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A Few Elements
of Abstract Interpretation

_ Reference

[POPL’79| P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th POPL, pages 269-282, San Antonio, TX,
1979. ACM Press.
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A Model of Computer Programs

e Syntax : a well-founded set of programs (P, <) where <
1s the “strict immediate subcomponent” relation

e Semantics of Pc P :
- Semantic domain : a complete lattice/cpo (D[P], C, L, L)
- Compositional Fixpoint Semantics :
S[P] = 1pr]-‘[[P]] ( 1] S[[P’]])
P'<P
lprE_ fis the limit of X9 = 1, x0T = f(x%), XA =15\ X7,
A limit ordinal, if any. Existence e.g. monotony (by Tarski).
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Example: Syntax of Programs

T X ;

TX ;D

X =FE;
while B ('
if B ('

if B C' else ("
{Ci ... C,} (n>0)
D C

RAC04, March 28, 2004

variables X € X

types T' € T

arithmetic expressions £ € E

boolean expressions B € B

declarations D € D, vars(D) = {X}

X ¢ vars(D'), vars(D) = { X } U vars(D’)

commands C' € C (E < C)
(B<C,C'"<0O)
(B<C,C"<0O)
(B=<C,C"<C,C"<C)
(Ci1=<C,....C,=<C)

program P € P (C < P)
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Example: Concrete Semantic Domain of Programs

Reachability properties:

»[D C] = 2[D] states p
Z[[T X, 2 {X}—T (p(X) is the value
[T X; D] £ ({X}—T)Ux[D] of X)

D[P] = o(2][P]) sets of states
C ¥ C implication
L= false
HENY disjunction

6 © P. Cousor ﬂiﬁfg
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Example: Concrete Semantics of Programs

(Reachability)
S[X = E;JR = {p[X — E[E]p] | p € RN dom(E)}

PIX —ol(X) = 0, p[X —0](Y) = p(Y)

S[if B C'|R < S[C'|(B[B]R) U B[-B]R
B[B]R < {p € RNdom(B) | B holds in p}
S[if B " else C"]|R < S[C'|(B[B]R) U S[C"](B[-B]R)
S[while B C'|R = let W =1fp  AX . R U S[C'[(B[B]X)
SI}IR = R
S[{Cy...C MR < S[Cy]>...-S[Ci] n >0
S[D C]|R £ S[C|(Z[D]) (uninitialized variables)

T T

Not computable (undecidability).
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Abstraction

A reasoning/computation such that;
e only some properties can be used;

e the properties that can be used are called “abstract”;

e 50, the (other concrete) properties must be approxi-
mated by the abstract ones:

P
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Abstract Properties

o Abstract Properties: a set A C p(¥) of properties of in-
terest (the only one which can be used to approximate
others).

Direction of Approximation

o Approximation from above: approximate P by P such that
P C E;

o Approximation from below: approximate P by P such that
P c P (dual). :
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Best Abstraction

o We require that all concrete property P € p(¥) have a best
abstraction P € A:

pPcCP
VPle A: (PCP))= (PCP)

e S0, by definition of the greatest lower bound/meet N:

P:m{HEZ\PQF}e;\

(Otherwise see [JLC 92].)

_ Reference
[JLC’92] P. Cousot & R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511-547, 1992.

9
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Moore Family

o This hypothesis that any concrete property P € p(X) has
a best abstraction P € A implies that:

A 1s a Moore family
1.e. 1t 1s closed under intersection N:

VS C A:NS e A

o In particular N =3 ¢ Ais “T don’t know”.
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Example of Moore Family-Based Abstraction
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Closure Operator Induced by an Abstraction
The map p 4 Mapping a concrete property P € p(X) to its

best abstraction p 4(P) in A:
p4(P) = N{P € A|PC P}

Is a closure operator:

e cxtensive,

e idempotent,

e isotone/monotonic;
such that P e A < P =p 4(P)
hence A = p z(p(X)).
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Example of Closure Operator-Based Abstraction
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The Lattice of Abstract Interpretations

e The set of all possible abstractions that is of all upper
closure operators on the complete lattice

(D|P], C, L, T, U, )
Is a complete lattice

(uco(D[P| — D[P]), C, \z-x, Ax- T, AR-uco(LIR), )

o The meet of abstractions called the reduced product (- ﬁA D
1€
Is that most abstract abstraction more precise than all p,,
icA)
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(Galois Connection Between Concrete and Abstract Properties

e For closure operators p, we have:

o(P) C p(P!) & P C p(P)
written: |
where 1 1s the identity and:
S
means that (a, ) is a Galois connection:

VP e p(X),PeD:a(P)C P < PC~(P):
o A (Galois connection defines a closure operator p = a © v,
hence a best abstraction.

