Abstract Interpretation of Computations

Patrick COUSOT

Ecole Normale Supérieure
45 rue d’Ulm

75230 Paris cedex 05, France

Patrick.Cousot@ens.fr
www.di.ens.fr/~cousot

Workshop on Robustness, Abstractions and Computations
University of Pennsylvania, Philadelphia
March 28, 2004

Talk Outline

o A few elements of abstract interpretation
(10 mn) .o 3

e Applications of abstract interpretation (1 mn) 28

o Application to the verification of embedded,
real-time, synchronous, safety super-critical

software (8 mn) ... 31
o Examples of abstractions (bmn) 45
e Conclusion (Imn) 53

A Few Elements
of Abstract Interpretation

_ Reference

[POPL’79| P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages 269-282, San Antonio, TX,
1979. ACM Press.

RAC’04, March 28, 2004 3 © P. CousoTr g@m

A Model of Computer Programs

e Syntax : a well-founded set of programs (P, <) where <
1s the “strict immediate subcomponent” relation

e Semantics of Pc P :
- Semantic domain : a complete lattice/cpo (D[P], C, L, L)
- Compositional Fixpoint Semantics :
S[P] = 1pr]-‘[[P]] (1] S[[P’]])
P'<P
lprE_ fis the limit of X9 = 1, x0T = f(x%), XA =15\ X7,
A limit ordinal, if any. Existence e.g. monotony (by Tarski).

RAC’04, March 28, 2004 4 © P. (“OUSOTﬁ@fﬁ
5
S

QA Uom

Example: Syntax of Programs

T X ;

TX ;D

X =FE;
while B ('
if B ('

if B C' else ("
{Ci ... C,} (n>0)
D C

RAC04, March 28, 2004

variables X € X

types T' € T

arithmetic expressions £ € E

boolean expressions B € B

declarations D € D, vars(D) = {X}

X ¢ vars(D'), vars(D) = { X } U vars(D’)

commands C' € C (E < C)
(B<C,C'"<0O)
(B<C,C"<0O)
(B=<C,C"<C,C"<C)
(Ci1=<C,....C,=<C)

program P € P (C < P)

© P. Cousor ﬂiﬁﬁﬁ

Example: Concrete Semantic Domain of Programs

Reachability properties:

»[D C] = 2[D] states p
Z[[T X, 2 {X}—T (p(X) is the value
[T X; D] £ ({X}—T)Ux[D] of X)

D[P] = o(2][P]) sets of states
C ¥ C implication
L= false
HENY disjunction

6 © P. Cousor ﬂiﬁfg
etmesnatilas)

Example: Concrete Semantics of Programs

(Reachability)
S[X = E;JR = {p[X — E[E]p] | p € RN dom(E)}

PIX —ol(X) = 0, p[X —0](Y) = p(Y)

S[if B C'|R < S[C'|(B[B]R) U B[-B]R
B[B]R < {p € RNdom(B) | B holds in p}
S[if B " else C"]|R < S[C'|(B[B]R) U S[C"](B[-B]R)
S[while B C'|R = let W =1fp AX . R U S[C'[(B[B]X)
SI}IR = R
S[{Cy...C MR < S[Cy]>...-S[Ci] n >0
S[D C]|R £ S[C|(Z[D]) (uninitialized variables)

T T

Not computable (undecidability).

RAC’04, March 28, 2004 7 © P. CousoTr g@m

Abstraction

A reasoning/computation such that;
e only some properties can be used;

e the properties that can be used are called “abstract”;

e 50, the (other concrete) properties must be approxi-
mated by the abstract ones:

P
RAC’04, March 28, 2004 8 © P. CousoT ﬁj@%

8
A AN .
ek

Abstract Properties

o Abstract Properties: a set A C p(¥) of properties of in-
terest (the only one which can be used to approximate
others).

Direction of Approximation

o Approximation from above: approximate P by P such that
P C E;

o Approximation from below: approximate P by P such that
P c P (dual). :

RAC’04, March 28, 2004 9 © P. Cousor

Best Abstraction

o We require that all concrete property P € p(¥) have a best
abstraction P € A:

pPcCP
VPle A: (PCP))= (PCP)

e S0, by definition of the greatest lower bound/meet N:

P:m{HEZ\PQF}e;\

(Otherwise see [JLC 92].)

_ Reference
[JLC’92] P. Cousot & R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511-547, 1992.

