
45 rue d'Ulm 01128 Palaiseau cedex
75230 Paris cedex 05, France France
Patrick.Cousot@ens.fr Radhia.Cousot@lix.polytechnique.fr
www.di.ens.fr/~cousot lix.polytechnique.fr/~rcousot

CS Dept., Courant Inst. of Math. Sci., NYU Jan 11, 2002

NYU

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
mailto:rcousot@lix.polytechnique.fr
http://lix.polytechnique.fr/~radhia

Content

1. A short introduction to abstract interpretation (in the con-
text of program static analysis) 2

2. A new application of abstract interpretation: program trans-
formation 44

3. Conclusion ... 05

This work was supported in part by the RTD project IST-1999-20527 DAEDALUS
of the european IST FP5 programme.

NYU Jan 11, 2002 — 1 — © P. Cousotr & R. Cousor

Abstract Interpretation

NYU Jan 11, 2002 — 2 — © P. Cousotr & R. Cousor

Abstract Interpretation

e Formalizes the idea of approximation of sets and set opera-
tions as considered in set (or category) theory;

e Mainly applied to the approximation of the semantics of pro-
gramming Ianguages/computer systems;

NYU Jan 11, 2002 — 3 — © P. Cousort & R. CousoT

The Theory of Abstract Interpretation

e Abstract interpretation is a theory of conservative approx-
iImation of the semantics of computer systems.

Approximation: observation of the behavior of a com-
puter system at some level of abstraction, ignoring irrele-
vant details:

Conservative: the approximation cannot lead to any erro-
neous conclusion.

NYU Jan 11, 2002 — 4 — © P. Cousort & R. CousoT

Usefulness of Abstract Interpretation

e Thinking tools: the idea of abstraction is central to reason-
ing (in particular on computer systems);

e Mechanical tools: the idea of effective approximation leads
to automatic semantics-based program manipulation tools.

NYU Jan 11, 2002 — 5 — © P. Cousor & R. Cousot

NYU Jan 11, 2002

Abstraction

© P. Cousotr & R. Cousor

Abstraction: intuition

e Abstract interpretation formalizes the intuitive idea that a

semantics is more or less precise according to the considered
observation level of the program executions;

e Abstract interpretation theory formalizes this notion of ap-
proximation /abstraction in a mathematical setting which is
independent of particular applications.

NYU Jan 11, 2002 — 7 — © P. Cousor & R. Cousot

Intuition behind abstraction

NYU Jan 11, 2002 — 8 — © P. Cousotr & R. Cousor

An [in]finite set of points;

A) No Is that point in the
. r= concrete set?
YES
+ + + =
+ + +
y oo +"' : . ¥ {...,(19, 77),...,
¥ (20, 02),...}
+
A
. YES

NYU Jan 11, 2002 — 9 — © P. Cousor & R. Cousot

Approximation of an [in]finite set of points:

From Below

A 297 Is that point in the
+
concrete set?
Yalel¢
-€
............. +
(0 5 . {...,(19, 77),...,
: + }
A
Conservative
- YES >~ answer

NYU Jan 11, 2002 — 10 — © P. Cousotr & R. Cousor

Approximation of an [in]finite set of points:

NO
+ + <
?
777
+ + <
? + +
Yy [\ . +
+
+ 5 +
. ?
+ ?
A .
777

NYU Jan 11, 2002

— 11 —

From Above

Is that point in the
concrete set?

£, 77,

(20, 02), (7, 7),...}

Conservative
answer

© P. Cousot & R. CousoT

Intuition Behind

Effective Computable Abstraction

NYU Jan 11, 2002

© P. Cousotr & R. Cousor

Effective computable approximations of an [in]finite
set of points; Signs [1]

xr

Reference

[1] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In

6" POPL, pages 269-282, San Antonio, TX, 1979. ACM Press.

NYU Jan 11, 2002 — 13 — © P. Cousot & R. CousoT

Effective computable approximations of an [in]finite
set of points; Intervals [2]

r € |19, 78]
y € (20, 01]

xr

Reference

[2] P. Cousot and R. Cousot. Static determination of dynamic properties of pro-
grams. In 2" Int. Symp. on Programming, pages 106—-130. Dunod, 1976.