B
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Example of GGalois Connection-Based Abstraction

.
gi
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Example: abstract semantic domain of programs

(D*[P], T, L, 1)
such that:

(D, ¢) = (D[P]. C)

hence <Dﬁ[[P]], C, 1, 1) 1s a complete lattice such that L =
a(0) and UX = o(U v(X))

RAC04, March 28, 2004 18 © P. Cousor gk




‘Abstract domain ) Function Abstraction
f
Q}VX
v a Fi— o Fon
e D 1.€. Ft1 =pOF
i F .o
x/
Concrete domain/
(P, C) == (Q, ) =
morIn : )\Fﬂ ) fyOFﬁO& morIn :
<P'—>P7g>< <Q|—>Qag>
AF' . o Flory
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Approximate Fixpoint Abstraction

" Abstract domaéin | Fﬂ Fﬂ \
g F g e
L g t—0— 7 =,
y Y Y ::" Y i Approximation
— : : ‘- : relation C
y
H
J_ ]
| 6% F Concrete domain |

Fo~n C fyOFﬂ = lprEfy(lprﬁ)
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Example:

SHX = E;]
S*[if B C']

B[ B]

S[if B ¢’ else C"]
S*[while B C']

S*[{}]
S[D C]

RAC’04, March 28, 2004

abstract semantics of programs
(reachability)

= a({plX — E[E]o] | p € v(R) N dom(E)})
= S [C)(B[B]R) U B [-B]R

def ({p € 7(R) Ndom(B) | B holds in p})
= SCNB[BIR) L SF[CI(B[-B]R)

= let W =1fp, AX . RUSH[C|(B[B]X)
in (Bﬁ[[—IB]]W)

DUDUDU:U:U

R<R
R = S[C,]o...oS8[C] n>0
R < SY[C](T) (uninitialized variables)

21 © P. CousoTr g@m




Convergence Acceleration with Widening

Abstract domain v QF ﬁ
;
Y 8l Y Y Y Approximation

relation C

RAC’04, March 28, 2004
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Widening Operator

A widening operator V € L x L+ L 18 such that:

e Correctness:

-Va,y € Liy(z) E y(z Vy)
-Va,y e Liy(y) T (z Vy)
o Convergence:
- for all increasing chains zY C 1 C ..., the increasing
chain defined by ¢V = 2V, ... yttl = 2Vt tl

1s not strictly increasing.

RAC’04, March 28, 2004 23 © P. Cousor ﬁi@zﬁ
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Fixpoint Approximation with Widening

Concergence Theorem:

The upward iteration sequence with widening:
e XU =1 (infimum)
o XiHl — xi if FR(XY) C X?
— X'V F(XY) otherwise
1s ultimately stationary and its limit A 1s a sound upper
approximation of lprE_ Fi:
lprE_ Fic A

RAC’04, March 28, 2004 24 © P. C(’”S(’Tﬂiﬁ&
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Example: Abstract Semantics with Convergence

Acceleration'
SIX = E;]R 1=f {plX — E[E]p] | p € v(R) Ndom(E)})
S'lif B C'|R £ SH[C'|(B*[B]R) U B [-B]R
B [B]R < a({p € v(R)Ndom(B) | B holds in p})
S'[if B (" else C"|R < S*[C'](B[B]R) U S[C"](B[-~B]R)
S'lwhile B C'JR = let F! = \X.let Y = RUSHC'](BB]X)

inif Y C X then X else X VY
and W = 1fp. F* in (B [~B]W)

STOIR = R
ST{C,...C YR = SC]o...oSHCi] n>0
S[D C]R = S*[C](T) (uninitialized variables)

L Note: F not monotonic!

RAC’04, March 28, 2004 — 25 — @© P. CousoT M
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Extrapolation by Widening is Essentially Not
Monotone

Proof by contradiction:
e Let V be a widening operator

o Deﬁnexv/yinyxthenxelsexVy

o Assume z C y = F(x) (during iteration)
then: z V' y = 2Vy Jdy (soundness)
C C C (monotony hypothesis)
y Vy = g (termination)
= x Vy =y, by antisymmetry!
= z V F(z) = F(z) during iteration = convergence cannot be enforced with mono-

tone widening (so widening by finite abstraction is less powerful!)