9

RAC’04, March 28, 2004 10 © P. Cousor ﬁf@é?ﬁ
o

Moore Family

o This hypothesis that any concrete property P € p(X) has
a best abstraction P € A implies that:

A 1s a Moore family
1.e. 1t 1s closed under intersection N:

VS C A:NS e A

o In particular N =3 ¢ Ais “T don’t know”.

RAC'04, March 28, 2004 1 @© P. CousoT ﬁi&ﬁ

Example of Moore Family-Based Abstraction

RAC’04, March 28, 2004 — 12 —

Closure Operator Induced by an Abstraction
The map p 4 Mapping a concrete property P € p(X) to its

best abstraction p 4(P) in A:
p4(P) = N{P € A|PC P}

Is a closure operator:

e cxtensive,

e idempotent,

e isotone/monotonic;
such that P e A < P =p 4(P)
hence A = p z(p(X)).

RAC'04, March 28, 2004 13 © P. Cousor ﬂiﬁﬁ
el

Example of Closure Operator-Based Abstraction

RAC’04, March 28, 2004 — 14 —

The Lattice of Abstract Interpretations

e The set of all possible abstractions that is of all upper
closure operators on the complete lattice

(D|P], C, L, T, U,)
Is a complete lattice

(uco(D[P| — D[P]), C, \z-x, Ax- T, AR-uco(LIR),)

o The meet of abstractions called the reduced product (- ﬁA D
1€
Is that most abstract abstraction more precise than all p,,
icA)

RAC'04, March 28, 2004 15 @© P. CousoT ﬁ%’ﬁ

(Galois Connection Between Concrete and Abstract Properties

e For closure operators p, we have:

o(P) C p(P!) & P C p(P)
written: |
where 1 1s the identity and:
S
means that (a,) is a Galois connection:

VP e p(X),PeD:a(P)C P < PC~(P):
o A (Galois connection defines a closure operator p = a © v,
hence a best abstraction.

B
RAC’04, March 28, 2004 16 ©F (‘TOUSOTﬁ@&
msm) "r)‘i i

Example of GGalois Connection-Based Abstraction

.
gi
fal

Example: abstract semantic domain of programs

(D*[P], T, L, 1)
such that:

(D, ¢) = (D[P]. C)

hence <Dﬁ[[P]], C, 1, 1) 1s a complete lattice such that L =
a(0) and UX = o(U v(X))

RAC04, March 28, 2004 18 © P. Cousor gk

‘Abstract domain) Function Abstraction
f
Q}VX
v a Fi— o Fon
e D 1.€. Ft1 =pOF
i F .o
x/
Concrete domain/
(P, C) == (Q,) =
morIn :)\Fﬂ) fyOFﬁO& morIn :
<P'—>P7g>< <Q|—>Qag>
AF' . o Flory

RAC’04, March 28, 2004 — 19 — © P. Cousor

Approximate Fixpoint Abstraction

" Abstract domaéin | Fﬂ Fﬂ \
g F g e
L g t—0— 7 =,
y Y Y ::" Y i Approximation
— : : ‘- : relation C
y
H
J_]
| 6% F Concrete domain |

Fo~n C fyOFﬂ = lprEfy(lprﬁ)

20 © P. CousoTr g@m

Example:

SHX = E;]
S*[if B C']

B[B]

S[if B ¢’ else C"]
S*[while B C']

S*[{}]
S[D C]

RAC’04, March 28, 2004

abstract semantics of programs
(reachability)

= a({plX — E[E]o] | p € v(R) N dom(E)})
= S [C)(B[B]R) U B [-B]R

def ({p € 7(R) Ndom(B) | B holds in p})
= SCNB[BIR) L SF[CI(B[-B]R)

= let W =1fp, AX . RUSH[C|(B[B]X)
in (Bﬁ[[—IB]]W)

DUDUDU:U:U

R<R
R = S[C,]o...oS8[C] n>0
R < SY[C](T) (uninitialized variables)

21 © P. CousoTr g@m

Convergence Acceleration with Widening

Abstract domain v QF ﬁ
;
Y 8l Y Y Y Approximation

relation C

RAC’04, March 28, 2004

22

© P. CousoTr g@m

Widening Operator

A widening operator V € L x L+ L 18 such that:

e Correctness:

-Va,y € Liy(z) E y(z Vy)
-Va,y e Liy(y) T (z Vy)
o Convergence:
- for all increasing chains zY C 1 C ..., the increasing
chain defined by ¢V = 2V, ... yttl = 2Vt tl

1s not strictly increasing.