NYU Jan 11, 2002 — 14 — © P. Cousot & R. CousoT

Effective computable approximations of an [in]finite
set of points; Octagons [3]

(1§:1:§9
r+y <78
Y1<y<o
\x—y§99

xIr

Reference

[3] A. Mine. A New Numerical Abstract Domain Based on Difference-Bound Matri-
ces. In PADO'2001, LNCS 2053, Springer, 2001, pp. 155-172.

NYU Jan 11, 2002 — 15 — © P. Cousotr & R. Cousor

Effective computable approximations of an [in]finite
set of points; Polyhedra [4]
A

192 4+ 78y < 2000
20 + 01y > 0

X
_ Reference

[4] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5" POPL, pages 84-97, Tucson, AZ, 1978. ACM
Press.

NYU Jan 11, 2002 — 16 — © P. Cousotr & R. Cousor

Effective computable approximations of an [in]finite

set of points; Simple congruences [5]

r =19 mod 78
20 mod 99

¥

................».

000000000000 0O0CO0CO
0000000000000 000
0000000000000 0O0
0000000000000 00
000006600000 00000
000000000000 0O0CO0CO
000006600000 00000
R XN NN O
eoo0s000404000000
00000000000 00000
000000600 00000000
eed0000000000000
000000000000 O0CO0COCO
0000000000000

ooooooolooooooob

-
00000000000 0O0OC0OCGCOCGC

000000000000 OC06OCGOCGS
=)

____ Reference

[5] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput. Math.,

30:165-190, 1989.

© P. Cousotr & R. Cousor

NYU Jan 11, 2002

Effective computable approximations of an [in]finite
set of points; Linear congruences [6]

y.

____ Reference

®,
o

-¢ @

xIr

lx + 9y = 7 mod 8§
2z — 1y =9 mod 9

[6] P. Granger. Static analysis of linear congruence equalities among variables of a
program. CAAP ‘91, LNCS 493, pp. 169-192. Springer, 1991.

NYU Jan 11, 2002

— 18 —

© P. Cousotr & R. Cousor

Effective computable approximations of an [in]finite
set of points; Trapezoidal linear

> A& ceMFuences [7]
-y - 42—
Ay > -
Y ; ’I ’I 1z + 9y € [0, 78] mod 10
{ 2 — 1y € [0,99] mod 11
A |

A

\
\

X
Reference

[7] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid
congruences. In ACM Int. Conf. on Supercomputing, ICS '92, pages 226-235,
1992.

NYU Jan 11, 2002 — 19 — © P. Cousotr & R. Cousor

Conservative Approximation
and Information Loss

NYU Jan 11, 2002 — 20 — © P. Cousotr & R. Cousor

Intuition Behind
Sound/Conservative

Approximation

NYU Jan 11, 2002 — 21 — © P. Cousotr & R. Cousor

Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Concrete semantics: yes

NYU Jan 11, 2002 — 22 — © P. Cousotr & R. Cousor

Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Testing : You never know!

NYU Jan 11, 2002 — 23 — © P. Cousotr & R. Cousor

Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Abstract semantics 1: | don’t know

NYU Jan 11, 2002 — 24 — © P. Cousotr & R. Cousor

Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Abstract semantics 2: yes

NYU

Jan 11, 2002

© P. Cousotr & R. Cousor

NYU Jan 11, 2002

Intuition Behind
Information Loss

— 2% —

© P. Cousotr & R. Cousor

Information Loss

e All answers given by the abstract semantics are always correct
with respect to the concrete semantics;

e Because of the information loss, not all questions can be
definitely answered with the abstract semantics;

e [he more concrete semantics can answer more questions;

e [he more abstract semantics are more simple.

NYU Jan 11, 2002 — 27 — © P. Cousor & R. CousoT

Very Basic Elements of
Abstract Interpretation Theory

NYU Jan 11, 2002 — 28 — © P. Cousotr & R. Cousor

Abstraction «

- {x:[1,99],y : 2,77}

NYU Jan 11, 2002 — 29 — © P. Cousotr & R. Cousor

Concretization ~

Tt 1,99,y [2,77])

NYU Jan 11, 2002 — 30 — © P. Cousotr & R. Cousor

The Abstraction o is Monotone

{x 33,89,y : 48,61}
C
{x 1,99,y :(2,90]}

NYU Jan 11, 2002 — 31 — © P. Cousotr & R. Cousor

The Concretization ~ is Monotone

90 1+ *
61— | Y £3:33,80],y: [48,61]}
+ . * X + » [

T . - ’Y —
BT T {2 [1,99],y : [2,90])

