Abstract Interpretation Based Program Transformation

Patrick COUSOT

École Normale Supérieure 45 rue d'Ulm 75230 Paris cedex 05, France

> Patrick.Cousot@ens.fr www.di.ens.fr/~cousot

Radhia COUSOT

École Polytechnique 91128 Palaiseau cedex France

Radhia.Cousot@lix.polytechnique.fr lix.polytechnique.fr/~rcousot

CLIP Lab. at DIA & DLSIIS/FIM/UPM Sep 12, 2002

Content

1.	A short introduction to abstract interpretation	(in
	the context of program static analysis)	. 2
2.	A new application of abstract interpretation: p	ro-
	gram transformation	44
3	Conclusion	95

This work was supported in part by the RTD project IST-1999-20527 DAEDALUS of the european IST FP5 programme.

Abstract Interpretation

Abstract Interpretation

- Formalizes the idea of approximation of sets and set operations as considered in set (or category) theory;
- Mainly applied to the approximation of the semantics of programming languages/computer systems;

The Theory of Abstract Interpretation

• Abstract interpretation is a theory of conservative approximation of the semantics of computer systems.

Approximation: observation of the behavior of a computer system at some level of abstraction, ignoring irrelevant details;

Conservative: the approximation cannot lead to any erroneous conclusion.

Usefulness of Abstract Interpretation

- Thinking tools: the idea of abstraction is central to reasoning (in particular on computer systems);
- Mechanical tools: the idea of effective approximation leads to automatic semantics-based program manipulation tools.

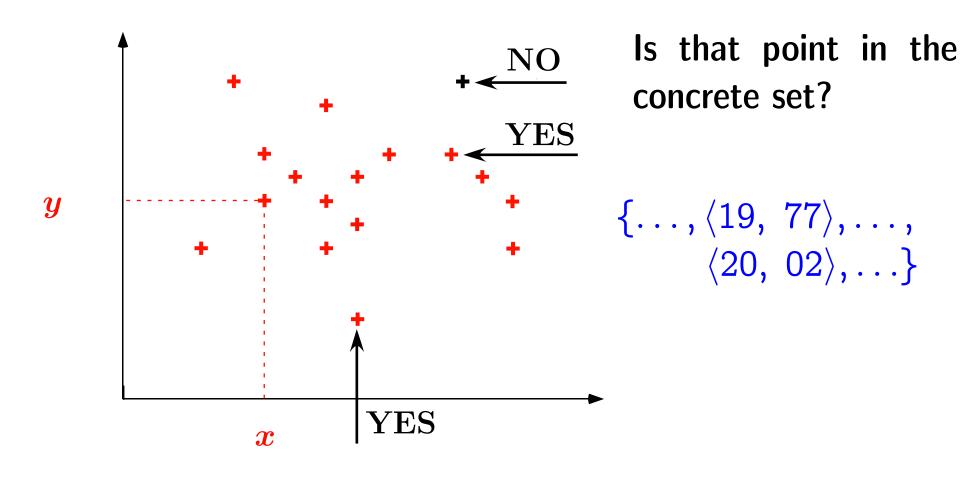
Abstraction

Abstraction: intuition

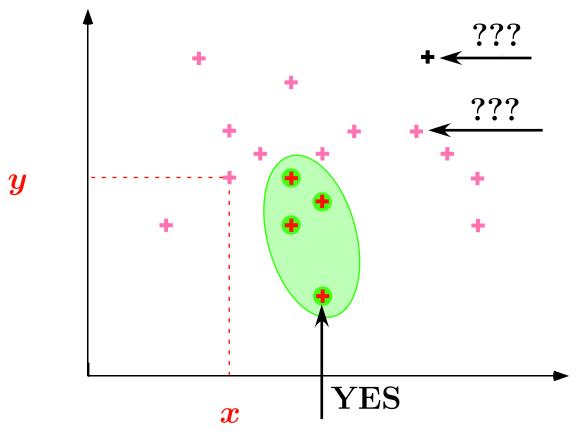
- Abstract interpretation formalizes the intuitive idea that a semantics is more or less precise according to the considered observation level of the program executions;
- Abstract interpretation theory formalizes this notion of approximation/abstraction in a mathematical setting which is independent of particular applications.

Intuition behind abstraction

An [in]finite set of points;



Approximation of an [in]finite set of points:

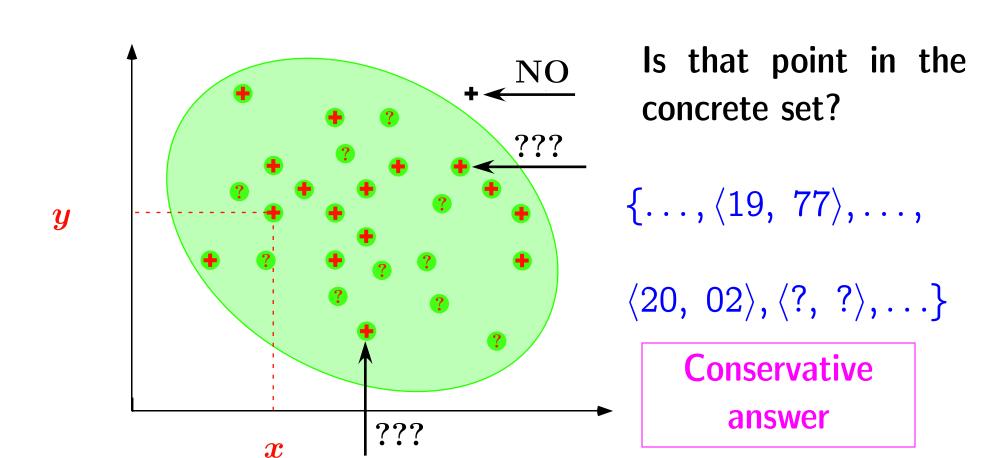


Is that point in the concrete set?

$$\{\ldots,\langle 19,\ 77\rangle,\ldots,\ldots\}$$

Conservative answer

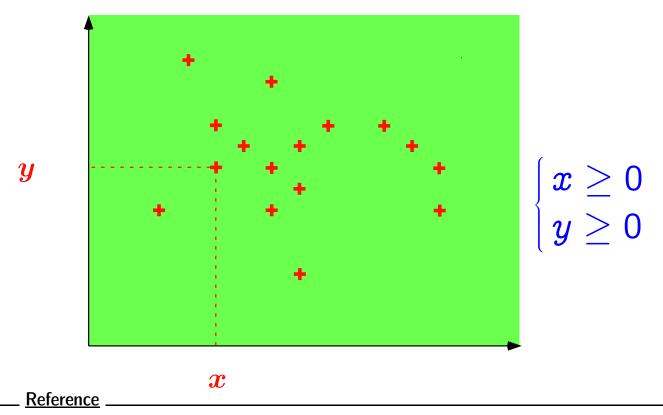
Approximation of an [in]finite set of points:



From Above

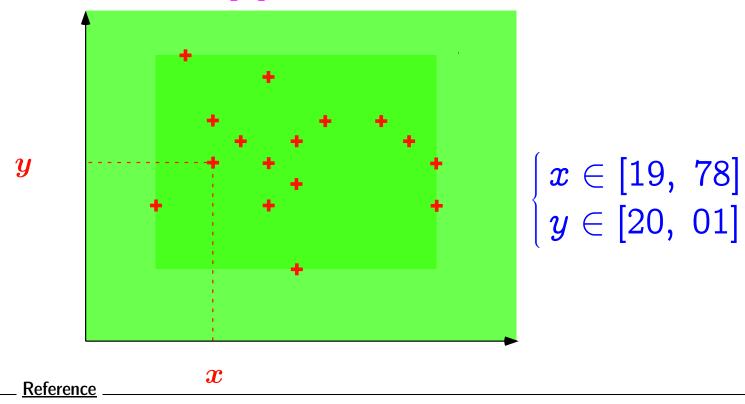
Intuition Behind Effective Computable Abstraction

Effective computable approximations of an [in]finite set of points; Signs [1]



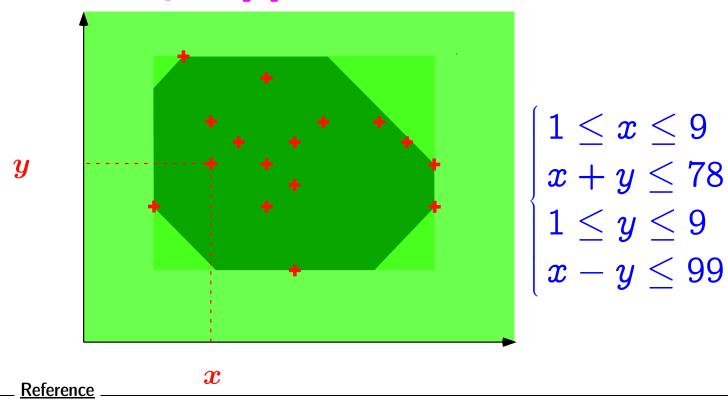
[1] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6^{th} POPL, pages 269–282, San Antonio, TX, 1979. ACM Press.