RAC’04, March 28, 2004 23 © P. Cousor ﬁi@zﬁ
iy

Fixpoint Approximation with Widening

Concergence Theorem:

The upward iteration sequence with widening:
e XU =1 (infimum)
o XiHl — xi if FR(XY) C X?
— X'V F(XY) otherwise
1s ultimately stationary and its limit A 1s a sound upper
approximation of lprE_ Fi:
lprE_ Fic A

RAC’04, March 28, 2004 24 © P. C(’”S(’Tﬂiﬁ&
)

Example: Abstract Semantics with Convergence

Acceleration'
SIX = E;]R 1=f {plX — E[E]p] | p € v(R) Ndom(E)})
S'lif B C'|R £ SH[C'|(B*[B]R) U B [-B]R
B [B]R < a({p € v(R)Ndom(B) | B holds in p})
S'[if B (" else C"|R < S*[C'](B[B]R) U S[C"](B[-~B]R)
S'lwhile B C'JR = let F! = \X.let Y = RUSHC'](BB]X)

inif Y C X then X else X VY
and W = 1fp. F* in (B [~B]W)

STOIR = R
ST{C,...C YR = SC]o...oSHCi] n>0
S[D C]R = S*[C](T) (uninitialized variables)

L Note: F not monotonic!

RAC’04, March 28, 2004 — 25 — @© P. CousoT M

w1 B

Extrapolation by Widening is Essentially Not
Monotone

Proof by contradiction:
e Let V be a widening operator

o Deﬁnexv/yinyxthenxelsexVy

o Assume z C y = F(x) (during iteration)
then: z V' y = 2Vy Jdy (soundness)
C C C (monotony hypothesis)
y Vy = g (termination)
= x Vy =y, by antisymmetry!
= z V F(z) = F(z) during iteration = convergence cannot be enforced with mono-

tone widening (so widening by finite abstraction is less powerful!)

RAC’04, March 28, 2004 26 © P. CousoTr g@m

Soundness Theorem
o Convergence by extensivity (no longer monotone)
o Improvement by narrowing [POPL 77|

o Soundness Corollary: any abstract satety proof is valid in
the concrete in that:

SHPlCQ = S[P] C(Q)

e Example: ~(Q) expresses the absence of run-time errors.

_ Reference

[POPL 77| P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In 4% POPL, pages 238252, Los Angeles, CA, 1977. ACM Press.

9

RAC’04, March 28, 2004 27 © P. Cousor ﬁf@é?ﬁ
o

Applications of Abstract Interpretation

RAC’04, March 28, 2004 — 28 —

Applications of Abstract Interpretation

e Static Program Analysis [POPL 77|, [POPL 78|, [POPL 79
including Dataflow Analysis |[POPL 79|, [POPL 00|, Set-
based Analysis |FPCA 95|, Predicate Abstraction
[Manna's festschrift '03]

e Syntax Analysis [TCS 290(1) 2002]

e Hierarchies of Semantics (including Proofs) [POPL 92|,
'TCS 277(1-2) 2002

o Typing |TCS 277(1-2) 2002

RAC'04, March 28, 2004 29 @© P. CousoT ?ﬂiﬁﬁ

Applications of Abstract Interpretation (Cont’d)

e (Abstract) Model Checking [POPL 00]
e Program Transformation |[POPL 02|
o Software Watermarking |[POPL 04

e Bisimulations |[RT-ESOP 04|

All these techniques involve sound approximations that can
be formalized by abstract interpretation

RAC’04, March 28, 2004 30 © P. COUSOT?‘?%%
3 et

A Practical Application of Abstract
Interpretation to the Verification of

Safety Critical Embedded Software

_ Reference

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Min¢, D. Monniaux, and X. Rival. Design and implementation of a
special-purpose static program analyzer for safety-critical real-time embedded software. The Essence of Computation: Complexity,
Analysis, Transformation. Essays Dedicated to Neil D. Jones, LNCS 2566, pages 85—108. Springer, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for large
safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.

