Automatic Verification of,Embedded
Control Software with ASTREE and beyond

Patrick Cousot

Jerome C. Hunsaker Visiting Professor
Department of Aeronautics and Astronautics, MIT
cousot mit.edu www.mit.edu/~cousot

Ecole normale supérieure, Paris
cousot ens.fr www.di.ens.fr/~cousot

Workshop on Critical Research Areas in Aerospace Software
Aero. Astro. Dept., MIT, August 9th, 2005

State of Practice

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 2 — ©) P. Cousort

An example among many others (Matlab code)

» h=get(gca,’children’);

apple.awt.EventQueueExceptionHandler Caught Throwable :

java.lang.ArrayIndexOutOfBoundsException: 2 >= 2
java.util.Vector.elementAt(Vector.java:431)
com.mathworks.mde.help.IndexItem.getFilename (IndexItem. java:100)
com.mathworks.mde.help.Index.getFilenameForLocation(Index.java:706)
com.mathworks.mde.help.Index.access$3100(Index. java:29)
com.mathworks.mde.help. Index$IndexMouseMotionAdapter.mouseMoved (Index. java:768)
java.awt.AWTEventMulticaster.mouseMoved (AWTEventMulticaster. java:272)
java.awt.AWTEventMulticaster.mouseMoved (AWTEventMulticaster. java:271)
java.awt.Component . processMouseMotionEvent (Component . java:5211)
javax.swing.JComponent .processMouseMotionEvent (JComponent . java:2779)
com.mathworks .mwswing.MJTable.processMouseMotionEvent (MJTable. java:725)

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
>

java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.

awt.
awt.
awt.

awt

awt.
awt.
awt.

awt
awt

awt.
awt.

awt

awt.

awt

Component . processEvent (Component . java:4967)
Container.processEvent (Container. java:1613)
Component .dispatchEventImpl (Component. java:3681)

.Container.dispatchEventImpl(Container. java:1671)
awt.

Component .dispatchEvent (Component . java:3543)
LightweightDispatcher.retargetMouseEvent (Container. java:3527)
LightweightDispatcher.processMouseEvent (Container. java:3255)
LightweightDispatcher.dispatchEvent (Container. java:3172)

.Container.dispatchEventImpl(Container. java:1657)
.Window.dispatchEventImpl (Window. java:1606)
awt.

Component .dispatchEvent (Component . java:3543)
EventQueue.dispatchEvent (EventQueue. java:456)
EventDispatchThread.pumpOneEventForHierarchy(EventDispatchThread. java:234)

.EventDispatchThread.pumpEventsForHierarchy (EventDispatchThread. java:184)
awt.

EventDispatchThread.pumpEvents (EventDispatchThread. java:178)
EventDispatchThread.pumpEvents (EventDispatchThread. java:170)

.EventDispatchThread.run(EventDispatchThread. java:100)

Critical Research Areas in Aerospace Software, MIT August 9th 2005

java.lang.ArrayIndexOutOfBoundsException: 2 >= 2

(© P. Cousor

The software challenge for next 10 years

— Present-day software engineering is almost exclusively
manual, with very few automated tools;

—Trust and confidence in specifications and software can
no longer be entirely based on the development process

(e.g. DO178B);

—In complement, quality assurance must be ensured by
new design, modeling, checking, verification and certi-
fication tools based on the product 1tself.

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 4 — (© P. Cousor

State of the Art in Automatic
Static Program Analysis

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 5 — ©) P. Cousort

Static analysis tools

—Determine automatically from the program text pro-
gram properties of a certain class that do hold at run-
time (e.g. absence of runtime error);

—Based on the automatic computation of machine repre-
sentable abstractions' of all possible executions of the
program In any possible environment;

—Scales up to hundreds of thousands lines;
— Undecidable whence false alarms are possible’

1 sound but (in general) uncomplete approximations.

2 cases when a question on the program runtime behavior cannot be answered automatically for sure

— 6 —

Degree of specialization

— Specialization for a class of runtime properties (e.g. ab-
sence of runtime errors)

— Specialization for a programming language (e.g. PolySpace
Suite for Ada, C or C++)

— Specialization for a programming style (e.g. C Global
Surveyor)

— Specialization for an application type (e.g. ASTREE for
embedded real-time synchronous® autocodes)

— T'he more specialized, the less false alarms !

3 deterministic
4 but the less specialized, the larger commercial market (and the less client satisfaction)!

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 7 — (© P. Cousor

The ASTREE static analyzer

— ASTREE is a static program analyzer aiming at proving
the absence of Run Time Errors (started Nov. 2001)

— C programs, no dynamic memory allocation and recur-
sion
—Encompass many (automatically generated) synchro-

nous, time-triggered, real-time, safety critical, embed-
ded software

—automotive, energy and aerospace applications

= e.g. No false alarm on the electric flight control codes
for the A340 (Nov. 2003) and A380 (Nov. 2004) gener-
ated from SAO/SCADE.

29 Order Digital Filter: Ellipsoid Abstract Domain for Filters

F g — Computes X,, = { ?X”_l +HXnat Y

\ -
J - — The concrete computation is bounded, which
‘ must be proved in the abstract.

