
Software Verification by Abstract Interpretation:
Current Trends and Perspectives

Patrick COUSOT
École Normale Supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

Patrick.Cousot@ens.fr
www.di.ens.fr/~cousot

Jerome C. Hunsaker Visiting Professor
Massachusetts Institute of Technology

Department of Aeronautics and Astronautics
cousot mit edu

www.mit.edu/~cousot

Pratt & Whitney, East Hartford
Friday May 6th, 2005

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 1 — ľ P. Cousot

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
http://www.mit.edu/~cousot
http://www.mit.edu/~cousot
http://web.mit.edu

All Computer Scientists Have Experienced Bugs

It is preferable to verify that safety-critical programs do
not go wrong before running them.

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 2 — ľ P. Cousot

http://web.mit.edu

Static Analysis by Abstract Interpretation

Static analysis: analyze the program at compile-time to
verify a program runtime property (e.g. the absence
of some categories of bugs)

Undecidability !̀

Abstract interpretation: effectively compute an abstraction/
sound approximation of the program semantics,

– which is precise enough to imply the desired
property, and

– coarse enough to be efficiently computable.

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 3 — ľ P. Cousot

http://web.mit.edu

Abstract Interpretation,
Informally

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 4 — ľ P. Cousot

http://web.mit.edu

Operational Semantics

x(t)

t

���������
	
���
	�
���

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 5 — ľ P. Cousot

http://web.mit.edu

Safety property

x(t)

t

Forbidden zone

Possible
trajectories

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 6 — ľ P. Cousot

http://web.mit.edu

Test/Debugging is Unsafe

x(t)

t

Test of a few trajectories

Forbidden zone

Possible
trajectories

Error !!!

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 7 — ľ P. Cousot

http://web.mit.edu

Bounded Model Checking is Unsafe

x(t)

t

Bounded model-checking of trajectory prefixes

Forbidden zone

Possible
trajectories

Error !!!

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 8 — ľ P. Cousot

http://web.mit.edu

Abstract Interpretation

x(t)

t

Abstraction of the trajectories

Forbidden zone

Possible
trajectories

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 9 — ľ P. Cousot

http://web.mit.edu

Soundness: Erroneous Abstraction — II

x(t)

t

Erroneous trajectory abstraction

Forbidden zone

Possible
trajectories

Error !!!

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 10 — ľ P. Cousot

http://web.mit.edu

Soundness: Erroneous Abstraction — II

x(t)

t

Erroneous trajectory abstraction

Forbidden zone

Possible
trajectories

Error !!!

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 11 — ľ P. Cousot

http://web.mit.edu

Imprecision) False Alarms

x(t)

t

Imprecise trajectory abstraction

Forbidden zone

Possible
trajectories

False alarm

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 12 — ľ P. Cousot

http://web.mit.edu

Interval Abstraction) False Alarms

x(t)

t

Imprecise trajectory abstraction by intervals

Forbidden zone

Possible
trajectories

False alarms

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 13 — ľ P. Cousot

http://web.mit.edu

Refinement by Partitioning

x(t)

t

Refinement of intervals

Forbidden zone

Possible
trajectories

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 14 — ľ P. Cousot

http://web.mit.edu

A Practical Application of Abstract
Interpretation to the Verification
of Safety Critical Embedded
Control-Command Software

Reference

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, LNCS 2566, pages 85–108. Springer, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static
analyzer for large safety-critical software. PLDI’03, San Diego, June 7–14, ACM Press, 2003.

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 15 — ľ P. Cousot

http://web.mit.edu

ASTRÉE: A Sound, Automatic, Specializable,
Domain-Aware, Parametric, Modular, Efficient and

Precise Static Program Analyzer
www.astree.ens.fr

Implicit Specification: Absence of Runtime

– No violation of the norm of C (e.g. array index out of bounds)

– No implementation-specific undefined behaviors (e.g. maximum
short integer is 32767)

– No violation of the programming guidelines (e.g. static vari-
ables cannot be assumed to be initialized to 0)

– No violation of the programmer assertions (must all be stati-
cally verified).