RAC’04, March 28, 2004 31 © P. Cousor

Static Program Analysis

K ° ° ° \
Program} [Spe(nflcatlon
N J

N
Generator
Y
System of fixpoint equations/constraints
Y
Solver
Y
(Approximate) solution
Ny Program
Diagnoser checker

[Diagnvosis @}

B
RAC04, March 28, 2004 32 ©F (‘TOUSOTﬁ@&
msm) "r)‘i e

ASTREE: A Sound, Automatic, Specializable,

Domain-Aware, Parametric, Modular, Efficient and
Precise Static Program Analyzer

WWW.astree.ens.fr

e C programs:
- structured C programs;
- no dynamic memory allocation;
— 110 Tecursion.
o Application Domain: safety critical embedded real-time

synchronous software for non-linear control of very com-
plex control /command systems.

RAC’04, March 28, 2004 33 © P. CousoT g

Concrete Operational Semantics

e International norm of C (ISO/IEC 9899:1999)

o restricted by implementation-specific behaviors depending

upon the machine and compiler (e.g. representation and
size of integers, [EELE 754-1985 norm for floats and dou-

bles)

o restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even though
this might be the hardware choice)

o restricted by program specific user requirements (e.o. assert)

RAC’04, March 28, 2004 — 34 — © P. Cousor

Abstract Semantics

o Reachable states for the concrete operational semantics

e Volatile environment is specified by a trusted configuration

file.

B
RAC’04, March 28, 2004 35 © P. Cousor ?@égﬁ
)

Implicit Specification: Absence of Runtime Errors

e No violation of the norm of C (c.g. array index out of

bounds)

e No implementation-specific undefined behaviors (e.¢. max-
imum short integer is 32767)

e No violation of the programming guidelines (c.g. static
variables cannot be assumed to be initialized to 0)

e No violation of the programmer assertions (must all be
statically verified).

RAC’04, March 28, 2004 — 36 — © P. Cousor

Example application

e Primary flight control software of the Airbus A340/A380
Ay-by-wire system

e C program, automatically generated from a proprietary
high-level specification

e A340: 132.000 lines, 75,000 LOCs after preprocessing,
10,000 global variables, over 21,000 atter expansion of small
arrays.

RAC’04, March 28, 2004 — 37 — © P. Cousor

The Class of Considered Periodic Synchronous
Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever
- read volatile input variables,
- compute output and state variables,
- write to volatile output variables;
wait for clock ();
end loop

e Requirements: the only interrupts are clock ticks:
e Execution time of loop body less than a clock tick [3].

_ Reference

[3] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reliable and precise
WCET determination for a real-life processor. ESOP (2001), LNCS 2211, 469-485.

RAC'04, March 28, 2004 38 @© P. CousoT ﬁi&ﬁ
(huisinsiela

Characteristics of the ASTREE Analyzer

Static: compile time analysis (# run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels

of programs (# PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (# ESC Java,
ESC Java 2)

Sound: covers the whole state space (£ MAGIC, CBMC) so
never omit potential errors (# UNO, CMC from coverity.com)
or sort most probable ones (# Splint)

RAC’04, March 28, 2004 39 © P. COUSOT?‘?@
i S Mjﬁ

Characteristics of the ASTREE Analyzer (Cont’d)

Multiabstraction: uses many numerical /symbolic abstract
domains (# symbolic constraints in Bane)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (# model checking based an-
alyzers such as VeriSoft, Bandera, Java PathFinder)

Efficient: always terminate (# counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

Specializable: can easily incorporate new abstractions (and
reduction with already existing abstract domains) (#
general-purpose analyzers PolyvSpace Verifier)

P e
RAC’04, March 28, 2004 40 © P. (“,()USOTﬁ@%
fo

Characteristics of the ASTREE Analyzer (Cont’d)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere pro-
gramming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

Automatic Parametrization: the generation of paramet-
ric directives in the code can be programmed (to be
specialized for a specific application domain)

RAC’04, March 28, 2004 41 © P. Cousor ﬁbﬁi&
- h‘

Characteristics of the ASTREE Analyzer (Cont’d)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implementing an
abstract domain

Precise: few or no talse alarm when adapted to an applica-

tion domain — VERIFIER!