5 S "
X TV = ~(X) CH(Y)

NYU Jan 11, 2002 — 32 — © P. Cousotr & R. Cousor

The v o a« Composition

g *

+
+
+

+

+
+

2

+ o+ 3+ o > {ZC : [1,99],@/ : [2,77]}

X CyoalX)

NYU Jan 11, 2002 — 33 — © P. Cousotr & R. Cousor

The a o v Composition

Y
r f —
| ST v {x 1,99,y : (2,77}
+) :+ ++ o] N

{x:[1,99],y : 2,77}

> | + |

.
1 99

aoy(Y)=Y

NYU Jan 11, 2002 — 34 — © P. Cousotr & R. Cousor

Galois Connection'

(P, €)== (@,)

IS deflned as
® (v IS monotone

® 7 Is monotone
o X CvyoalX)
eaovy(Y)CVY

iff
aX)CY iff X CH(Y)

1 formalizations using closure operators, ideals, etc. are equivalent.

NYU Jan 11, 2002 — 35 — © P. Cousotr & R. Cousor

Abstract domain Function Abstraction
I
Q}VX
il @ P = o fory
OF e
ﬁ/
Concrete domain

(P, C) == (Q.C) =

o Sy)\Fﬂ.WOFﬂooz o .
(Pr= P Q) = (@ Q) 6

NYU Jan 11, 2002 — 36 — © P. Cousotr & R. Cousor

Approximate Fixpoint Abstraction

-

~

Abstract domain : 4
1

’Y Approximation

-

i I
1
1
I
I

././0/”/’?@
F
J—'/VF i

Concrete domain |

NYU Jan 11, 2002

— 37 —

relation L

a(ifp F') C Ifp [

© P. Cousotr & R. Cousor

Exact Fixpoint Abstraction

Abstract domain 4 .
L Py e T "
Ly Eog oy 0
Qo 0" Qo cv,,"' QoL

Concrete domain |

aoF=Foa = a(lfpF) = Ifp F

NYU Jan 11, 2002 — 38 — © P. Cousotr & R. Cousor

Exact/Approximate Fixpoint Abstraction

Exact Abstraction:
a(ifp F') = Ifp F*

Approximate Abstraction:

aifp F) 7 ifp F*

NYU Jan 11, 2002 — 39 — © P. Cousotr & R. Cousor

4)
Abstract domain ! 4
h ! Fﬁ Fu F F
o af ol al afdia
- " ' ' — a

Concrete domain |

Exact Fixpoint
Abstraction

aoF=Foa = a(lfpF) = Ifp F

NYU Jan 11, 2002 — 40 —

© P. Cousotr & R. Cousor

A Few References on Foundations

e P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In 4th POPL | pages 238-252,
Los Angeles, CA, 1977. ACM Press.

e P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In 6th POPL pages 269-282, San
Antonio, TX, 1979. ACM Press.

e P. Cousot and R. Cousot. Abstract interpretation frame-
works. J. Logic and Comp., 2(4):511-547, 1992.

NYU Jan 11, 2002 — 41 — © P. Cousotr & R. Cousor

Applications of
Abstract Interpretation

NYU Jan 11, 2002 — 42 — © P. Cousotr & R. Cousor

Applications of Abstract Interpretation

e Static Program Analysis [POPL77,78,79]

e Hierarchies of Semantics (including Proofs) [POPL
92]

e Typing [POPL 97]

e Model Checking [POPL 00]

e Program Transformation [POPL 02]

All these techniques involves approximations that can be for-
malized by abstract interpretation.

NYU Jan 11, 2002 — 43 — © P. Cousor & R. CousoT

A New Application
of Abstract Interpretation:

Program Transformation

NYU Jan 11, 2002 — 44 — © P. Cousotr & R. Cousor

Objectives of this Work

NYU Jan 11, 2002 — 45 — © P. Cousotr & R. Cousor

Program Transformation & Abstract Interpretation

In semantics-based program transformation, such as:

e constant propagation,
e partial evaluation,
e slicing,
abstract interpretation is used:

e in a preliminary program static analysis phase

e to collect the information about the program runtime be-
haviors, which is necessary

e to validate the applicable transformations.

NYU Jan 11, 2002 — 46 — © P. Cousotr & R. Cousor

Present Objective

Our present objective is quite different:

e Formalize the program transformation itself as an abstract

Interpretation;
e [wo subgoals:

— Understand correctness proofs of program transformations
as abstract interpretations;

- Imagine and apply a program transformation design method
by abstract interpretation.