Effective computable approximations of an [in]finite set of points; Intervals [2]



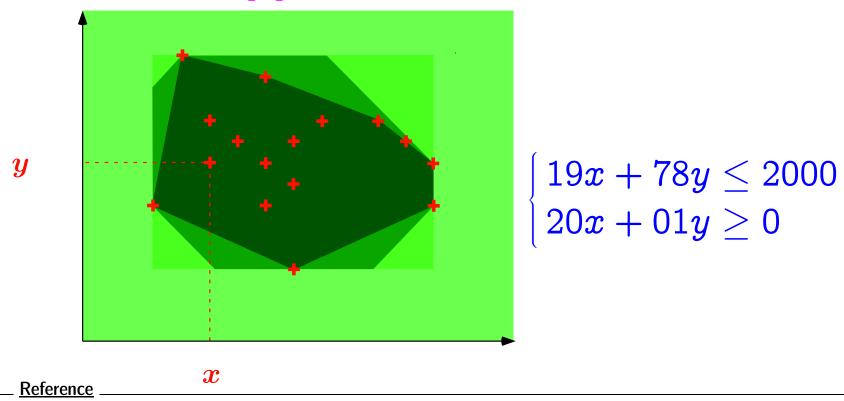
[2] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In 2nd Int. Symp. on Programming, pages 106–130. Dunod, 1976.

Effective computable approximations of an [in]finite set of points; Octagons [3]



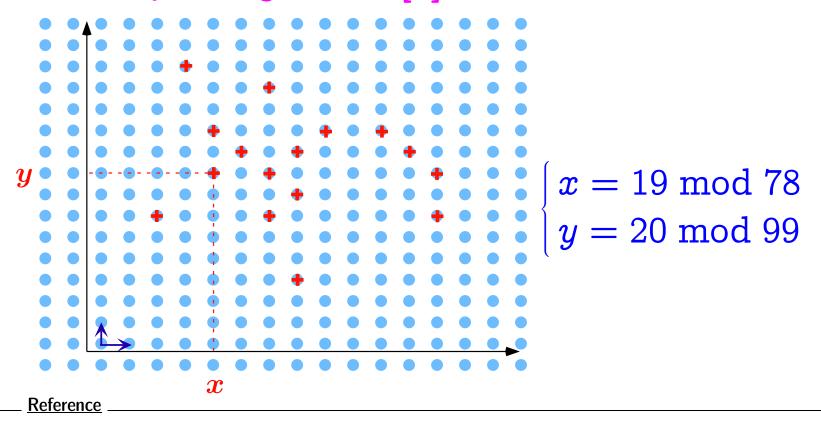
[3] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In *PADO'2001*, LNCS 2053, Springer, 2001, pp. 155–172.

Effective computable approximations of an [in]finite set of points; Polyhedra [4]



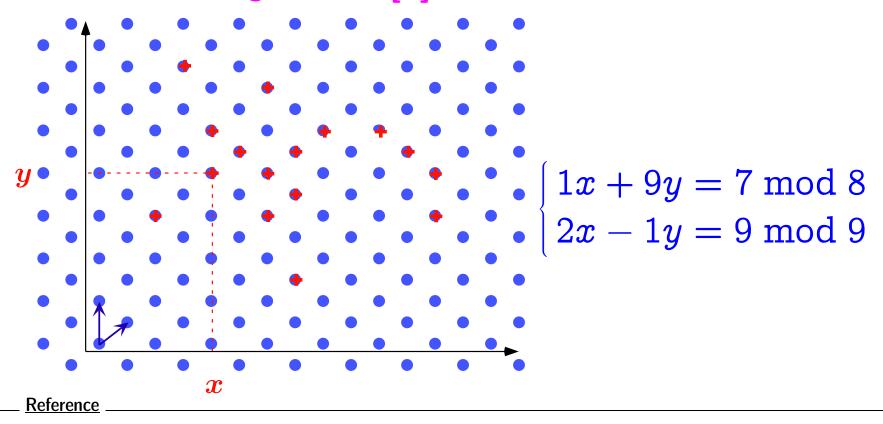
[4] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In 5th POPL, pages 84–97, Tucson, AZ, 1978. ACM Press.

Effective computable approximations of an [in]finite set of points; Simple congruences [5]



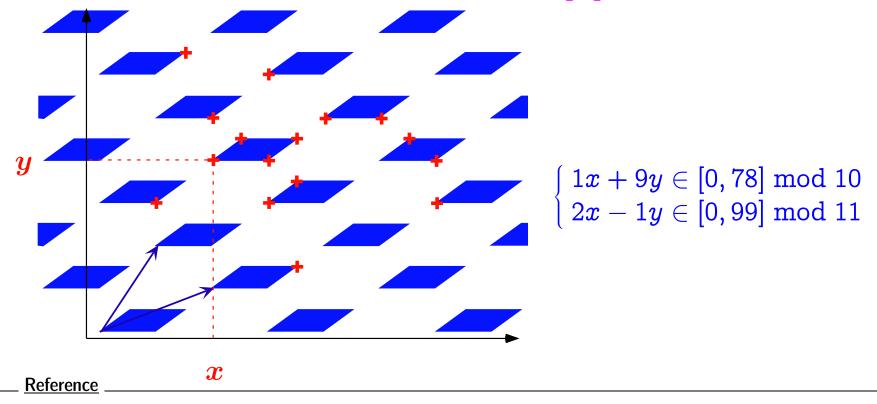
[5] P. Granger. Static analysis of arithmetical congruences. *Int. J. Comput. Math.*, 30:165–190, 1989.

Effective computable approximations of an [in]finite set of points; Linear congruences [6]



[6] P. Granger. Static analysis of linear congruence equalities among variables of a program. CAAP '91, LNCS 493, pp. 169–192. Springer, 1991.

Effective computable approximations of an [in]finite set of points; Trapezoidal linear congruences [7]

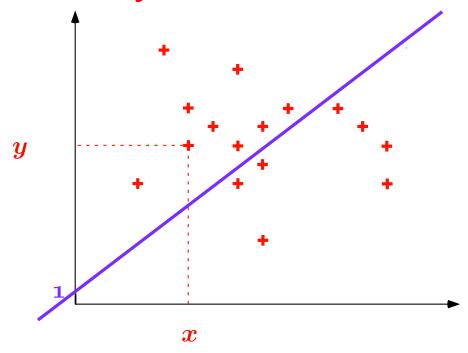


[7] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences. In ACM Int. Conf. on Supercomputing, ICS '92, pages 226–235, 1992.

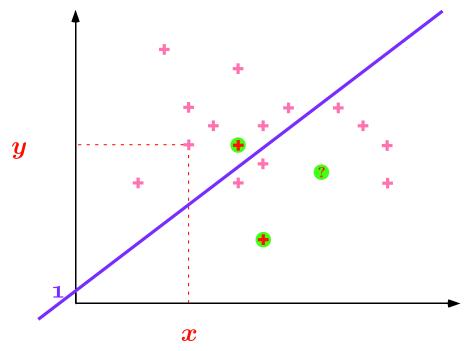
Conservative Approximation and Information Loss

Intuition Behind Sound/Conservative Approximation

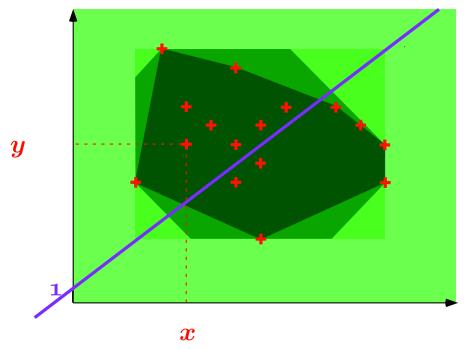
- Is the operation 1/(x+1-y) well defined at run-time?
- Concrete semantics: yes



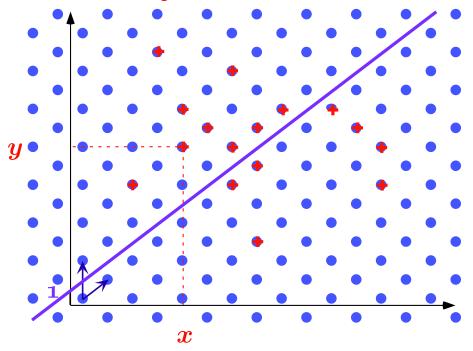
- Is the operation 1/(x+1-y) well defined at run-time?
- Testing: You never know!