RAC'04, March 28, 2004 42 @© P. CousoT ﬂ%}'ﬁ
il

Example of Analysis Session

806 N Visvall
X || &
Quit

aumm:|

Pmgram pons Curent

Conext | Iieacl Soures r

(= lire2c 26 [Eypedef enum {FALSE = 0, TRUE = 1} BOOLEAN; =7| [im=2e

= Call man @ five2cs POCLEAN INIT:
- Whie @ fire2cm2 float B, X;

= imr=2

void filtre2 () {

Call five2 @ five2c24
G B2 € B static float @E[2], @5[2);

o ®if (INIT) {
—imra3 ®s5(0] = X;
< Coll fived @ Nye2c28 4 op = X;
o @E|0] = X; @
- iwr=4 } else {

= Call flve2 @

|

4 e®E[1) = E[0];

Op = (((((0.4677826 * X) - (E[0] * 0.7700725)) + (E[1] * 0.4344376)) + (S[0] * 1.5419)) - (S[l] * 0.6740476)):@

OE(D] = X;
®s5(1) = 5(0]:
@s[(0] = P; @
b
jroid main () {

Ox = 0.2 v X+ 5;

@INIT = TRUE;

®while @ (TRUE) {
®x = 0.9 * X+ 35;

®filtre2 ();
@INIT = FALSE; ®
i =
i L=}
filtre2.o:12:6[callémain@20:100pE23>=d:call#filtre2f2s) IS

P (1)

P in |-1252.84, 1252.84] inter [-3362.7, 3491.96])+clock inter [-3362.7, 3491.9%6]-claook>
Filtre d'eordre 2
[var_entree 1
Var_entree 2
[var_sortie
Var_sortie pred
jcoef el

jcoef_e2

coef_ed

jcoef_a

jcoef_b

jEgalite des entrees
pib de derculement 3
Iplus_grande entree : <= 935.935061096
@rreur en entree J00246160101051
gain leres sorties .33715602022
jgain last entrees -33I664B7752
jJgain autres entrees L00213381749462
erreur_sortie .0400176854152
sortie_max 253.02359782

HO OO

lcootagen:
tiltre2.c@l2d5=

{ =5430.95044216515634562 <= P <= 393596.917979075267795, =
o |
* analyzer launched at 2004/ 3/16 20:41:58 -

ommand line was “/vVolumes/PB_Cousot_PGP/Projet/absintheZ/analyzer.opt --exec-fn main filtreZ.c --export-invariant-stat filtre2.bin *
aunched by "cousot® on *PB-G4-Patrick-cOUSOT.local”

RAC04, March 28, 2004 — 43 — © P. Cousor

Benchmarks for the Primary Flight Control
Software of the Airbus A340

o Comparative results (commercial software):
4,200 (false?) alarms,

3.5 days;
e Our results:

0 alarm,
1020 on 2.8 GHz PC,

300 Megabytes

— A world premieére!

RAC’04, March 28, 2004 44 © P. CousoT g

Examples of Abstractions

RAC’04, March 28, 2004 — 45 —

(General-Purpose Abstract Domains: Intervals and
Octagons

Intervals:
{ 1<z <9

YA

1<y <2
Octagons [4/:
(1<z<9
r+y <78
1<y <20
X Lz —y <03

>

0

Difficulties: many global variables, IEEE 754 floating-point
arithmetic (in program and analyzer)

_ Reference
[4] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In PADO’2001, LNCS 2053, Springer,

2001, pp. 155-172.
[5] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In ESOP’04, Barcelona, LNCS |
Springer, 2004 (to appear).

© P. Cousor gk
HEE [

RAC’04, March 28, 2004 — 46 —

Floating-Point Computations

e Code Sample:

/* float-error.c */
int main () {
float x, y, 2z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z =x - 1.0e21;
r=y - z;
printf ("%f\n", r);
} % gcc float-error.c
% ./a.out
0.000000

(x+a)— (r—a) #2a

RAC’04, March 28, 2004

/* double-error.c */

int main () {

double x; float y, z, r;

/* x = ldexp(1l.,50)+1dexp(1.,26); */
x = 1125899973951488.0;

y =x+1

z =x - 1;

r=y - z;

printf ("%f\n", 1);

+

% gcc double-error.c
% ./a.out

134217728 .000000

47

© P. CousoT 'ﬁ}@

{ peseieisital

Clock Abstract Domain for Counters

e Code Sample:

ihilz, (1) { - Output T is true iff the volatile input I has been true
if (1) for the last n clock ticks.
{ R = R+1; } - The clock ticks every s seconds for at most h hours,
else thus R is bounded.
{R=0;1 - To prove that R cannot overflow, we must prove that R
T = (R>=n); cannot exceed the elapsed clock ticks (impossible using
} wait_for_clock Q); only intervals).

e Solution:
- We add a phantom variable clock in the concrete user semantics to track elapsed clock ticks.