NYU Jan 11, 2002 — 47 — © P. Cousotr & R. Cousor

Principle of
Online Program Transformation
(Explained in Steps with the

Constant Propagation Example)

NYU Jan 11, 2002 — 48 — © P. Cousotr & R. Cousor

The Programming Language

a:X:=7—b; random assignment/input
b:Y:=1— c; assignment

c: (X<0)— £; nondeterministic guard
C: (X > 0) — d;

d: X:=X—Y — e;

e : skip — c; branching

f : stop; stop

NYU Jan 11, 2002 — 49 — (© P. Cousor & R. Cousot

Principle of Online Program Transformation (1)

e Program transformation is a syntactic process;
® maps a subject program into a transformed program;

e Both subject and transformed programs are syntactic objects.

NYU Jan 11, 2002 — 50 — © P. Cousotr & R. Cousor

Program Transformation:
The Syntactic Point of View

Subject program:

a :

b

C:
C:

=7 — b;
Y :=1— c;

(XSO)—>f;
(X>O)%d;

d: X:=X—Y — e;

®

NYU Jan 11, 2002

: skip — C;
. stop;

— 51 —

a :

b

C:
C:

®

Transformed program:
=7 — b;

Y :=1— c;

1

(XSO)—>f;
(X>0)—

d;

: X=X —¥ — e;

: skip — C;
. stop,;

© P. Cousor & R. CousoT

Principle of Online Program Transformation (1)

Transformed
Subject Syntactic program
program P | > t[P]

transformation t

NYU Jan 11, 2002 — 52 — © P. Cousotr & R. Cousor

Principle of Online Program Transformation (2)

e Program transformations refer to the semantics of the subject
and transformed programs:

- Online program transformations use values manipulated
during program execution, hence directly refer to the source
concrete semantics;

- Offline program transformations use a preliminary static
analysis of the source program, hence refer to its abstract
semantics;

NYU Jan 11, 2002 — 53 — © P. Cousotr & R. Cousor

Principle of Online Program Transformation (2)

Transformed
Subject Syntactic program
program P | . > t[P]
transformation t
S S
Subject pro- Transformed pro-
gram seman- gram semantics
tics S||P] S[t[P]]

NYU Jan 11, 2002 — 54 — © P. Cousotr & R. Cousor

The Prefix Trace Semantics

The semantics is the set of prefixes of all
traces similar to that one (with different in-

puts) |

a:X:=7—b; (a: X:=7—Db;, X:0,Y:0))
b:Y:=1— c; (b:Y:=1—c¢c;, [X:1,Y:0])
c: (X<L0)— f;
c: (X>0)—d; (c: (X>0)—d;, X:1,Y:1])
d: X:=X—-Y — e; (d: X:=X—Y —e;, X:1,Y:1])
e : skip — c; (e: skip — c;, X:0,Y:1])

(c: (X<0)—1£;, [X:0,Y:1))
f : stop; (f : stop;, [X:0,Y:1))

NYU Jan 11, 2002 — 55 — © P. Cousotr & R. Cousor

Semantics of the Transformed program

®
n
2)
|—|.
o
l
S

NYU Jan 11, 2002

a

(
(b

O,

®

H O

<
(
<
<
<

C:

X =7 —Db;, X:0U,Y:0])
:Y:=1—c;, X:1,Y:0])

(X>0)—d;, [X:1,Y:1])
1
:X:=X—¥Y—e;, [X:1,Y:1])
. skip — ¢;, [X: 0,V 1])
(X <0) = £;, [X:0,Y:1])
. stop;, [X:0,Y:1])

— 56 — © P. Cousotr & R. Cousor

Principle of Online Program Transformation (3)

e [he subject semantics and transformed semantics cannot be
exactly the same;

e However they should be equivalent, at some level of observa-
tion.

NYU Jan 11, 2002 — 57 — © P. Cousotr & R. Cousor

Principle of Online Program Transformation (3)

Subject Syntactic

program P | .
transformation t

S

Subject pro-

Observational

gram seman-

equivalence

tics S||P]

NYU Jan 11, 2002 — 58 —

Transformed
program

t[P]

S

Transformed pro-
gram semantics

S[t[P]]

© P. Cousotr & R. Cousor

Principle of Online Program Transformation (3)

e The observational equivalence gets rids of irrelevant details
about the subject and transformed program semantics;

e Hence it is an abstract interpretation of the subject and trans-
formed program semantics!