RAC’04, March 28, 2004 26 © P. CousoTr g@m




Soundness Theorem
o Convergence by extensivity (no longer monotone)
o Improvement by narrowing [POPL 77|

o Soundness Corollary: any abstract satety proof is valid in
the concrete in that:

SHPlCQ = S[P] C(Q)

e Example: ~(Q) expresses the absence of run-time errors.

_ Reference

[POPL 77| P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In 4% POPL, pages 238252, Los Angeles, CA, 1977. ACM Press.

9
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Applications of Abstract Interpretation
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Applications of Abstract Interpretation

e Static Program Analysis [POPL 77|, [POPL 78|, [POPL 79
including Dataflow Analysis |[POPL 79|, [POPL 00|, Set-
based Analysis |FPCA 95|, Predicate Abstraction
[Manna's festschrift '03]

e Syntax Analysis [TCS 290(1) 2002]

e Hierarchies of Semantics (including Proofs) [POPL 92|,
'TCS 277(1-2) 2002

o Typing |TCS 277(1-2) 2002
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Applications of Abstract Interpretation (Cont’d)

e (Abstract) Model Checking [POPL 00]
e Program Transformation |[POPL 02|
o Software Watermarking |[POPL 04

e Bisimulations |[RT-ESOP 04|

All these techniques involve sound approximations that can
be formalized by abstract interpretation

RAC’04, March 28, 2004 30 © P. COUSOT?‘?%%
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A Practical Application of Abstract
Interpretation to the Verification of

Safety Critical Embedded Software

_ Reference

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Min¢, D. Monniaux, and X. Rival. Design and implementation of a
special-purpose static program analyzer for safety-critical real-time embedded software. The Essence of Computation: Complexity,
Analysis, Transformation. Essays Dedicated to Neil D. Jones, LNCS 2566, pages 85—108. Springer, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for large
safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.
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Static Program Analysis

K ° ° ° \
Program} [Spe(nflcatlon
N J

N
Generator
Y
System of fixpoint equations/constraints
Y
Solver
Y
(Approximate) solution
Ny Program
Diagnoser checker

[Diagnvosis @}

B
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ASTREE: A Sound, Automatic, Specializable,

Domain-Aware, Parametric, Modular, Efficient and
Precise Static Program Analyzer

WWW.astree.ens.fr

e C programs:
- structured C programs;
- no dynamic memory allocation;
— 110 Tecursion.
o Application Domain: safety critical embedded real-time

synchronous software for non-linear control of very com-
plex control /command systems.
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Concrete Operational Semantics

e International norm of C (ISO/IEC 9899:1999)

o restricted by implementation-specific behaviors depending

upon the machine and compiler (e.g. representation and
size of integers, [EELE 754-1985 norm for floats and dou-

bles)

o restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even though
this might be the hardware choice)

o restricted by program specific user requirements (e.o. assert)

RAC’04, March 28, 2004 — 34 — © P. Cousor




Abstract Semantics

o Reachable states for the concrete operational semantics

e Volatile environment is specified by a trusted configuration

file.

B
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Implicit Specification: Absence of Runtime Errors

e No violation of the norm of C (c.g. array index out of

bounds)

e No implementation-specific undefined behaviors (e.¢. max-
imum short integer is 32767)

e No violation of the programming guidelines (c.g. static
variables cannot be assumed to be initialized to 0)

e No violation of the programmer assertions (must all be
statically verified).
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Example application

e Primary flight control software of the Airbus A340/A380
Ay-by-wire system

e C program, automatically generated from a proprietary
high-level specification

e A340: 132.000 lines, 75,000 LOCs after preprocessing,
10,000 global variables, over 21,000 atter expansion of small
arrays.

RAC’04, March 28, 2004 — 37 — © P. Cousor




The Class of Considered Periodic Synchronous
Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever
- read volatile input variables,
- compute output and state variables,
- write to volatile output variables;
wait for clock ();
end loop

e Requirements: the only interrupts are clock ticks:
e Execution time of loop body less than a clock tick [3].

_ Reference

[3] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reliable and precise
WCET determination for a real-life processor. ESOP (2001), LNCS 2211, 469-485.
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Characteristics of the ASTREE Analyzer

Static: compile time analysis (# run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels

of programs (# PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (# ESC Java,
ESC Java 2)

Sound: covers the whole state space (£ MAGIC, CBMC) so
never omit potential errors (# UNO, CMC from coverity.com)
or sort most probable ones (# Splint)

RAC’04, March 28, 2004 39 © P. COUSOT?‘?@
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Characteristics of the ASTREE Analyzer (Cont’d)

Multiabstraction: uses many numerical /symbolic abstract
domains (# symbolic constraints in Bane)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (# model checking based an-
alyzers such as VeriSoft, Bandera, Java PathFinder)