- Is the operation 1/(x+1-y) well defined at run-time?
- Abstract semantics 1: I don't know



- Is the operation 1/(x+1-y) well defined at run-time?
- Abstract semantics 2: yes



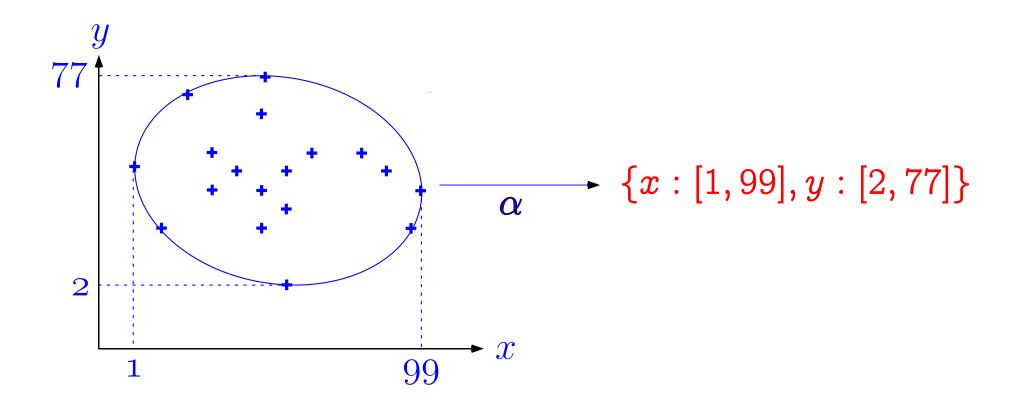
Intuition Behind Information Loss

Information Loss

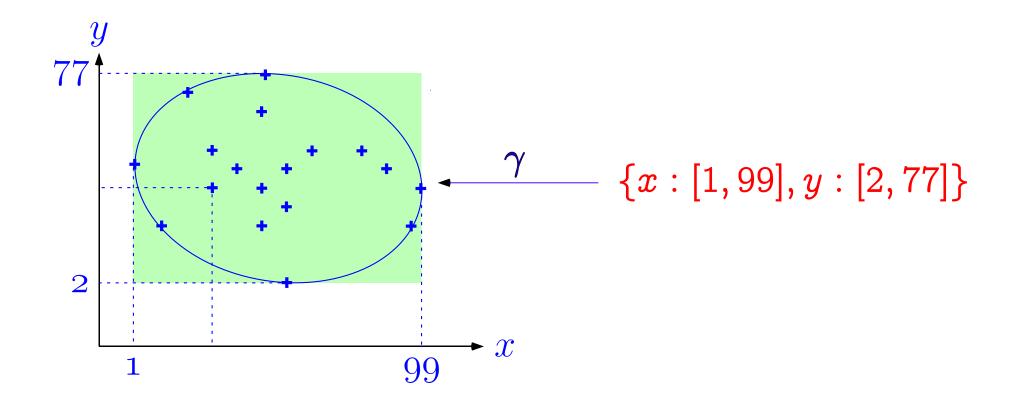
- All answers given by the abstract semantics are always correct with respect to the concrete semantics;
- Because of the information loss, not all questions can be definitely answered with the abstract semantics;
- The more concrete semantics can answer more questions;
- The more abstract semantics are more simple.

