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Abstract Interpretation

NYU Jan 11, 2002 — 2 — © P. Cousotr & R. Cousor



Abstract Interpretation

e Formalizes the idea of approximation of sets and set opera-
tions as considered in set (or category) theory;

e Mainly applied to the approximation of the semantics of pro-
gramming Ianguages/computer systems;
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The Theory of Abstract Interpretation

e Abstract interpretation is a theory of conservative approx-
iImation of the semantics of computer systems.

Approximation: observation of the behavior of a com-
puter system at some level of abstraction, ignoring irrele-
vant details:

Conservative: the approximation cannot lead to any erro-
neous conclusion.
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Usefulness of Abstract Interpretation

e Thinking tools: the idea of abstraction is central to reason-
ing (in particular on computer systems);

e Mechanical tools: the idea of effective approximation leads
to automatic semantics-based program manipulation tools.
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Abstraction: intuition

e Abstract interpretation formalizes the intuitive idea that a

semantics is more or less precise according to the considered
observation level of the program executions;

e Abstract interpretation theory formalizes this notion of ap-
proximation /abstraction in a mathematical setting which is
independent of particular applications.
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Intuition behind abstraction
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An [in]finite set of points;
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Approximation of an [in]finite set of points:

From Below

A 297 Is that point in the
+
concrete set?
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A
Conservative
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Approximation of an [in]finite set of points:
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From Above

Is that point in the
concrete set?

£, 77,

(20, 02), (7, 7),...}

Conservative
answer
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Intuition Behind

Effective Computable Abstraction
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Effective computable approximations of an [in]finite
set of points; Signs [1]

xr

Reference

[1] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In

6" POPL, pages 269-282, San Antonio, TX, 1979. ACM Press.
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Effective computable approximations of an [in]finite
set of points; Intervals [2]

r € |19, 78]
y € (20, 01]

xr

Reference

[2] P. Cousot and R. Cousot. Static determination of dynamic properties of pro-
grams. In 2" Int. Symp. on Programming, pages 106—-130. Dunod, 1976.
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Effective computable approximations of an [in]finite
set of points; Octagons [3]

(1§:1:§9
r+y <78
Y1<y<o
\x—y§99

xIr

Reference

[3] A. Mine. A New Numerical Abstract Domain Based on Difference-Bound Matri-
ces. In PADO'2001, LNCS 2053, Springer, 2001, pp. 155-172.
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Effective computable approximations of an [in]finite
set of points; Polyhedra [4]
A

192 4+ 78y < 2000
20 + 01y > 0

X
_ Reference

[4] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5" POPL, pages 84-97, Tucson, AZ, 1978. ACM
Press.
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Effective computable approximations of an [in]finite

set of points; Simple congruences [5]

r =19 mod 78
20 mod 99

¥

................».

000000000000 0O0CO0CO
0000000000000 000
0000000000000 0O0
0000000000000 00
000006600000 00000
000000000000 0O0CO0CO
000006600000 00000
R XN NN O
eoo0s000404000000
00000000000 00000
000000600 00000000
eed0000000000000
000000000000 O0CO0COCO
0000000000000

ooooooolooooooob

-
00000000000 0O0OC0OCGCOCGC

000000000000 OC06OCGOCGS
=)

____ Reference

[5] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput. Math.,

30:165-190, 1989.
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Effective computable approximations of an [in]finite
set of points; Linear congruences [6]

y.

____ Reference

®,
o

-¢ @

xIr

lx + 9y = 7 mod 8§
2z — 1y =9 mod 9

[6] P. Granger. Static analysis of linear congruence equalities among variables of a
program. CAAP ‘91, LNCS 493, pp. 169-192. Springer, 1991.
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Effective computable approximations of an [in]finite
set of points; Trapezoidal linear

> A&  ceMFuences [7]
-y - 42—
Ay > -
Y ; ’I ’I 1z + 9y € [0, 78] mod 10
{ 2 — 1y € [0,99] mod 11
A |

A

\
\

X
Reference

[7] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid
congruences. In ACM Int. Conf. on Supercomputing, ICS '92, pages 226-235,
1992.
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Conservative Approximation
and Information Loss

NYU Jan 11, 2002 — 20 — © P. Cousotr & R. Cousor



Intuition Behind
Sound/Conservative

Approximation

NYU Jan 11, 2002 — 21 — © P. Cousotr & R. Cousor



Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Concrete semantics: yes
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Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Testing : You never know!
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Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Abstract semantics 1: | don’t know
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Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Abstract semantics 2: yes