- For each variable X, we abstract three intervals: X, X+clock, and X-clock.

- If X+clock or X-clock is bounded, so is X.

P
RAC’04, March 28, 2004 48 © P. Cousor g _?g
%J:u!!a--pii =)

Boolean Relations for Boolean Control

e Code Sample:

/* boolean.c */

BOOL B;
void main () {
unsigned int X, Y;

while (1) {
= (X == 0);
if ('B) {
1/ X
}
}

typedef enum {F=0,T=1} BOOL;

1l e I

RAC’04, March 28, 2004

The boolean relation abstract domain is pa-
rameterized by the height of the decision tree
(an analyzer option) and the abstract domain
at the leafs

49 © P. CousoTr g@m

Control Partitionning for Case Analysis
e Code Sample:

/* trace_partitionning.c */ Control point partitionning:
void main() {
AN AN AYAYAYAYANANANR
float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0}; +ofeol (ol (o) {o)l fol (ol ol fo (o
float c[4] = {0.0, 2.0, 2.0, 0.03};
float d[4] = {-20.0, -20.0, 0.0, 20.0}; INENAENENENENENMENMENERE
float x, r; jol ol ol ol ol ol lol ol ol ol
int i = 0;
S R e e R e L
. found invariant —100 < x <100 ... I N N N N N g
while ((i < 3) & (x >= t[i+1])) { Trace partitionning;:
i=1i+1;
} TIATATATATATATATATNATAE
r = (x - t[i]) * c[i] + d[i]l;
} -+ @ @ @ \./ \./ @ @ @ O——
IREMECACACACAC A S IRy
—+C @ @ @ @ @ @ O——
) O NGANTANTENY,

RAC’04, March 28, 2004 50 © P. Cousor

Ellipsoid Abstract Domain for
Filters

29 Order Digital Filter:

F . E e Computes X, — { ?anq + 06X, 2 +Y,
R 6!): J o e The cogcrete computation is bounded, which must be
i] proved in the abstract.
@, s M e There is no stable interval or octagon.
X [Tle s [B ﬁ e The simplest stable surface is an ellipsoid.
N | —==3
i< l
| F) /| |
X : ,
ol VA l :\
X U F(X) X U F(X)
unstable interval stable ellipsoid

_ Reference

[6] J. Feret. Static analysis of digital filters. In ESOP’04, Barcelona, LNCS | Springer, 2004 (to appear).

RAC’04, March 28, 2004 51 © P. C(’)USOTﬂiﬁfg
etmesnatilas)

The main loop invariant
A textual file over 4.5 Mb with

e 6,900 boolean interval assertions (z € [0;1])

e 9,600 interval assertions (z € [a; b])

e 25400 clock assertions (x +clk € [a;b] A x — clk € [a;b])
e 19,100 additive octagonal assertions (a <z +y < b)

e 19,200 subtractive octagonal assertions (a <z —y < b)

e 100 decision trees
o 60 ellipse mvariants, etc . ..

involving over 16,000 floating point constants (only 550 ap-
pearing in the program text) x 75,000 LOCs,

RAC’04, March 28, 2004 52 © P. Cousor ;ﬁl@%

RAC’04, March 28, 2004

Conclusion

© P. CousoTt]

Conclusion

e Most applications of abstract interpretation tolerate a small rate (typically 5 to
15%) of false alarms:

- Program transtormation — do not optimize,

- Typing — reject some correct programs, etc,

- WCET analysis — overestimate;
e Some applications require no false alarm at all:
- Program verification.

e Theoretically possible [SARA '00|, practically feasible |PLDI 03|

_ Reference

[SARA’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4% Int. Symp. SARA '2000, LNAI 1864,
Springer, pp. 1-25, 2000.

[PLDI’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for large
safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.

RAC’04, March 28, 2004

© P. Cousor @

THE END, THANK YOU

More references at URL www.di.ens.fr/ cousot
WWw.astree.ens.fr.

5 — © P. COUSOT@

RAC’04, March 28, 2004 -

Ut

References

[POPL 77| P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238-252, Los Angeles, California, 1977. ACM Press, New York, NY, USA.