Very Basic Elements of Abstract Interpretation Theory

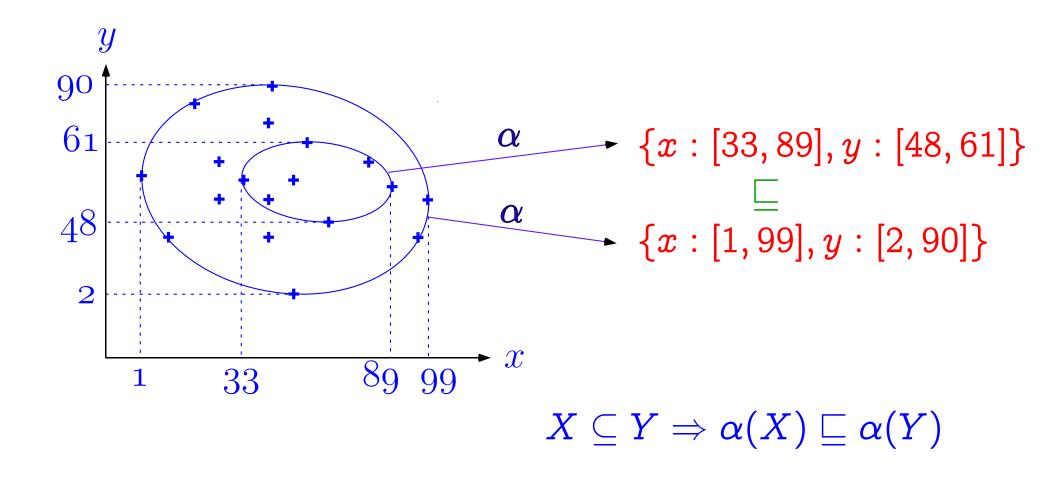
Abstraction α



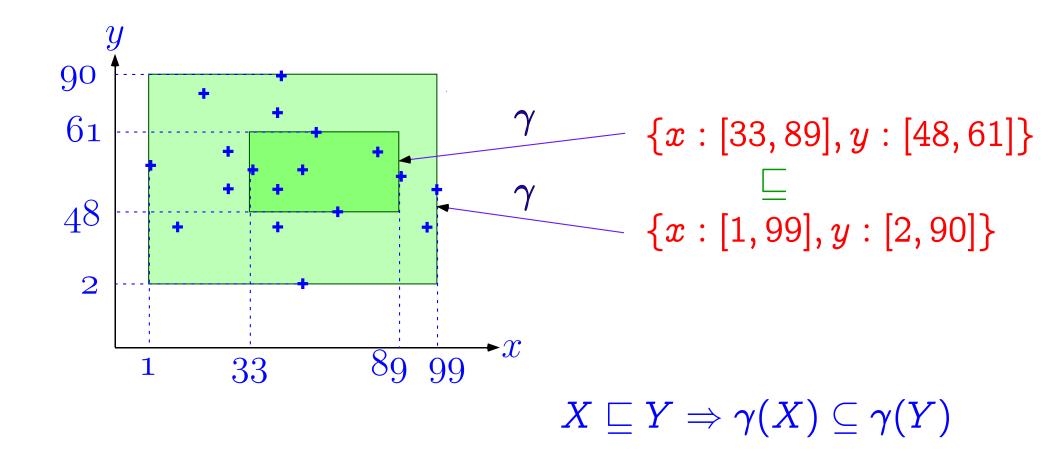
Concretization γ



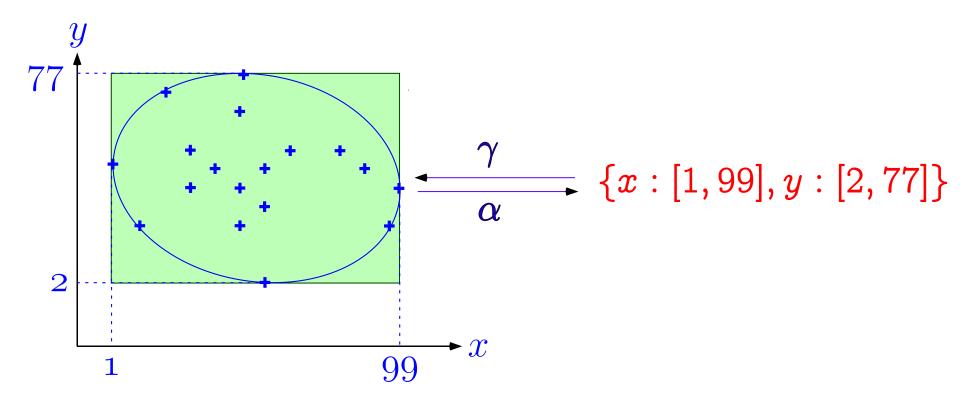
The Abstraction α is Monotone



The Concretization γ is Monotone

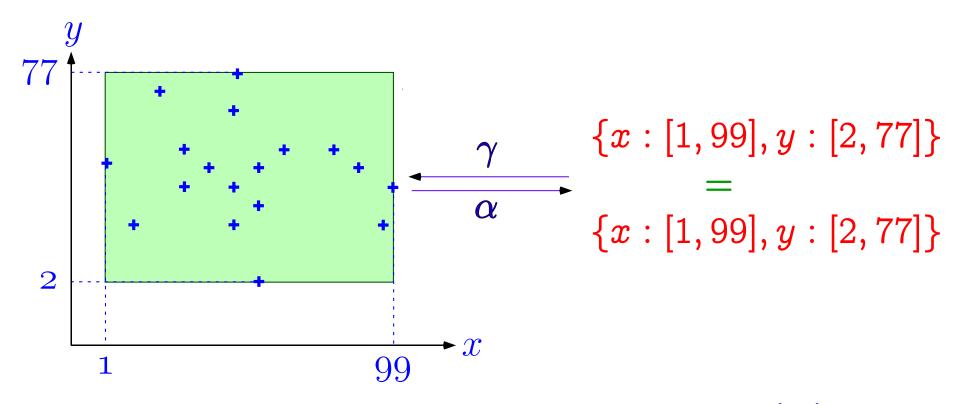


The $\gamma \circ \alpha$ Composition



$$X\subseteq \gamma\circ lpha(X)$$

The $\alpha \circ \gamma$ Composition



$$lpha\circ\gamma(Y)=Y$$

Galois Connection ¹

$$\langle P, \subseteq \rangle \stackrel{\gamma}{ } \langle Q, \sqsubseteq \rangle$$

is defined as

- α is monotone
- γ is monotone
- $X \subseteq \gamma \circ \alpha(X)$
- ullet $\alpha \circ \gamma(Y) \sqsubseteq Y$

iff

$$\alpha(X) \sqsubseteq Y$$
 iff $X \subseteq \gamma(Y)$

¹ formalizations using closure operators, ideals, etc. are equivalent.

Abstract domain γ α γ Concrete domain

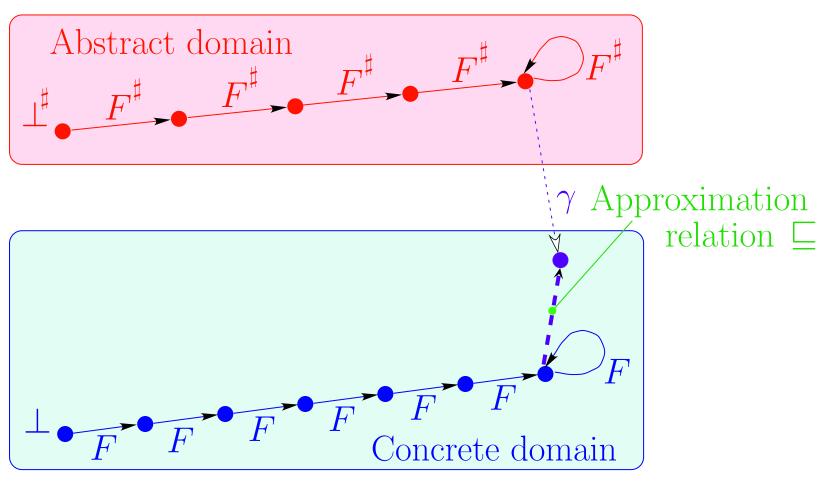
Function Abstraction

$$F^\sharp = lpha \circ F \circ \gamma$$

$$\langle P, \subseteq \rangle \stackrel{\gamma}{ \sqsubseteq_{\alpha}} \langle Q, \sqsubseteq \rangle \Rightarrow$$

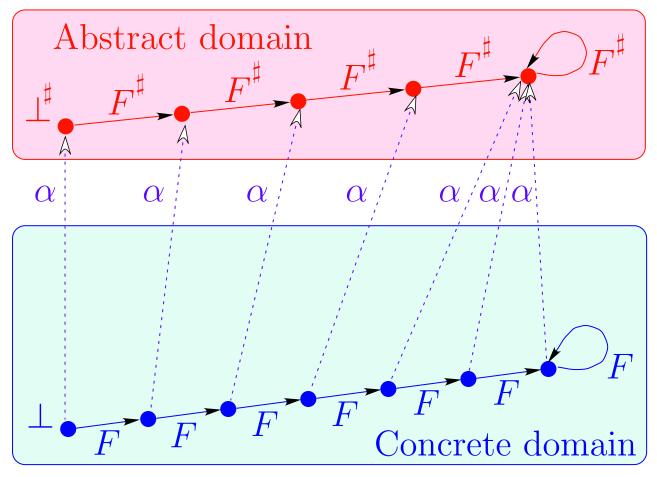
$$\langle P \stackrel{\mathrm{mon}}{\longmapsto} P, \stackrel{\dot{\sqsubseteq}}{\subseteq} \rangle \stackrel{\lambda F^{\sharp} \cdot \gamma \circ F^{\sharp} \circ \alpha}{\longleftarrow} \langle Q \stackrel{\mathrm{mon}}{\longmapsto} Q, \stackrel{\dot{\sqsubseteq}}{\sqsubseteq} \rangle$$

Approximate Fixpoint Abstraction



$$lpha(\operatorname{lfp} F) \sqsubseteq \operatorname{lfp} F^\sharp$$

Exact Fixpoint Abstraction



$$lpha \circ F = F^\sharp \circ lpha \ \Rightarrow \ lpha(\mathsf{lfp}\,F) = \mathsf{lfp}\,F^\sharp$$

Exact/Approximate Fixpoint Abstraction

Exact Abstraction:

$$\alpha(\operatorname{lfp} F) = \operatorname{lfp} F^{\sharp}$$

Approximate Abstraction:

$$\alpha(\operatorname{lfp} F) \sqsubseteq^{\sharp} \operatorname{lfp} F^{\sharp}$$

Exact Fixpoint Abstraction

$$lpha \circ F = F^\sharp \circ lpha \ \Rightarrow \ lpha(\mathsf{lfp}\,F) = \mathsf{lfp}\,F^\sharp$$

A Few References on Foundations

- P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In 4th POPL, pages 238–252, Los Angeles, CA, 1977. ACM Press.
- P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages 269–282, San Antonio, TX, 1979. ACM Press.
- P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511-547, 1992.

Applications of Abstract Interpretation

Applications of Abstract Interpretation

- Static Program Analysis [POPL77,78,79]
- Syntax Analysis [TCS, to appear]
- Hierarchies of Semantics (including Proofs) [POPL 92, TCS02]
- Typing [POPL 97]
- Model Checking [POPL 00]
- Program Transformation [POPL 02]

All these techniques involves approximations that can be formalized by abstract interpretation.

A New Application of Abstract Interpretation: Program Transformation

Objectives of this Work

Program Transformation & Abstract Interpretation

In semantics-based program transformation, such as:

- constant propagation,
- partial evaluation,
- slicing,

abstract interpretation is used:

- in a preliminary program static analysis phase
- to collect the information about the program runtime behaviors, which is necessary
- to validate the applicable transformations.

Present Objective

Our present objective is quite different:

- Formalize the program transformation <u>itself</u> as an abstract interpretation;
- Two subgoals:
 - Understand correctness proofs of program transformations as abstract interpretations;
 - Imagine and apply a program transformation design method by abstract interpretation.

Principle of
Online Program Transformation
(Explained in Steps with the
Constant Propagation Example)

The Programming Language

```
a: X := ? \rightarrow b; random assignment/input
b: Y := 1 \rightarrow c; assignment
c: (X \le 0) \rightarrow f; nondeterministic guard
c: (X > 0) \rightarrow d;
d: X := X - Y \rightarrow e;
e: skip \rightarrow c; branching
f: stop; stop
```

- Program transformation is a syntactic process;
- maps a subject program into a transformed program;
- Both subject and transformed programs are syntactic objects.