NYU

Jan 11, 2002
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Intuition Behind
Information Loss
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Information Loss

e All answers given by the abstract semantics are always correct
with respect to the concrete semantics;

e Because of the information loss, not all questions can be
definitely answered with the abstract semantics;

e [ he more concrete semantics can answer more questions;

e [he more abstract semantics are more simple.
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Very Basic Elements of
Abstract Interpretation Theory
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Abstraction «

- {x:[1,99],y : 2,77}
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Concretization ~

Tt 1,99,y [2,77])
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The Abstraction o is Monotone

{x 33,89,y : 48,61}
C
{x 1,99,y :(2,90]}
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The Concretization ~ is Monotone

90 1+ *
61— | Y £3:33,80],y: [48,61]}
+ . * X + » [

T . - ’Y —
BT T {2 [1,99],y : [2,90])

5 S "
X TV = ~(X) CH(Y)
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The v o a« Composition

g *

+
+
+

+

+
+

2

+ o+ 3+ o > {ZC : [1,99],@/ : [2,77]}

X CyoalX)
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The a o v Composition

Y
r f —
| ST v {x 1,99,y : (2,77}
+ ) :+ ++ o ] N

{x:[1,99],y : 2,77}

> | + |

.
1 99

aoy(Y)=Y
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Galois Connection'

(P, €)== (@, )

IS deflned as
® (v IS monotone

® 7 Is monotone
o X CvyoalX)
eaovy(Y)CVY

iff
aX)CY iff X CH(Y)

1 formalizations using closure operators, ideals, etc. are equivalent.
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Abstract domain Function Abstraction
I
Q}VX
il @ P = o fory
OF e
ﬁ/
Concrete domain

(P, C) == (Q.C) =

o Sy )\Fﬂ.WOFﬂooz o .
(Pr= P Q) = (@ Q) 6
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Approximate Fixpoint Abstraction

-

~

Abstract domain : 4
1

’Y Approximation

-

i I
1
1
I
I

././0/”/’?@
F
J—'/VF i

Concrete domain |
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relation L

a(ifp F') C Ifp [
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Exact Fixpoint Abstraction

Abstract domain 4 .
L Py e T "
Ly Eog oy 0
Qo 0" Qo cv,,"' QoL

Concrete domain |

aoF=Foa = a(lfpF) = Ifp F
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Exact/Approximate Fixpoint Abstraction

Exact Abstraction:
a(ifp F') = Ifp F*

Approximate Abstraction:

aifp F) 7 ifp F*
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4 )
Abstract domain ! 4
h ! Fﬁ Fu F F
o af ol al  afdia
- " ' ' — a

Concrete domain |

Exact Fixpoint
Abstraction

aoF=Foa = a(lfpF) = Ifp F
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A Few References on Foundations

e P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In 4th POPL | pages 238-252,
Los Angeles, CA, 1977. ACM Press.

e P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In 6th POPL pages 269-282, San
Antonio, TX, 1979. ACM Press.

e P. Cousot and R. Cousot. Abstract interpretation frame-
works. J. Logic and Comp., 2(4):511-547, 1992.
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Applications of
Abstract Interpretation
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Applications of Abstract Interpretation

e Static Program Analysis [POPL77,78,79]

e Hierarchies of Semantics (including Proofs) [POPL
92]

e Typing [POPL 97]

e Model Checking [POPL 00]

e Program Transformation [POPL 02]

All these techniques involves approximations that can be for-
malized by abstract interpretation.
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A New Application
of Abstract Interpretation:

Program Transformation
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Objectives of this Work
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Program Transformation & Abstract Interpretation

In semantics-based program transformation, such as:

e constant propagation,
e partial evaluation,
e slicing,
abstract interpretation is used:

e in a preliminary program static analysis phase

e to collect the information about the program runtime be-
haviors, which is necessary

e to validate the applicable transformations.
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Present Objective

Our present objective is quite different:

e Formalize the program transformation itself as an abstract

Interpretation;
e [wo subgoals:

— Understand correctness proofs of program transformations
as abstract interpretations;

- Imagine and apply a program transformation design method
by abstract interpretation.
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Principle of
Online Program Transformation
(Explained in Steps with the

Constant Propagation Example)

NYU Jan 11, 2002 — 48 — © P. Cousotr & R. Cousor



The Programming Language

a:X:=7—b; random assignment/input
b:Y:=1— c; assignment

c: (X<0)— £; nondeterministic guard
C: (X > 0) — d;

d: X:=X—Y — e;

e : skip — c; branching

f : stop; stop
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Principle of Online Program Transformation (1)

e Program transformation is a syntactic process;
® maps a subject program into a transformed program;

e Both subject and transformed programs are syntactic objects.
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Program Transformation:
The Syntactic Point of View