NYU Jan 11, 2002 — 59 — © P. Cousor & R. CousoT

Observational semantics

a:X:=7— b; (a:X:=7 —b;, [X:0,Y: 0]
b:Y:=1—c¢; (b:V:=1—c¢;, [X:1,Y:0])
c: (X<0)— £;
c: (X>0)—d; (c: (X >0)—4d;, X:1,Y:1))
X:=X—§éﬁe, <d:X:=X—%1é—>e;,[X:1,Y:1]>

e : skip — C; (e: skip — c;, X:0,Y:1])

(c: (X<0)—1£;, [X:0,Y:1))
f : stop; (f : stop;, [X:0,Y:1))

NYU Jan 11, 2002 — 60 — © P. Cousotr & R. Cousor

Principle of Online Program Transformation (3)

Transformed
Subject Syntactic program
program P | . > t[P]
transformation t
S S
Subject pro- Transformed pro-
gram seman- gram semantics

S[t[P]]

tics S||P]
Observational
abstraction
(S[P]) =

(SIelPIl)

NYU Jan 11, 2002 — 61 — © P. Cousotr & R. Cousor

Example: Constant Propagation

Subject/Transformed Semantics Observational Semantics

=7 —Db;, [X:0U,Y:0]) a: —b;, [X:0,Y:0)])
:Y:=1—>c;, [X:1,Y:0]) b: —c;, [X:1,Y:0])
: (X >0) —d;, X:1,Y: 1)) . —d;, X 1L,Y 1]
d

o M

O
O

<
<
<
:X:=X—§é—>e;,[X:1,Y:1]> (
. skip — ¢;, [X: 0,V 1]) (
: (X <0) = £;, [X:0,Y:1]) (
. stop;, [X:0,Y: 1)) (

®

. —c;, [X:0,Y:

®

O
O
>

)

. —oe;, X 1,7 1])
1))

)

. — £, X:0,Y: 1
f: stop;, [X:0,Y:1])

/\/\/\a TN TN

Hh

NYU Jan 11, 2002 — 62 — © P. Cousotr & R. Cousor

Principle of Online Program Transformation (4)

e [he syntactic transformation induces a semantic transforma-
tion:
The semantics of the subject program is mapped to the
semantics of the transformed program;

e [he subject semantics and the transformed semantics should
be observationally equivalent;

e [he semantic transformation is in general more precise than
the algorithmic syntactic transformation (e.g. infinite behav-
iors are no problem at the semantic level).

NYU Jan 11, 2002 — 63 — © P. Cousotr & R. Cousor

Example: Semantic Constant Propagation

a:X:=7—b; (a: X:=7—b;, X:0,Y:0))
b:Y:=1—¢; (b:Y:=1—c¢c;, [X:1,Y:0])
c: (X<0)— £;
c: (X>0)—d; (c: (X>0)—d;, X:1,Y:1])
d: X:=X—Y — e; (d:X:=X—§é—>e;,[X:1,Y:1]>
e : skip — C; (e: skip — c;, X:0,Y:1])

(c: (X<0)—1£;, [X:0,Y:1))
f : stop; (f : stop;, [X:0,Y:1))

NYU Jan 11, 2002 — 64 — © P. Cousotr & R. Cousor

Principle of Online Program Transformation (4)

Transformed
Subject Syntactic program
program P | . > t[P]
transformation t
S S

Subject pro- Semantic Transformed pro-
gram seman- | - > gram semantics

tics S[P] transformation t t[S[P]] C S[t[P]]

Observational
abstraction

NYU Jan 11, 2002 — 65 — © P. Cousotr & R. Cousor

Correspondence Between
Syntax and Semantics

NYU Jan 11, 2002 — 66 — © P. Cousotr & R. Cousor

Correspondence Between
Syntax and Semantics

e The program syntax forgets details about the program execu-
tion semantics:

- The sequence of values of variables during execution is
forgotten, but:

— their existence and maybe their type are recorded;

- the sequence (partial order, ...) of (denotations of) ac-
tions performed on these variables is recorded;

- Program execution times are completely abstracted (but
might be included in the operational semantics);

NYU Jan 11, 2002 — 67 — © P. Cousor & R. CousoT

Correspondence Between
Syntax and Semantics, Cont’d

e [he correspondence between syntax and semantics is an ab-
straction:

S
P0<@3 E> < 5 P0<P/E5 E>

e [he concretization S is the semantics of the program:;

e The abstraction p is the “decompilation” of the semantics.