Program Transformation: The Syntactic Point of View

Subject program:

$$a: X := ? \rightarrow b;$$

$$b: Y:=1 \rightarrow c;$$

$$c: (X \leq 0) \rightarrow f;$$

$$c:(X>0)\to d;$$

$$d: X := X - Y \rightarrow e;$$

$$e: skip \rightarrow c;$$

Transformed program:

$$a: X := ? \rightarrow b;$$

$$b: Y:=1 \rightarrow c;$$

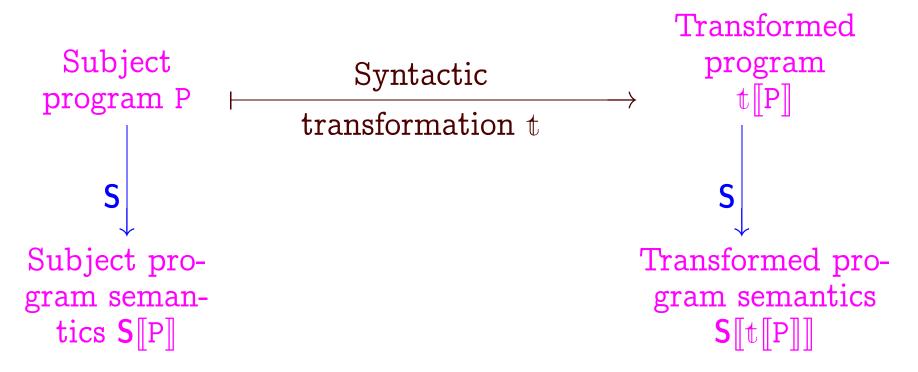
$$\mathsf{c}: (\mathtt{X} \leq \mathtt{0}) o \mathtt{f};$$

$$c:(X>0)\to d;$$

$$d: X := X - \stackrel{\cdot}{Y} \rightarrow e;$$

$$e: skip \rightarrow c;$$

- Program transformations refer to the semantics of the subject and transformed programs:
 - Online program transformations use values manipulated during program execution, hence directly refer to the source concrete semantics;
 - Offline program transformations use a preliminary static analysis of the source program, hence refer to its abstract semantics;



The Prefix Trace Semantics

The semantics is the set of prefixes of

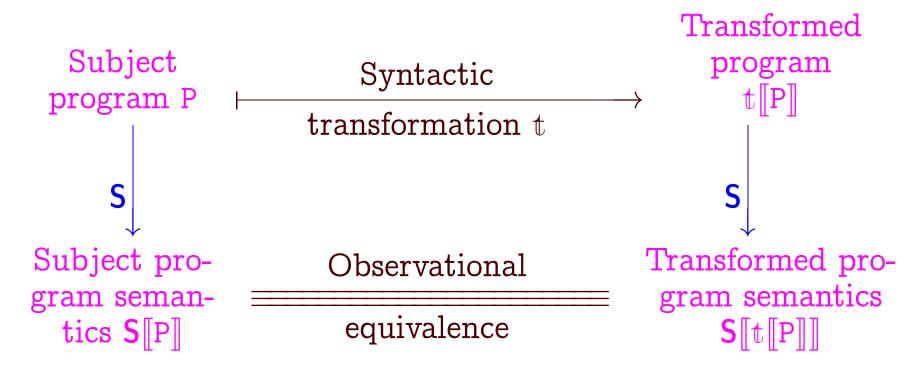
all traces similar to that one (with dif-

ferent inputs) \downarrow $a: X := ? \rightarrow b;$ $b: Y := 1 \rightarrow c;$ $c: (X \le 0) \rightarrow f;$ $c: (X > 0) \rightarrow d;$ $d: X := X - Y \rightarrow e;$ $c: skip \rightarrow c;$ $c: (X \le 0) \rightarrow f;$ $c: (X \le 0) \rightarrow f;$ $c: (X > 0) \rightarrow f;$ $c: (X \sim 0) \rightarrow f;$ $c: (X \sim 0) \rightarrow f;$ $c: (X \sim 0)$

Semantics of the Transformed program

```
\begin{array}{lll} a: X := ? \rightarrow b; & \left\langle a: X := ? \rightarrow b;, \left[ X : \mho, Y : \mho \right] \right\rangle \\ b: Y := 1 \rightarrow c; & \left\langle b: Y := 1 \rightarrow c;, \left[ X : 1, Y : \mho \right] \right\rangle \\ c: \left( X \leq 0 \right) \rightarrow f; & \\ c: \left( X > 0 \right) \rightarrow d; & \left\langle c: \left( X > 0 \right) \rightarrow d;, \left[ X : 1, Y : 1 \right] \right\rangle \\ d: X := X - \cancel{\Psi} \rightarrow e; & \left\langle d: X := X - \cancel{\Psi} \rightarrow e;, \left[ X : 1, Y : 1 \right] \right\rangle \\ e: skip \rightarrow c; & \left\langle e: skip \rightarrow c;, \left[ X : 0, Y : 1 \right] \right\rangle \\ c: \left( X \leq 0 \right) \rightarrow f;, \left[ X : 0, Y : 1 \right] \right\rangle \\ f: stop; & \left\langle f: stop;, \left[ X : 0, Y : 1 \right] \right\rangle \end{array}
```

- The subject semantics and transformed semantics cannot be exactly the same;
- However they should be equivalent, at some level of observation.



- The observational equivalence gets rids of irrelevant details about the subject and transformed program semantics;
- Hence it is an abstract interpretation of the subject and transformed program semantics!

Observational semantics

```
a: X := ? \rightarrow b; \langle a : X := ? \rightarrow b;, [X : \mho, Y : \mho] \rangle

b: Y := 1 \rightarrow c; \langle b : Y := 1 \rightarrow c;, [X : 1, Y : \mho] \rangle

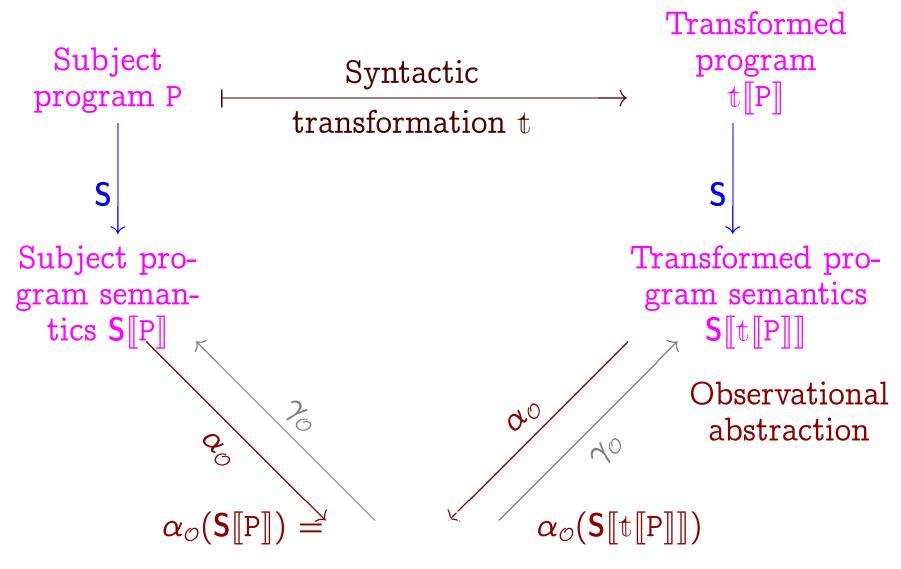
c: (X \le 0) \rightarrow f;

c: (X > 0) \rightarrow d; \langle c : (X > 0) \rightarrow d;, [X : 1, Y : 1] \rangle

d: X := X - \stackrel{1}{¥} \rightarrow e; \langle d : X := X - \stackrel{1}{¥} \rightarrow e;, [X : 1, Y : 1] \rangle

e: skip \rightarrow c; \langle e : skip \rightarrow c;, [X : 0, Y : 1] \rangle

f: stop; \langle f : stop;, [X : 0, Y : 1] \rangle
```