Subject program:

a :

b

C:
C:

=7 — b;
Y :=1— c;

(XSO)—>f;
(X>O)%d;

d: X:=X—Y — e;

®

NYU Jan 11, 2002

: skip — C;
. stop;

— 51 —

a :

b

C:
C:

®

Transformed program:
=7 — b;

Y :=1— c;

1

(XSO)—>f;
(X>0)—

d;

: X=X —¥ — e;

: skip — C;
. stop,;

© P. Cousor & R. CousoT



Principle of Online Program Transformation (1)

Transformed
Subject Syntactic program
program P | > t[P]

transformation t
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Principle of Online Program Transformation (2)

e Program transformations refer to the semantics of the subject
and transformed programs:

- Online program transformations use values manipulated
during program execution, hence directly refer to the source
concrete semantics;

- Offline program transformations use a preliminary static
analysis of the source program, hence refer to its abstract
semantics;
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Principle of Online Program Transformation (2)

Transformed
Subject Syntactic program
program P | . > t[P]
transformation t
S S
Subject pro- Transformed pro-
gram seman- gram semantics
tics S||P] S[t[P]]
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The Prefix Trace Semantics

The semantics is the set of prefixes of all
traces similar to that one (with different in-

puts) |

a:X:=7—b; (a: X:=7—Db;, X:0,Y:0))
b:Y:=1— c; (b:Y:=1—c¢c;, [X:1,Y:0])
c: (X<L0)— f;
c: (X>0)—d; (c: (X>0)—d;, X:1,Y:1])
d: X:=X—-Y — e; (d: X:=X—Y —e;, X:1,Y:1])
e : skip — c; (e: skip — c;, X:0,Y:1])

(c: (X<0)—1£;, [X:0,Y:1))
f : stop; (f : stop;, [X:0,Y:1))
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Semantics of the Transformed program

®
n
2)
|—|.
o
l
S
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a

(
(b

O,

®

H O

<
(
<
<
<

C:

X =7 —Db;, X:0U,Y:0])
:Y:=1—c;, X:1,Y:0])

(X>0)—d;, [X:1,Y:1])
1
:X:=X—¥Y—e;, [X:1,Y:1])
. skip — ¢;, [X: 0,V 1])
(X <0) = £;, [X:0,Y:1])
. stop;, [X:0,Y:1])

— 56 — © P. Cousotr & R. Cousor



Principle of Online Program Transformation (3)

e [he subject semantics and transformed semantics cannot be
exactly the same;

e However they should be equivalent, at some level of observa-
tion.
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Principle of Online Program Transformation (3)

Subject Syntactic

program P | .
transformation t

S

Subject pro-

Observational

gram seman-

equivalence

tics S||P]
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Transformed
program

t[P]

S

Transformed pro-
gram semantics

S[t[P]]
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Principle of Online Program Transformation (3)

e The observational equivalence gets rids of irrelevant details
about the subject and transformed program semantics;

e Hence it is an abstract interpretation of the subject and trans-
formed program semantics!
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Observational semantics

a:X:=7— b; (a:X:=7 —b;, [X:0,Y: 0]
b:Y:=1—c¢; (b:V:=1—c¢;, [X:1,Y:0])
c: (X<0)— £;
c: (X>0)—d; (c: (X >0)—4d;, X:1,Y:1))
X:=X—§éﬁe, <d:X:=X—%1é—>e;,[X:1,Y:1]>

e : skip — C; (e: skip — c;, X:0,Y:1])

(c: (X<0)—1£;, [X:0,Y:1))
f : stop; (f : stop;, [X:0,Y:1))
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Principle of Online Program Transformation (3)

Transformed
Subject Syntactic program
program P | . > t[P]
transformation t
S S
Subject pro- Transformed pro-
gram seman- gram semantics

S[t[P]]

tics S||P]
Observational
abstraction
(S[P]) =

(SIelPIl)

NYU Jan 11, 2002 — 61 — © P. Cousotr & R. Cousor



Example: Constant Propagation

Subject/Transformed Semantics Observational Semantics

=7 —Db;, [X:0U,Y:0]) a: —b;, [X:0,Y:0)])
:Y:=1—>c;, [X:1,Y:0]) b: —c;, [X:1,Y:0])
: (X >0) —d;, X:1,Y: 1)) . —d;, X 1L,Y 1]
d

o M

O
O

<
<
<
:X:=X—§é—>e;,[X:1,Y:1]> (
. skip — ¢;, [X: 0,V 1]) (
: (X <0) = £;, [X:0,Y:1]) (
. stop;, [X:0,Y: 1)) (