NYU Jan 11, 2002 — 68 — © P. Cousotr & R. Cousor

Principle of Online Program Transformation (5)

Transformed
Subject Syntactic program
program P | : > t(P]
3 transformation t 3

S||p S||p
Subject pro- Semantic Transformed pro-
gram seman- | - > gram semantics
tics S[P] transformation t t[S[P]] C S[t[P]]

Observational
abstraction

NYU Jan 11, 2002 — 69 — © P. Cousotr & R. Cousor

Example: Syntax to Prefix Trace Semantics

e Fixpoint semantics:
C
S'[P] = 1fp F*[P]

F*[P]7 = Z[PJU {oss’ | 0s € T A s’ € S[P]s},

NYU Jan 11, 2002 — 70 — © P. Cousotr & R. Cousor

Example: Prefix Trace Semantics to Syntax

e Collect commands along traces.

NYU Jan 11, 2002 — 71 — © P. Cousotr & R. Cousor

Correspondence Between
the Subject Semantics and

the Transformed Semantics

NYU Jan 11, 2002 — 72 — © P. Cousotr & R. Cousor

Semantic Transformations as Approximations

e A semantic program transformation is a loss of information
on the semantics of the subject program;

—— The semantic program transformation is an abstraction;

NYU Jan 11, 2002 — 73 — © P. Cousotr & R. Cousor

Intuition for Transformations as Abstractions

O O T W

®

NYU Jan 11, 2002

— 74 —

@

O O T W

© P. Cousotr & R. Cousor

Principle of Online Program Transformation (6)

Transformed
Subject Syntactic program
program P | . > t[P]
3 transformation t 3

S|p S||p
Subject pro- " Transformed pro-
gram seman- < : gram semantics
tics S[P] Semantic t[SIP]] £ S[t[P]]

transformation t
Observational

abstraction

="ao(t[S[P]])*= @o(S[t[P]])

NYU Jan 11, 2002 — 75 — © P. Cousotr & R. Cousor

Correspondence Between
the Subject Program and

the Transformed Program

NYU Jan 11, 2002

— 76 — © P. Cousor

ousoT

Syntactic Transformations as Approximations

e By composition, the syntactic program transformation is also
a loss of information on subject program;

—— The syntactic program transformation is an abstraction;

NYU Jan 11, 2002 — 77 — © P. Cousotr & R. Cousor

Semantic to Syntactic Constant Propagation

a:X:=7— b; (a: X:=7—>Db;, | , 1)
b:Y:=1— c; <b:Y =1—>C;,[:]>
C:(XSO)%f;
c: (X>0)—d; (c: (X>0)—d;, [X:1, 1)
X =X—§:1Lé—>e, (d: X =X—§é%e,,[,)

e : skip — C; <e sklpﬁc;,[:]>

(o (X< 0)— £, [K 0,7 1]
f : stop; (f : stop;, | : 1)

NYU Jan 11, 2002 — 78 — © P. Cousotr & R. Cousor

Principle of Online Program Transformation (Done)

Transformed
Subject program
Tt
program P < > t[P]
4 Syntactic 3
transformation t

S||p S||p
Subject pro- " Transformed pro-
gram seman- < : gram semantics
tics S[P] Semantic t[SIP]] £ S[t[P]]

transformation t
Observational

abstraction

NYU Jan 11, 2002 — 79 — © P. Cousotr & R. Cousor

Principle of the Formalization
of Program Transformation

by Abstract Interpretation

NYU Jan 11, 2002 — 80 — © P. Cousotr & R. Cousor

Formalization of
Program Transformation

Correctness
by Abstract Interpretation

NYU Jan 11, 2002 — 81 — © P. Cousotr & R. Cousor

Correctness of an Online Program Transformation

Transformed
Subject program
Tt
program P < > tP]
2 Syntactic 2
transformation t

Slip S||p
Subject pro- o Transformed pro-
gram seman- ‘ N gram semantics
tics S|P] Semantic t[S[P[] C S[t[P]]

transformation t

Observational

0 .
> abstraction

AO
- ao(S[t[P]])

