
Software Challenges for the Aerospace
Industry and Research

Patrick Cousot
Jerome C. Hunsaker Visiting Professor

Department of Aeronautics and Astronautics, MIT
cousot mit edu www.mit.edu/~cousot

École normale supérieure, Paris
cousot ens fr www.di.ens.fr/~cousot

Workshop on Critical Research Areas in Aerospace Software
Aero. Astro. Dept., MIT, August 9th, 2005

http://www.mit.edu/~cousot
http://www.mit.edu/~cousot
http://www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot


The software problem is misunderstood

Cost-effective trust and high-confidence in software and
systems is not yet well understood by

--- industries that are new to the problem 1

--- the general public 2.

) No massive support for research on software safety
and security

1 think to desktop operating systems 15 years ago when no one would care about bugs or to some telephone
software nowadays
2 subject to the massive presence of software in its daily and anodyne acts but nevertheless unconscious and
not well informed about the potential risks (however the success of open-source probably comes in part
from the lack of confidence in software that no one really trust)



The software problem is maturing

--- Mature software industries (as found in areospace) un-
derstand that more cost-effective trust and confidence
in the software products they build or buy will be the
main challenge in the forthcoming 10 years 3

--- Large software manufacturers anticipate that their pub-
lic image and market share can be put in question by
unanticipated software catastrophes

--- The cost of potential catastrophes and hazards should
be integrated not only at the company level but also at
the level of the Information Society.
3 Recent catastrophes due to software failures are there to remind them this priority.



Software engineering

--- Present-day software engineering is almost exclusively
manual, with very few automated tools

--- The immediate consequence of the growing size of soft-
ware will be an explosion of the cost to maintain high-
quality objectives

--- Software engineering must emerge from its present strong
dependence on manual activities



The trust and confidence grand challenge

To master, at a competitive cost, trust and confidence
in

--- software production i.e. requirements, specification, de-
sign, development, documentation, configuration, mod-
ification, quality assurance of source and binary;

--- software interaction with humans and/or complex hard-
ware interfaces to physical systems (themselves more
and more developed by software);

--- software integration in a larger, more sophisticated, large-
scale, usually distributed system.



Quality assurance

--- Quality assurance can no longer be entirely based on
the development process;

--- Should be based on the product itself: all the dynamic
properties are already present in the text of the pro-
gram;

--- The current simulation, audit, review and test technolo-
gies, which will remain indispensable in the future, are
rapidly reaching their limits

--- Must therefore be complemented by new design, check-
ing, verification and certification tools to get trust and
confidence in specifications and software.



Tools for trust and high-confidence in software and systems

--- Do not reduce to the problem of bugs;

--- Covers the ability to prove program properties (any
question about the execution of a piece of software/system
going beyond the current practice of execution sampling
(test, demos, etc)).

--- These tools and automated techniques, to help reason-
ing about software execution, should be independent of
applications but could be specialized on various aspects
such as functionality, interoperability, safety, respon-
siveness, reliability, security, scalability, etc.



--- Then, depending on the domain of applications and cor-
responding standards, end-users could concentrate on
some of these aspects and tools depending on the type
of application (e.g. functionality for business, safety for
fly-by-wire, security for service applications) and could
even impose the use of such certification tools in future
standards.


	The software problem is misunderstood
	The software problem is maturing
	Software engineering
	The trust and confidence grand challenge
	Quality assurance
	Tools for trust and high-confidence in software and systems