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 16 — ľ P. Cousot

www.astree.ens.fr
http://www.astree.ens.fr/
http://web.mit.edu

C language

with

– pointers (including on functions), structures and ar-
rays

– floating point computations

– tests, loops and function calls

– limited branching (forward goto, break, continue)

without

– union

– dynamic memory allocation

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 17 — ľ P. Cousot

http://web.mit.edu

– recursive function calls

– backward branching

– conflicting side effects 1

– C libraries

1 Tne ASTRÉE analyzer checks the absence of ambiguous side effects since otherwise the semantics of the C
program would not be defined deterministically.

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 18 — ľ P. Cousot

http://web.mit.edu

Operational semantics

– International norm of C (ISO/IEC 9899:1999)

– restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representa-
tion and size of integers, IEEE 754-1985 norm for floats
and doubles)

– restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even
though this might be the hardware choice)

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 19 — ľ P. Cousot

http://web.mit.edu

– restricted by program specific user requirements (e.g.
assert)

– restricted by a volatile environment as specified by a
trusted configuration file.

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 20 — ľ P. Cousot

http://web.mit.edu

Example application
– Primary flight control software of the Airbus A340
family/A380 fly-by-wire system

– C program, automatically generated from a propri-
etary high-level specification (à la Simulink/Scade)

– A340 family: 132,000 lines, 75,000 LOCs after pre-
processing, 10,000 global variables, over 21,000 after
expansion of small arrays

– A380: ˆ 3) No false alarm!
Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 21 — ľ P. Cousot

http://www.bredow-web.de/ILA_2004/Impressionen/Airbus_A340-600/A340-600-.JPG
http://web.mit.edu

Examples

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 22 — ľ P. Cousot

http://web.mit.edu

General-purpose abstract domains: intervals and octagons

X

Y

0

Intervals:


1 » x » 9
1 » y » 20

Octagons [?]:
8

>

>

<

>

>

:

1 » x » 9
x+ y » 75
1 » y » 20
x` y » 04

Difficulties: many global variables, IEEE 754 floating-
point arithmetic (in program and analyzer)

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 23 — ľ P. Cousot

http://web.mit.edu

Floating-Point Computations
– Code Sample:

/* float-error.c */

int main () {

float x, y, z, r;

x = 1.000000019e+38;

y = x + 1.0e21;

z = x - 1.0e21;

r = y - z;

printf("%f\n", r);

} % gcc float-error.c

% ./a.out

0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */

int main () {

double x; float y, z, r;

/* x = ldexp(1.,50)+ldexp(1.,26); */

x = 1125899973951488.0;

y = x + 1;

z = x - 1;

r = y - z;

printf("%f\n", r);

}

% gcc double-error.c

% ./a.out

134217728.000000

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 24 — ľ P. Cousot

http://web.mit.edu

Explanation of the huge rounding errors

(1)
x

Reals

Floats
x+10

21
x-10

21 x

Rounding

(2)
x

Doubles

Reals

Floats

x+1x-1
x

Rounding

134217728.0

2

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 25 — ľ P. Cousot

http://web.mit.edu

Clock abstract domain for counters
– Code Sample:

R = 0;

while (1) {

if (I)

{ R = R+1; }

else

{ R = 0; }

T = (R>=n);

wait_for_clock ();

}

- Output T is true iff the volatile input I has
been true for the last n clock ticks.

- The clock ticks every s seconds for at most
h hours, thus R is bounded.

- To prove that R cannot overflow, we must
prove that R cannot exceed the elapsed
clock ticks (impossible using only inter-
vals).

– Solution:
- Relate the value of variables X to the number clock of elapsed clock ticks.
- For example if X+clock or X-clock is bounded then so is X.

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 26 — ľ P. Cousot

http://web.mit.edu

Boolean relations for boolean control
– Code Sample:

/* boolean.c */

typedef enum {F=0,T=1} BOOL;

BOOL B;

void main () {

unsigned int X, Y;

while (1) {

...