®

. —c;, [X:0,Y:

®

O
O
>

)

. —oe;, X 1,7 1])
1))

)

. — £, X:0,Y: 1
f: stop;, [X:0,Y:1])

/\/\/\a TN TN

Hh
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Principle of Online Program Transformation (4)

e [ he syntactic transformation induces a semantic transforma-
tion:
The semantics of the subject program is mapped to the
semantics of the transformed program;

e [he subject semantics and the transformed semantics should
be observationally equivalent;

e [ he semantic transformation is in general more precise than
the algorithmic syntactic transformation (e.g. infinite behav-
iors are no problem at the semantic level).
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Example: Semantic Constant Propagation

a:X:=7—b; (a: X:=7—b;, X:0,Y:0))
b:Y:=1—¢; (b:Y:=1—c¢c;, [X:1,Y:0])
c: (X<0)— £;
c: (X>0)—d; (c: (X>0)—d;, X:1,Y:1])
d: X:=X—Y — e; (d:X:=X—§é—>e;,[X:1,Y:1]>
e : skip — C; (e: skip — c;, X:0,Y:1])

(c: (X<0)—1£;, [X:0,Y:1))
f : stop; (f : stop;, [X:0,Y:1))
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Principle of Online Program Transformation (4)

Transformed
Subject Syntactic program
program P | . > t[P]
transformation t
S S

Subject pro- Semantic Transformed pro-
gram seman- | - > gram semantics

tics S[P] transformation t t[S[P]] C S[t[P]]

Observational
abstraction
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Correspondence Between
Syntax and Semantics
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Correspondence Between
Syntax and Semantics

e The program syntax forgets details about the program execu-
tion semantics:

- The sequence of values of variables during execution is
forgotten, but:

— their existence and maybe their type are recorded;

- the sequence (partial order, ...) of (denotations of) ac-
tions performed on these variables is recorded;

- Program execution times are completely abstracted (but
might be included in the operational semantics);
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Correspondence Between
Syntax and Semantics, Cont’d

e [he correspondence between syntax and semantics is an ab-
straction:

S
P0<@3 E> < 5 P0<P/E5 E>

e [he concretization S is the semantics of the program:;

e The abstraction p is the “decompilation” of the semantics.
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Principle of Online Program Transformation (5)

Transformed
Subject Syntactic program
program P | : > t(P]
3 transformation t 3

S||p S||p
Subject pro- Semantic Transformed pro-
gram seman- | - > gram semantics
tics S[P] transformation t t[S[P]] C S[t[P]]

Observational
abstraction
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Example: Syntax to Prefix Trace Semantics

e Fixpoint semantics:
C
S'[P] = 1fp F*[P]

F*[P]7 = Z[PJU {oss’ | 0s € T A s’ € S[P]s},
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Example: Prefix Trace Semantics to Syntax

e Collect commands along traces.
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Correspondence Between
the Subject Semantics and

the Transformed Semantics
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Semantic Transformations as Approximations

e A semantic program transformation is a loss of information
on the semantics of the subject program;

—— The semantic program transformation is an abstraction;
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Intuition for Transformations as Abstractions

O O T W

®

NYU Jan 11, 2002
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@

O O T W
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Principle of Online Program Transformation (6)

Transformed
Subject Syntactic program
program P | . > t[P]
3 transformation t 3

S|p S||p
Subject pro- " Transformed pro-
gram seman- < : gram semantics
tics S[P] Semantic t[SIP]] £ S[t[P]]

transformation t
Observational

abstraction

="ao(t[S[P]])*= @o(S[t[P]])
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Correspondence Between
the Subject Program and

the Transformed Program
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Syntactic Transformations as Approximations

e By composition, the syntactic program transformation is also
a loss of information on subject program;

—— The syntactic program transformation is an abstraction;
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Semantic to Syntactic Constant Propagation

a:X:=7— b; (a: X:=7—>Db;, | , 1)
b:Y:=1— c; <b:Y =1—>C;,[ : ]>
C:(XSO)%f;
c: (X>0)—d; (c: (X>0)—d;, [X:1, 1)
X =X—§:1Lé—>e, (d: X =X—§é%e,,[ , )

e : skip — C; <e sklpﬁc;,[ : ]>

(o (X< 0)— £, [K 0,7 1]
f : stop; (f : stop;, | : 1)
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Principle of Online Program Transformation (Done)