Example: Constant Propagation

Subject/Transformed Semantics

$$\begin{aligned} &\langle \mathtt{a} : \mathtt{X} := ? \to \mathtt{b};, \ [\mathtt{X} : \mho, \mathtt{Y} : \mho] \rangle \\ &\langle \mathtt{b} : \mathtt{Y} := \mathtt{1} \to \mathtt{c};, \ [\mathtt{X} : \mathtt{1}, \mathtt{Y} : \mho] \rangle \\ &\langle \mathtt{c} : (\mathtt{X} > \mathtt{0}) \to \mathtt{d};, \ [\mathtt{X} : \mathtt{1}, \mathtt{Y} : \mathtt{1}] \rangle \\ &\langle \mathtt{d} : \mathtt{X} := \mathtt{X} - \overset{\mathtt{1}}{\mathtt{Y}} \to \mathtt{e};, \ [\mathtt{X} : \mathtt{1}, \mathtt{Y} : \mathtt{1}] \rangle \\ &\langle \mathtt{e} : \mathtt{skip} \to \mathtt{c};, \ [\mathtt{X} : \mathtt{0}, \mathtt{Y} : \mathtt{1}] \rangle \\ &\langle \mathtt{c} : (\mathtt{X} \le \mathtt{0}) \to \mathtt{f};, \ [\mathtt{X} : \mathtt{0}, \mathtt{Y} : \mathtt{1}] \rangle \\ &\langle \mathtt{f} : \mathtt{stop};, \ [\mathtt{X} : \mathtt{0}, \mathtt{Y} : \mathtt{1}] \rangle \end{aligned}$$

Observational Semantics

$$egin{aligned} &\langle \mathtt{a}: & \to \mathtt{b};, \ [\mathtt{X}: \mho, \mathtt{Y}: \mho]
angle \ &\langle \mathtt{b}: & \to \mathtt{c};, \ [\mathtt{X}: \mathtt{1}, \mathtt{Y}: \mho]
angle \ &\langle \mathtt{c}: & \to \mathtt{d};, \ [\mathtt{X}: \mathtt{1}, \mathtt{Y}: \mathtt{1}]
angle \end{aligned} \ &\langle \mathtt{d}: & \to \mathtt{e};, \ [\mathtt{X}: \mathtt{1}, \mathtt{Y}: \mathtt{1}]
angle \ &\langle \mathtt{e}: & \to \mathtt{c};, \ [\mathtt{X}: \mathtt{0}, \mathtt{Y}: \mathtt{1}]
angle \ &\langle \mathtt{c}: & \to \mathtt{f};, \ [\mathtt{X}: \mathtt{0}, \mathtt{Y}: \mathtt{1}]
angle \end{aligned}$$

• The syntactic transformation induces a semantic transformation:

The semantics of the subject program is mapped to the semantics of the transformed program;

- The subject semantics and the transformed semantics should be observationally equivalent;
- The semantic transformation is in general more precise than the algorithmic syntactic transformation (e.g. infinite behaviors are no problem at the semantic level).

Example: Semantic Constant Propagation

```
\begin{array}{lll} a: X := ? \rightarrow b; & \left\langle a: X := ? \rightarrow b;, \left[ X: \mho, Y: \mho \right] \right\rangle \\ b: Y := 1 \rightarrow c; & \left\langle b: Y := 1 \rightarrow c;, \left[ X: 1, Y: \mho \right] \right\rangle \\ c: \left( X \leq 0 \right) \rightarrow f; & \left\langle c: \left( X > 0 \right) \rightarrow d;, \left[ X: 1, Y: 1 \right] \right\rangle \\ d: X := X - Y \rightarrow e; & \left\langle d: X := X - \cancel{+} \rightarrow e;, \left[ X: 1, Y: 1 \right] \right\rangle \\ e: skip \rightarrow c; & \left\langle e: skip \rightarrow c;, \left[ X: 0, Y: 1 \right] \right\rangle \\ c: \left( X \leq 0 \right) \rightarrow f;, \left[ X: 0, Y: 1 \right] \right\rangle \\ f: stop; & \left\langle f: stop;, \left[ X: 0, Y: 1 \right] \right\rangle \end{array}
```



Correspondence Between Syntax and Semantics

Correspondence Between Syntax and Semantics

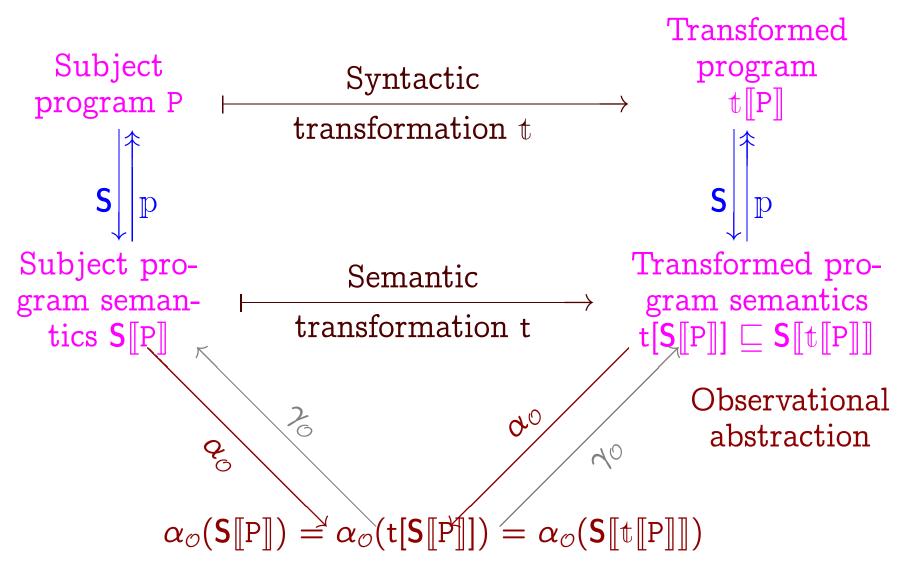
- The program syntax forgets details about the program execution semantics:
 - The sequence of values of variables during execution is forgotten, but:
 - their existence and maybe their type are recorded;
 - the sequence (partial order, ...) of (denotations of) actions performed on these variables is recorded;
 - Program execution times are completely abstracted (but might be included in the operational semantics);

Correspondence Between Syntax and Semantics, Cont'd

• The correspondence between syntax and semantics is an abstraction:

$$\operatorname{po}\langle\mathfrak{D};\;\sqsubseteq\rangle\stackrel{\mathsf{S}}{\longleftarrow}\operatorname{po}\langle\mathbb{P}/\pm;\;\underline{\sqsubseteq}\rangle$$

- The concretization S is the semantics of the program;
- The abstraction p is the "decompilation" of the semantics.



Example: Syntax to Prefix Trace Semantics

• Fixpoint semantics:

$$egin{align*} oldsymbol{\mathsf{S}}^*\llbracket exttt{P} \rrbracket &= oldsymbol{\mathsf{Ifp}}^\subseteq oldsymbol{\mathsf{F}}^*\llbracket exttt{P} \rrbracket \mathcal{T} &= \mathcal{I}\llbracket exttt{P} \rrbracket \cup \{\sigma ss' \mid \sigma s \in \mathcal{T} \land s' \in oldsymbol{\mathsf{S}} \llbracket exttt{P} \rrbracket s\}, \end{aligned}$$

Example: Prefix Trace Semantics to Syntax

• Collect commands along traces.