T | L ﬁ — There is no stable interval or octagon.
wEe O 1w

— The simplest stable surface is an ellipsoid.

i F(X)
|x .
. ~N/ . |
X U F(X) ——==" XUF(X)
execution trace unstable interval stable ellipsoid

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 9 — ©) P. Cousort

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN; Filter Example
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P =X; E[0] = X; }
else { P = (((CC0.5 *x X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] = 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */
ks
void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {
X=0.9 x X + 35;
filter (); INIT = FALSE; }

_ Reference
see http://www.astree.ens.fr/

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 10 — ©) P. Cousort

Arithmetic-geometric progressions
— Abstract domain: (RT)° °

— Concretization (any function bounded by the arithmetic-

geometric progression):
v e (RT)? —s p(N — R)

7(M7 a” b) a'/) b/) —
(f|VkeN:|f(k) < ()\:v.aa:+b . ()\a:.a'a:+b/)k> (M)}

_ Reference
see http://www.astree.ens.fr/

5 here in R

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 11 — (© P. Cousor

Arithmetic-Geometric Progressions (Example 1)

%» cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() A
R = 0;
while (TRUE) {
__ASTREE_log_vars((R));
if (I) {R=R+1;} < potential overflow!
else { R =0; }
T = (R >= 100);
__ASTREE_wait_for_clock(());
+}

%» cat count.config

__ASTREE_volatile_input ((I [0,1]));

__ASTREE_max_clock((3600000))

/» astree -exec-fn main -config-sem count.config count.c|grep ’[R|’

|IR|] <= 0. + clock *1. <= 3600001.

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 12 — ©) P. Cousort

Arithmetic-geometric progressions (Example 2)

void main()
{ FIRST = TRUE;
while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());
T}

%, cat retro.config

%, cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev() _ _

{ X=E. __ASTREE_volatile_input((E [-15.0, 15.0]));
if (FIRST) { P = X; } __ASTREE_volatile_input ((SWITCH [0,1]1));
clse __ASTREE_max_clock((3600000)) ;

{P= (P - ((((2.0 x P) - A) - B) |P| <= (15. + 5.87747175411e-39
* 4.491048e-03)); }; / 1.19209290217e-07) * (1
3==A; + 1.19209290217e-07) “clock
if (SWITCH) {A = P;} _ 5.87747175411e-39 /

else {A = X;J 1.19209290217¢-07 <=

23.0393526831

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 13 — ©) P. Cousort

Towards System Verification Tools

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 14 — ©) P. Cousort

Computer controlled systems

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 15 — © P. Cousor

Software test

Abstractions: program — none, system — precise

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 16 — ©) P. Cousort

— Very expensive
— Not exhaustive
— HExtended during flight test period

— Late discovery of errors can delay the program by months
(the whole software development process must be rechecked)

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 17 —

Software analysis & verification with ASTREE

Abstractions: program — precise, system — coarse

Critical Research Areas in Aerospace Software, MIT August 9th, 2005 — 18 — © P. Cousort

— BExhaustive

—Can be made precise by specialization® to get no false
alarm

— No specification of the controlled system (but for ranges
of values of a few sensors)

—Impossible to prove essential properties of the controlled
system (e.g. controlability, stability)

6 To specific families of properties and programs

— 19 —

System analysis & verification by control engineers

Abstractions: program — imprecise, system — precise

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 20 — ©) P. Cousort

—The controler model 1s a rough abstraction of the con-
trol program:

- Continuous, not discrete
— Limited to control laws

- Does not take into account fault-tolerance to fail-
ures and computer-related system dependability.

—In theory, SDP-based search of system invariants (Lyapunov-
like functions) can be used to prove reachability and
inevitability properties

—Problems to scale up (e.g. over long periods of time)

—In practice, the system/controler model is explored by
discrete simulations (testing)

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 21 —

Exploring new avenues
In static analysis

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 22 — ©) P. Cousort

System analysis & verification, Avenue 1

Abstractions: program — precise, system — precise

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 23 — ©) P. Cousort

— Exhaustive (contrary to current simulations)

—Traditional abstractions (e.g. polyhedral abstraction
with widening) seem to be too imprecise

— Currently exploring new abstractions (issued from con-
trol theory like ellipsoidal calculus using SDP)

— Prototype implementation in construction!

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 24 —

System analysis & verification, Avenue 2

Abstractions: program — precise, system — precise

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 25 — ©) P. Cousort

— Example of invariant translation: ellipsoidal — polyhedral’

—The static analysis is easier on the system/controller
model using continuous optimization methods

—The translated invariants can be checked for the sys-
tem simulator/control program (easier than invariant
discovery)

—ohould scale up since these complex invariants are rel-
evant to a small part of the control program only

7 For which floating point computations can be taken into account

— 26 —

System analysis & verification, Avenue 3

Abstractions: program — precise, system — precise

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 27 — ©) P. Cousort

—The invariant hypotheses on the controlled system are
assumed to be true

— It remains to perform the control program analysis un-
der these hypothesis

—The results can then be checked on the whole system
(as in case 2, but now using refined invariants on the
control program!)

—Iterating this process leads to static analysis by refine-
ment of specifications

— 928 —

Conclusion

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 29 — © P. Cousor

Scientific and technologic objective

To develop formal tools to answer questions about soft-
ware:

—from control model design to software implementation,
—for a wide range of design and software properties,

which would be general enough to benefit all software-
intensive industries, and can be adapted to specific ap-
plication domains.

Research on software safety and security

1

10000
search 1s far from sufficient

—Investing or even less of the software costs in re-

— A sustained effort of 1 to 3% would be more realistic
and could significantly contribute to progress in the 10
forthcoming years.

Critical Research Areas in Aerospace Software, MIT August 9th 2005 — 30 — (© P. Cousor