Transformed
Subject program
Tt
program P < > t[P]
4 Syntactic 3
transformation t

S||p S||p
Subject pro- " Transformed pro-
gram seman- < : gram semantics
tics S[P] Semantic t[SIP]] £ S[t[P]]

transformation t
Observational

abstraction
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Principle of the Formalization
of Program Transformation

by Abstract Interpretation

NYU Jan 11, 2002 — 80 — © P. Cousotr & R. Cousor



Formalization of
Program Transformation

Correctness
by Abstract Interpretation

NYU Jan 11, 2002 — 81 — © P. Cousotr & R. Cousor



Correctness of an Online Program Transformation

Transformed
Subject program
Tt
program P < > tP]
2 Syntactic 2
transformation t

Slip S||p
Subject pro- o Transformed pro-
gram seman- ‘ N gram semantics
tics S|P] Semantic t[S[P[] C S[t[P]]

transformation t

Observational

0 .
> abstraction

AO
- ao(S[t[P]])
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Design of an Online Program Transformation

Transformed
Subject o program
program P ¢ N t[P]| 3 p|t[S[P]]]
2 Syntactic A
transformation t
S|p SHp

Subject pro- " Transformed pro-
gram seman- < ; gram semantics

tics S[R] Semantic t[S]P]]

transformation t
Observational

abstraction

= ao(t[S[P]])*= o(S[t[P]])
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Design of Program Transformation Algorithms

t[P] 2 p[t[S[P]]]
S B
= plt{ifp F[P]]]
1 . «— apply fixpoint transfer
/approximation theorems
t
= Ifp [F*[P]

We obtain an iterative program transformation algorithm!
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The Iterative Constant Propagation Algorithm

ConstantPropagation(P, pf) =
Q = 0;

forall label L of P such that pf(L) # 1L do

forall L:A—L{; P do
A, = Simplify[A]((L));
Q:=QU{L:A.—Lj;}

end:

if L:stop; €P then
Q:=QUA{L: stop;}

end

end:

return Q.
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Principle of

Offline Program Transformation
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Offline Transformations

e A semantic program transformation can be restricted to use
the only semantic information which can be discovered by a
static program analysis;

—— This can be formalized by abstract interpretation.
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Example: Kildall’s Constant Propagation

e Kildall's lattice (POPL'73):

v¢(T) = ZU {U}
e ... v(x) ={z}, xe€ZU{UC}
’ V(L) =0

e Pointwise extension to variable environments and program
labels:
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Example: Kildall’s Constant Propagation, Cont’d

e Elementwise abstraction of a set 7 of traces:

a’(7T) = AL. XX.

{pX) |do €T :4C e C: i

o; = (p, C) Alab[[C] =L}

where |_| is the pointwise extension of the lub in Kildall's

lattice

NYU Jan 11, 2002

— 90 — (© P. Cousor & R. Cousot



Principle of Offline Program Transformation

Sj]p Program o 9 -
_ | Program
Static |
Ve Transformation
Da ySIS Qo (Il Yo Observational
A C abstraction

ao(S[P]) = ao(t[S[PI{f(S[P])) = &o(S[t[P]])
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Principle of Offline Program Transformation

Subject
program Static program = Syntactic trans- Transforme_d program
e — (P, S[P])—————"t[P] 2 p[t[S[P], a(S[P])]
W analysis S A : ormation t
> Ip p[S 3 S||p
srlézjrch:\ Semantic v E Semantic trans- Transformed
semantics | b . ><S[[P]]7 Oz(S[[P]])> if - ’ program semantics
tract t t
S abstraction « ormation t[S[B], Oé(S[[pM C S[[t[[PM
P Qo| [7Yo i Observational
2 N 50 abstraction

23(STP]) = ao(t(SIP] a(SIP])) = &o(STtP]]
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Applications of the formalization
of program transformation
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Other Program Transformations Formally Handled in
the Same Way

e In this talk, the approach was illustrated on the trivial con-
stant propagation example;

e [he same approach has been successfully applied to:
- Blocking command elimination (ENTCS v. 45);
- Online, offline and mixline partial evaluation (POPL'02);
- Program monitoring (POPL'02);

- Program reduction (e.g. transition compression), Slicing,
etc.
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Conclusion

e Program transformation is understood as an abstraction of a
semantic transformation of run-time execution:

e Leads to a unified framework for semantics-based program
analysis and transformation;

e The benefit is presently purely foundational and conceptuals;

e Practical application: reanalysis of assembler code from source
requires the formalization of the compilation process.
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