Correspondence Between the Subject Semantics and the Transformed Semantics

Semantic Transformations as Approximations

- A semantic program transformation is a loss of information on the semantics of the subject program;
 - The semantic program transformation is an abstraction;

Intuition for Transformations as Abstractions

```
a: X := ? \rightarrow b;

b: Y := 1 \rightarrow c;

c: (X \le 0) \rightarrow f;

c: (X \le 0) \rightarrow d;

c: (X \le 0) \rightarrow d;

c: (X \le 0) \rightarrow f;

c: (X \le 0) \rightarrow f;

c: (X \le 0) \rightarrow f;

c: (X \le 0) \rightarrow d;

d: (X \ge 0) \rightarrow d;

d: (X \ge 0) \rightarrow d;

d: (X \ge 0) \rightarrow d;

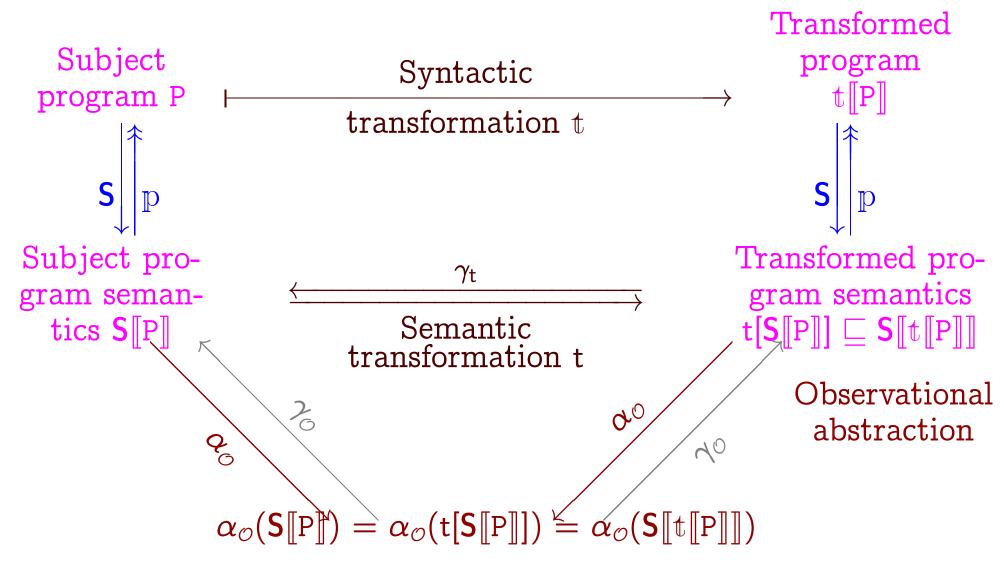
e: (X \ge 0) \rightarrow d;

f: (X \ge 0) \rightarrow d;

e: (X \ge 0) \rightarrow d;

f: (X \ge 0) \rightarrow d;
```

Principle of Online Program Transformation (6)



Correspondence Between the Subject Program and the Transformed Program

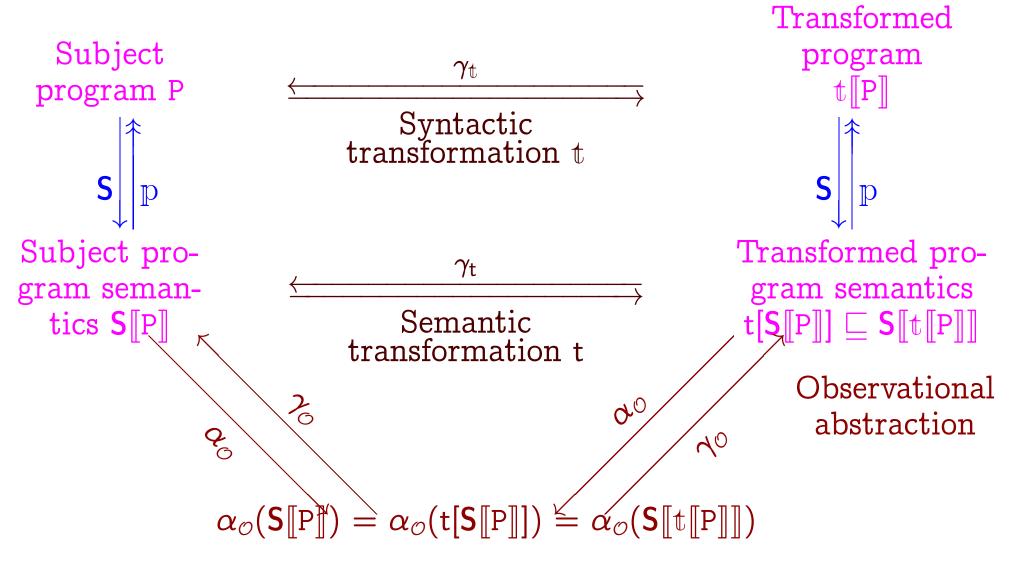
Syntactic Transformations as Approximations

- By composition, the syntactic program transformation is also a loss of information on subject program;
 - The syntactic program transformation is an abstraction;

Semantic to Syntactic Constant Propagation

```
\begin{array}{lll} a: X := ? \rightarrow b; & \left\langle a: X := ? \rightarrow b;, \left[ X : \mho, Y : \mho \right] \right\rangle \\ b: Y := 1 \rightarrow c; & \left\langle b: Y := 1 \rightarrow c;, \left[ X : 1, Y : \mho \right] \right\rangle \\ c: \left( X \leq 0 \right) \rightarrow f; & \\ c: \left( X > 0 \right) \rightarrow d; & \left\langle c: \left( X > 0 \right) \rightarrow d;, \left[ X : 1, Y : 1 \right] \right\rangle \\ d: X := X - \cancel{\Psi} \rightarrow e; & \left\langle d: X := X - \cancel{\Psi} \rightarrow e;, \left[ X : 1, Y : 1 \right] \right\rangle \\ e: skip \rightarrow c; & \left\langle e: skip \rightarrow c;, \left[ X : 0, Y : 1 \right] \right\rangle \\ c: \left( X \leq 0 \right) \rightarrow f;, \left[ X : 0, Y : 1 \right] \right\rangle \\ f: stop; & \left\langle f: stop;, \left[ X : 0, Y : 1 \right] \right\rangle \end{array}
```

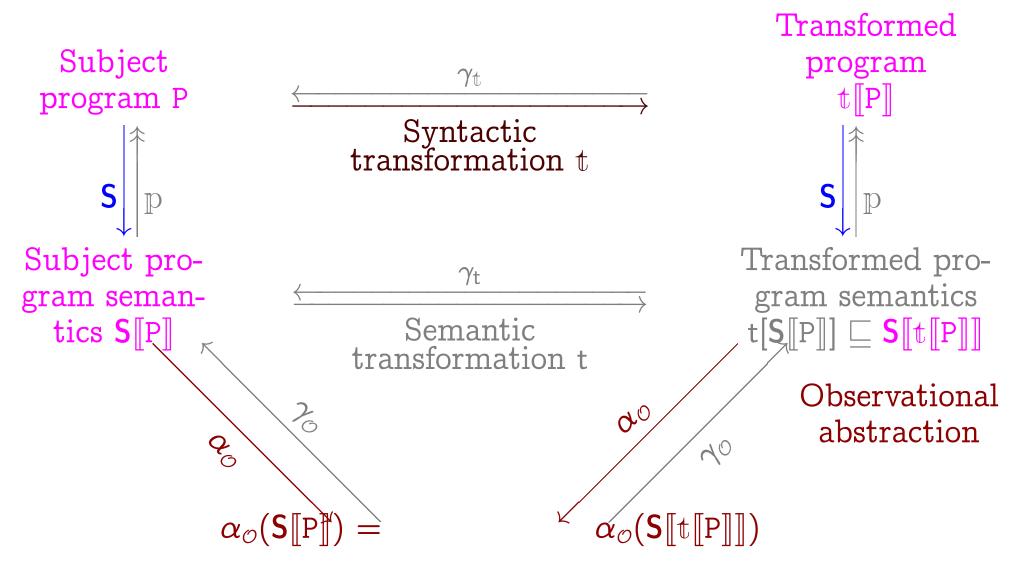
Principle of Online Program Transformation (Done)



Principle of the <u>Formalization</u> of Program Transformation by Abstract Interpretation