NYU Jan 11, 2002 — 82 — © P. Cousotr & R. Cousor

Design of
Program Transformations
by Abstract Interpretation

NYU Jan 11, 2002 — 83 — © P. Cousotr & R. Cousor

Design of an Online Program Transformation

Transformed
Subject o program
program P ¢ N t[P]| 3 p|t[S[P]]]
2 Syntactic A
transformation t
S|p SHp

Subject pro- " Transformed pro-
gram seman- < ; gram semantics

tics S[R] Semantic t[S]P]]

transformation t
Observational

abstraction

= ao(t[S[P]])*= o(S[t[P]])

NYU Jan 11, 2002 — 84 — © P. Cousotr & R. Cousor

Design of Program Transformation Algorithms

t[P] 2 p[t[S[P]]]
S B
= plt{ifp F[P]]]
1 . «— apply fixpoint transfer
/approximation theorems
t
= Ifp [F*[P]

We obtain an iterative program transformation algorithm!

NYU Jan 11, 2002 — 8 — © P. Cousotr & R. Cousor

The Iterative Constant Propagation Algorithm

ConstantPropagation(P, pf) =
Q = 0;

forall label L of P such that pf(L) # 1L do

forall L:A—L{; P do
A, = Simplify[A]((L));
Q:=QU{L:A.—Lj;}

end:

if L:stop; €P then
Q:=QUA{L: stop;}

end

end:

return Q.

NYU Jan 11, 2002 — 86 —

© P. Cousor & R. CousoT

Principle of

Offline Program Transformation

NYU Jan 11, 2002

— 87 —

© P. Cousotr & R. Cousor

Offline Transformations

e A semantic program transformation can be restricted to use
the only semantic information which can be discovered by a
static program analysis;

—— This can be formalized by abstract interpretation.

NYU Jan 11, 2002 — 88 — (© P. Cousor & R. Cousot

Example: Kildall’s Constant Propagation

e Kildall's lattice (POPL'73):

v¢(T) = ZU {U}
e ... v(x) ={z}, xe€ZU{UC}
’ V(L) =0

e Pointwise extension to variable environments and program
labels:

NYU Jan 11, 2002 — 89 — (© P. Cousor & R. Cousot

Example: Kildall’s Constant Propagation, Cont’d

e Elementwise abstraction of a set 7 of traces:

a’(7T) = AL. XX.

{pX) |do €T :4C e C: i

o; = (p, C) Alab[[C] =L}

where |_| is the pointwise extension of the lub in Kildall's

lattice

NYU Jan 11, 2002

— 90 — (© P. Cousor & R. Cousot

Principle of Offline Program Transformation

Sj]p Program o 9 -
_ | Program
Static |
Ve Transformation
Da ySIS Qo (Il Yo Observational
A C abstraction

ao(S[P]) = ao(t[S[PI{f(S[P])) = &o(S[t[P]])

NYU Jan 11, 2002 — 91 — © P. Cousotr & R. Cousor

Principle of Offline Program Transformation

Subject
program Static program = Syntactic trans- Transforme_d program
e — (P, S[P])—————"t[P] 2 p[t[S[P], a(S[P])]
W analysis S A : ormation t
> Ip p[S 3 S||p
srlézjrch:\ Semantic v E Semantic trans- Transformed
semantics | b . ><S[[P]]7 Oz(S[[P]])> if - ’ program semantics
tract t t
S abstraction « ormation t[S[B], Oé(S[[pM C S[[t[[PM
P Qo| [7Yo i Observational
2 N 50 abstraction

23(STP]) = ao(t(SIP] a(SIP])) = &o(STtP]]

NYU Jan 11, 2002 — 92 — © P. Cousotr & R. Cousor

Applications of the formalization
of program transformation

NYU Jan 11, 2002 — 93 — © P. Cousotr & R. Cousor

Other Program Transformations Formally Handled in
the Same Way

e In this talk, the approach was illustrated on the trivial con-
stant propagation example;

e [he same approach has been successfully applied to:
- Blocking command elimination (ENTCS v. 45);
- Online, offline and mixline partial evaluation (POPL'02);
- Program monitoring (POPL'02);

- Program reduction (e.g. transition compression), Slicing,
etc.