B = (X == 0);

...

if (!B) {

Y = 1 / X;

}

...

}

}

B

0

B

FT

0

B

T
F T

F

X

Y

X

Y

X

Y

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 27 — ľ P. Cousot

http://web.mit.edu

Control partitionning for case analysis
– Code Sample:

/* trace_partitionning.c */

void main() {

float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};

float c[4] = {0.0, 2.0, 2.0, 0.0};

float d[4] = {-20.0, -20.0, 0.0, 20.0};

float x, r;

int i = 0;

... found invariant `100 » x » 100 ...

while ((i < 3) && (x >= t[i+1])) {

i = i + 1;

}

r = (x - t[i]) * c[i] + d[i];

}

Control point partitionning:

Trace partitionning:

Fork Join

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 28 — ľ P. Cousot

http://web.mit.edu

Ellipsoid abstract domain for
filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

– Computes Xn =



¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.

– The simplest stable surface is an ellipsoid.

X U F(X)

X
F(X)

F(X)
X

X U F(X)

unstable interval stable ellipsoid

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 29 — ľ P. Cousot

http://web.mit.edu

Arithmetic-geometric progressions
% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;

BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev()

{ X=E;

if (FIRST) { P = X; }

else

{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };

B = A;

if (SWITCH) {A = P;}

else {A = X;}

}

void main()

{ FIRST = TRUE;

while (TRUE) {

dev();

FIRST = FALSE;

__ASTREE_wait_for_clock(());

}}

% cat retro.config

__ASTREE_volatile_input((E [-15.0, 15.0]));

__ASTREE_volatile_input((SWITCH [0,1]));

__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39

/ 1.19209290217e-07) * (1 +

1.19209290217e-07)ˆclock -

5.87747175411e-39 / 1.19209290217e-07

<= 23.0393526881

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 30 — ľ P. Cousot

http://web.mit.edu

Conclusion

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 31 — ľ P. Cousot

http://web.mit.edu

The Future & Grand Challenges

Forthcoming (1 year):

– More general memory model (union)

Future (5 years):

– Asynchronous concurrency (for less critical software)

– Functional properties (reactivity)

– Industrialization

Grand challenge:

– Verification from specifications to machine code (veri-
fying compiler)

– Verification of systems (quasi-synchrony, distribution)

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 32 — ľ P. Cousot

http://web.mit.edu

THE END, THANK YOU

More references at URL www.di.ens.fr/~cousot

www.astree.ens.fr.

Pratt & Whitney, East Hartford, Friday May 6th, 2005 — 33 — ľ P. Cousot

www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot/COUSOTpapers.html
www.astree.ens.fr
http://www.astree.ens.fr/
http://web.mit.edu

	All computer scientists have experienced bugs
	Static analysis by abstract interpretation
	ABSTRACT INTERPRETATION, INFORMALLY
	Operational semantics
	Safety property
	Test/debugging is unsafe
	Bounded model checking is unsafe
	Abstract interpretation
	Soundness: erroneous abstraction --- I
	Soundness: erroneous abstraction --- II
	Imprecision implies false alarms
	Interval abstraction implies false alarms
	Refinement by partitioning
	A PRACTICAL APPLICATION OF ABSTRACT INTERPRETATION TO THE VERIFICATION OF SAFETY CRITICAL EMBEDDED SOFTWARE
	ASTRÉE: a sound, automatic, specializable, domain-aware, parametric, modular, efficient and precise static program analyzer
	C language
	Operational semantics
	Example application
	EXAMPLES
	General-purpose abstract domains: intervals and octagons
	Floating-point computations
	Explanation of the huge rounding errors
	Clock abstract domain for counters
	Boolean relations for boolean control
	Control partitionning for case analysis
	Ellipsoid abstract domain for digital filters
	Arithmetic-Geometric Progression
	CONCLUSION
	The future and grand challenges
	THE END