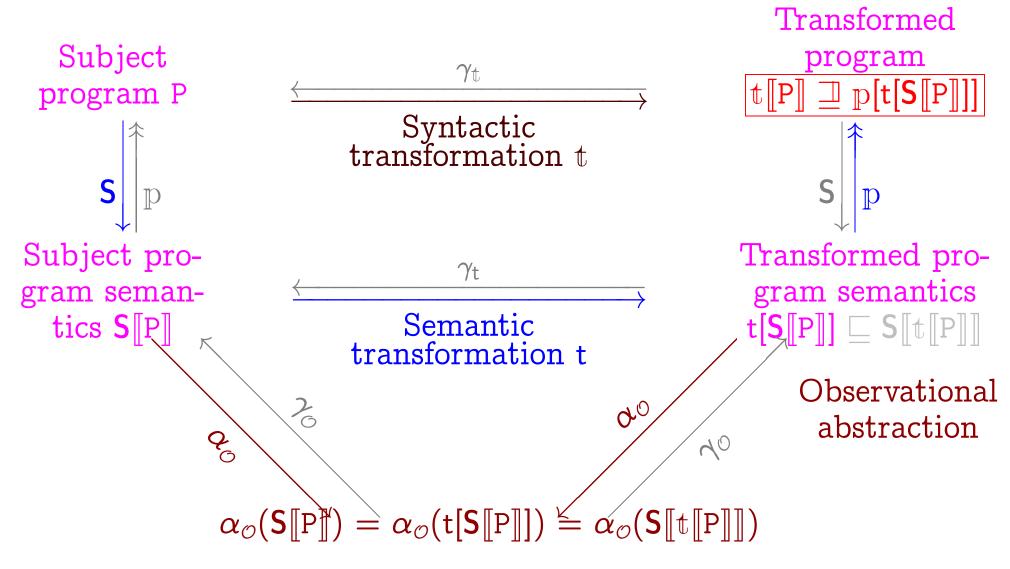
Formalization of Program Transformation <u>Correctness</u> by Abstract Interpretation

Correctness of an Online Program Transformation



Design of Program Transformations by Abstract Interpretation

Design of an Online Program Transformation



Design of Program Transformation Algorithms

```
t[P] \supseteq p[t[S[P]]]
= p[t[Ifp \vdash F[P]]]
\supseteq \dots \qquad \leftarrow apply fixpoint transfer / approximation theorems
= lfp \vdash F^{\sharp}[P]
```

We obtain an iterative program transformation algorithm!

The Iterative Constant Propagation Algorithm

```
ConstantPropagation(P, \rho^{\sharp}) =
   Q := \emptyset;
   forall label L of P such that \rho^{\sharp}(L) \neq \bot
      forall L: A \rightarrow L_1; \in P do
         A_C := Simplify [A](\rho^{\sharp}(L));
         Q := Q \cup \{L : A_c \rightarrow L_1; \}
      end;
      if L: stop; \in P then
         Q := Q \cup \{L : stop;\}
      end
   end;
   return Q.
```

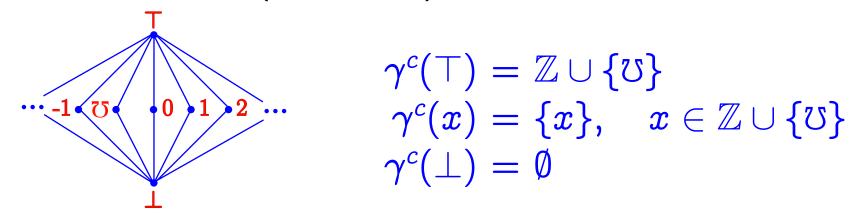
Principle of Offline Program Transformation

Offline Transformations

- A semantic program transformation can be restricted to use the only semantic information which can be discovered by a static program analysis;
 - This can be formalized by abstract interpretation.

Example: Kildall's Constant Propagation

• Kildall's lattice (POPL'73):



• Pointwise extension to variable environments and program labels;

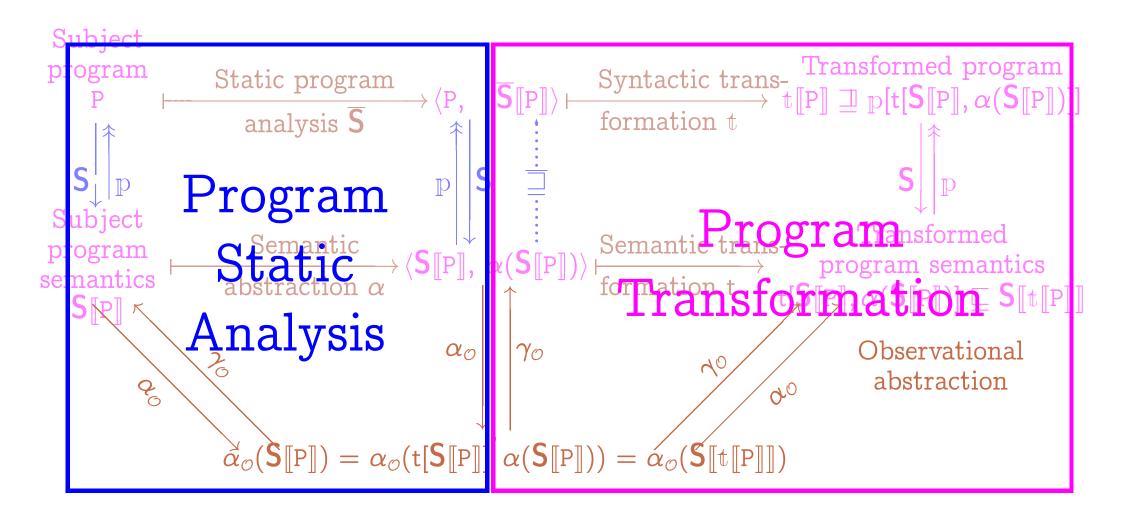
Example: Kildall's Constant Propagation, Cont'd

• Elementwise abstraction of a set \mathcal{T} of traces:

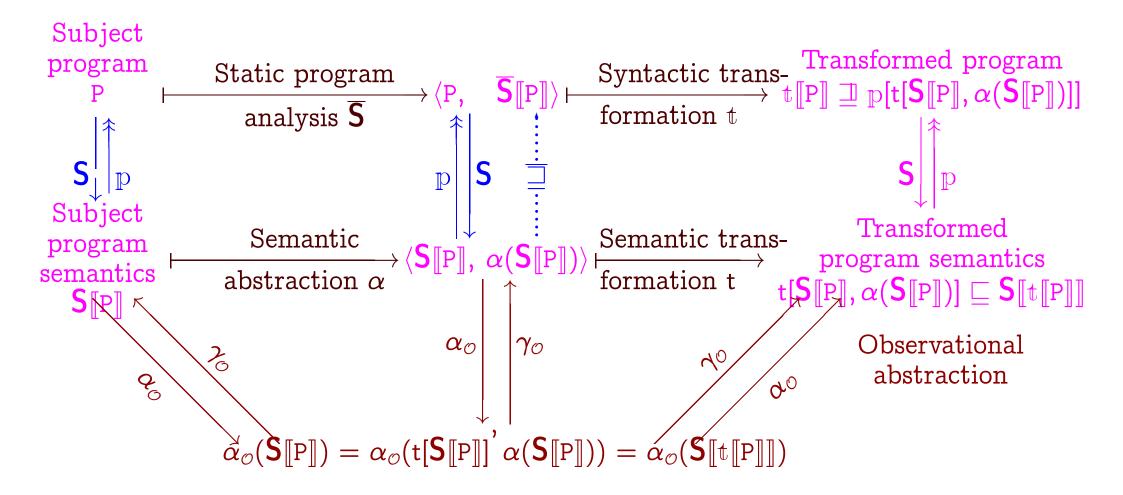
$$egin{aligned} lpha^{c}(\mathcal{T}) &= \lambda \mathtt{L} \cdot \lambda \mathtt{X} \cdot \ddot{\sqcup} \{
ho(\mathtt{X}) \mid \exists \sigma \in \mathcal{T} : \exists \mathtt{C} \in \mathbb{C} : \exists i : \\ \sigma_{i} &= \langle
ho, \ \mathtt{C}
angle \wedge \mathsf{lab}[\![\mathtt{C}]\!] = \mathtt{L} \} \end{aligned}$$

where $\ddot{\mathbf{u}}$ is the pointwise extension of the lub in Kildall's lattice

Principle of Offline Program Transformation



Principle of Offline Program Transformation



Applications of the formalization of program transformation

Other Program Transformations Formally Handled in the Same Way

- In this talk, the approach was illustrated on the trivial constant propagation example;
- The same approach has been successfully applied to:
 - Blocking command elimination (ENTCS v. 45);
 - Online, offline and mixline partial evaluation (POPL'02)
 - Program monitoring (POPL'02);
 - Program reduction (e.g. transition compression), Slicing, etc.

Conclusion

Conclusion

- Program transformation is understood as an abstraction of a semantic transformation of run-time execution;
- Leads to a unified framework for semantics-based program analysis and transformation;
- The benefit is presently purely foundational and conceptual;
- Practical application: reanalysis of assembler code from source requires the formalization of the compilation process (work of Xavier RIVAL at ENS).