NYU Jan 11, 2002 — 94 — © P. Cousor & R. CousoT

NYU Jan 11, 2002

Conclusion

© P. Cousotr & R. Cousor

Conclusion

e Program transformation is understood as an abstraction of a
semantic transformation of run-time execution:

e Leads to a unified framework for semantics-based program
analysis and transformation;

e The benefit is presently purely foundational and conceptuals;

e Practical application: reanalysis of assembler code from source
requires the formalization of the compilation process.

NYU Jan 11, 2002 — 95 — © P. Cousor & R. CousoT

	Content
	ABSTRACT INTERPRETATION
	Abstract interpretation
	The theory of abstract interpretation
	Usefulness of abstract interpretation
	ABSTRACTION
	Intuition Behind Abstraction
	Approximation of an [in]finite set of points
	Approximation of an [in]finite set of points from below
	Approximation of an [in]finite set of points from above
	Intuition Behind Effective Computable Abstraction
	Example 1: signs
	Example 2: intervals
	Example 3: octagons
	Example 4: polyhedra
	Example 5: simple congruences
	Example 6: linear congruences
	Example 7: trapezoidal linear congruences
	CONSERVATIVE APPROXIMATION AND INFORMATION LOSS
	Intuition Behind Sound/Conservative Approximation
	Conservative approximation
	Intuition Behind Information Loss
	VERY BASIC ELEMENTS OF ABSTRACT INTERPRETATION THEORY
	Abstraction
	Concretization
	The abstraction is monotone
	The concretization is monotone
	The abstraction-concretization composition
	The concretization-abstraction composition
	Galois Connection
	Function abstraction
	Fixpoint abstraction
	Exact fixpoint abstraction
	Exact/approximate fixpoint abstraction
	Exact fixpoint abstraction
	A few references on foundations
	APPLICATIONS OF ABSTRACT INTERPRETATION
	Applications of Abstract Interpretation
	A NEW APPLICATION OF ABSTRACT INTERPRETATION: PROGRAM TRANSFORMATION
	OBJECTIVES OF THIS WORK
	Program transformation and abstract interpretation
	Present objective
	PRINCIPLE OF ONLINE PROGRAM TRANSFORMATION (EXPLAINED IN STEPS WITH THE CONSTANT PROPAGATION EXAMPLE)
	The programming language
	Principle of online program transformation (1.0)
	Program transformation: the syntactic point of view
	Principle of online program transformation (1.1)
	Principle of online program transformation (2.0)
	Principle of online program transformation (2.1)
	The prefix trace semantics
	Semantics of the transformed program
	Principle of online program transformation (3.0)
	Principle of online program transformation (3.1)
	Principle of online program transformation (3.2)
	Observational semantics
	Principle of online program transformation (3.3)
	Example: constant propagation
	Principle of online program transformation (4.0)
	Example: semantic constant propagation
	Principle of online program transformation (4.1)
	CORRESPONDENCE BETWEEN SYNTAX AND SEMANTICS
	Correspondence between syntax and semantics
	Correspondence between syntax and semantics, cont'd
	Principle of online program transformation (5.0)
	Example: syntax to prefix trace semantics
	Example: prefix trace semantics to syntax
	CORRESPONDENCE BETWEEN THE SUBJECT SEMANTICS AND THE TRANSFORMED SEMANTICS
	Semantic transformations as approximations
	Intuition for transformations as abstractions
	Principle of online program transformation (6.0)
	CORRESPONDENCE BETWEEN THE SUBJECT PROGRAM AND THE TRANSFORMED PROGRAM
	Syntactic transformations as approximations
	Semantic to syntactic constant propagation
	Principle of online program transformation (Done)
	PRINCIPLE OF THE FORMALIZATION OF PROGRAM TRANSFORMATION BY ABSTRACT INTERPRETATION
	FORMALIZATION OF PROGRAM TRANSFORMATION CORRECTNESS BY ABSTRACT INTERPRETATION
	Correctness of an online program transformation
	DESIGN OF PROGRAM TRANSFORMATIONS BY ABSTRACT INTERPRETATION
	Design of online program transformation
	Design of program transformation algorithms
	The iterative constant propagation algorithm
	PRINCIPLE OF OFFLINE PROGRAM TRANSFORMATION
	Offline transformations
	Example: Kildall's constant propagation
	Example: Kildall's constant propagation
	Principle of offline program transformation (1)
	Principle of offline program transformation (1)
	APPLICATIONS OF THE FORMALIZATION OF PROGRAM TRANSFORMATION
	Other program transformations formally handled in the same way
	CONCLUSION
	Conclusion