[POPL’78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Conference Record
of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 84-97, Tucson, Arizona,
1978. ACM Press, New York, NY, U.S.A.

[POPL’79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the Sixth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 269-282, San Antonio, Texas, 1979. ACM
Press, New York, NY, U.S.A.

[POPL92] P. Cousot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Conference Record of the 19!
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Programming Languages, pages 83-94, Albuquerque, New Mexico,
1992. ACM Press, New York, U.S.A.

[FPCA95] P. Cousot and R. Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis by Abstract Interpreta-
tion. In SIGPLAN/SIGARCH/WG2.8 7" Conference on Functional Programming and Computer Architecture, FPCA’95. La Jolla,
California, U.S.A., pages 170-181. ACM Press, New York, U.S.A., 25-28 June 1995.

[POPL’00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twentyseventh Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 12-25, Boston, Mass., January 2000. ACM Press,
New York, NY.

[POPL’02] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks by Abstract Interpretation. In
Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 178-190, Portland, Oregon, January 2002. ACM Press, New York, NY.

[TCS 277(1-2) 2002] P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation.
Theoretical Computer Science 277(1-2):47-103, 2002.

[TCS 290(1) 2002] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theoret. Comput. Sci., 290:531—
544, 2003.

RAC’04, March 28, 2004 56 (© P. Cousor ﬁﬁp

o

[Manna’s festschrift '03] P. Cousot. Verification by Abstract Interpretation. Proc. Int. Symp. on Verification — Theory & Practice —
Honoring Zohar Manna’s 64th Birthday, N. Dershowitz (Ed.), Taormina, Italy, June 29 — July 4, 2003. Lecture Notes in Computer
Science, vol. 2772, pp. 243-268. (¢) Springer-Verlag, Berlin, Germany, 2003.

[POPL’04] P. Cousot and R. Cousot. An Abstract Interpretation-Based Framework for Software Watermarking. In Conference Record
of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 173-185, Venice,
Italy, January 14-16, 2004. ACM Press, New York, NY.

[RT-ESOP’04] F. Ranzato and F. Tapparo. Strong Preservation as Completeness in Abstract Interpretation. Porc. Programming
Languages and Systems, 13th European Symposium on Programming, ESOP 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, D.A. Schmidt (Ed), Lecture Notes
in Computer Science 2986, Springer, 2004, pp. 18-32.

&=

¥

o
T Al

RAC’04, March 28, 2004 57 © P. Cousor

	Talk Outline
	A SHORT INTRODUCTION TO ABSTRACT INTERPRETATION
	A Model of Computer Programs
	Example: syntax of programs
	Example: concrete semantic domain of programs
	Example: concrete semantics of programs (reachability)
	Abstraction
	Abstract properties
	Direction of approximation
	Best abstraction
	Moore family
	Example of Moore family-based abstraction
	Closure Operator Induced by an Abstraction
	Example of closure operator-based abstraction
	The lattice of abstract interpretations
	Galois connection between concrete and abstract properties
	Example of Galois connection-based abstraction
	Example: abstract semantic domain of programs
	Function abstraction
	Approximate fixpoint abstraction
	Example: abstract semantics of programs (reachability)
	Convergence acceleration with widening(/narrowing)
	Widening operator
	Fixpoint approximation with widening
	Example: abstract semantics with convergence acceleration
	Extrapolation by widening is essentially not monotone
	Soundness theorem)
	APPLICATIONS OF ABSTRACT INTERPRETATION
	Applications of abstract interpretation
	Applications of abstract interpretation
	A PRACTICAL APPLICATION OF ABSTRACT INTERPRETATION TO THE VERIFICATION OF SAFETY CRITICAL EMBEDDED SOFTWARE
	Static program analysis
	ASTRÉE: a sound, automatic, specializable, domain-aware, parametric, modular, efficient and precise static program analyzer
	Concrete operational semantics
	Abstract semantics
	Implicit specification: absence of runtime errors
	Example application
	The class of considered periodic synchronous programs
	Characteristics of the ASTRÉE analyzer
	Example of analysis session
	Benchmarks
	EXAMPLES OF ABSTRACTION
	General-purpose abstract domains: intervals and octagons
	Floating-point computations
	Clock abstract domain for counters
	Boolean relations for boolean control
	Control partitionning for case analysis
	Ellipsoid abstract domain for digital filters
	The main loop invariant
	CONCLUSION
	Conclusion
	THE END
	References