Efficient: always terminate (# counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

Specializable: can easily incorporate new abstractions (and
reduction with already existing abstract domains) (#
general-purpose analyzers PolyvSpace Verifier)

P e
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Characteristics of the ASTREE Analyzer (Cont’d)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere pro-
gramming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

Automatic Parametrization: the generation of paramet-
ric directives in the code can be programmed (to be
specialized for a specific application domain)

RAC’04, March 28, 2004 41 © P. Cousor ﬁbﬁi&
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Characteristics of the ASTREE Analyzer (Cont’d)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implementing an
abstract domain

Precise: few or no talse alarm when adapted to an applica-

tion domain — VERIFIER!

RAC'04, March 28, 2004 42 @© P. CousoT ﬂ%}'ﬁ
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Example of Analysis Session

806 N Visvall
X || &
Quit

aumm:|

Pmgram pons Curent

Conext | Iieacl Soures r

(= lire2c 26 [Eypedef enum {FALSE = 0, TRUE = 1} BOOLEAN; =7| [im=2e

= Call man @ five2cs POCLEAN INIT:
- Whie @ fire2cm2 float B, X;

= imr=2

void filtre2 () {

Call five2 @ five2c24
G B2 € B static float @E[2], @5[2);

o ®if (INIT) {
—imra3 ®s5(0] = X;
< Coll fived @ Nye2c28 4 op = X;
o @E|0] = X; @
- iwr=4 } else {

= Call flve2 @

|

4 e®E[1) = E[0];

Op = (((((0.4677826 * X) - (E[0] * 0.7700725)) + (E[1] * 0.4344376)) + (S[0] * 1.5419)) - (S[l] * 0.6740476)):@

OE(D] = X;
®s5(1) = 5(0]:
@s[(0] = P; @
b
jroid main () {

Ox = 0.2 v X+ 5;

@INIT = TRUE;

®while @ (TRUE) {
®x = 0.9 * X+ 35;

®filtre2 ();
@INIT = FALSE; ®
i =
i L=}
filtre2.o:12:6[callémain@20:100pE23>=d:call#filtre2f2s) IS

P (1)

P in |-1252.84, 1252.84] inter [-3362.7, 3491.96])+clock inter [-3362.7, 3491.9%6]-claook>
Filtre d'eordre 2
[var_entree 1
Var_entree 2
[var_sortie
Var_sortie pred
jcoef el

jcoef_e2

coef_ed

jcoef_a

jcoef_b

jEgalite des entrees
pib de derculement 3
Iplus_grande entree : <= 935.935061096
@rreur en entree J00246160101051
gain leres sorties .33715602022
jgain last entrees -33I664B7752
jJgain autres entrees L00213381749462
erreur_sortie .0400176854152
sortie_max 253.02359782

HO OO

lcootagen:
tiltre2.c@l2d5=

{ =5430.95044216515634562 <= P <= 393596.917979075267795, =
o |
* analyzer launched at 2004/ 3/16 20:41:58 -

ommand line was “/vVolumes/PB_Cousot_PGP/Projet/absintheZ/analyzer.opt --exec-fn main filtreZ.c --export-invariant-stat filtre2.bin *
aunched by "cousot® on *PB-G4-Patrick-cOUSOT.local”
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Benchmarks for the Primary Flight Control
Software of the Airbus A340

o Comparative results (commercial software):
4,200 (false?) alarms,

3.5 days;
e Our results:

0 alarm,
1020 on 2.8 GHz PC,

300 Megabytes

— A world premieére!
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Examples of Abstractions
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(General-Purpose Abstract Domains: Intervals and
Octagons

Intervals:
{ 1<z <9

YA

1<y <2
Octagons [4/:
(1<z<9
r+y <78
1<y <20
X Lz —y <03

>

0

Difficulties: many global variables, IEEE 754 floating-point
arithmetic (in program and analyzer)

_ Reference
[4] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In PADO’2001, LNCS 2053, Springer,

2001, pp. 155-172.
[5] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In ESOP’04, Barcelona, LNCS |
Springer, 2004 (to appear).

© P. Cousor gk
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Floating-Point Computations

e Code Sample:

/* float-error.c */
int main () {
float x, y, 2z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z =x - 1.0e21;
r=y - z;
printf ("%f\n", r);
} % gcc float-error.c
% ./a.out
0.000000

(x+a)— (r—a) #2a

RAC’04, March 28, 2004

/* double-error.c */

int main () {

double x; float y, z, r;

/* x = ldexp(1l.,50)+1dexp(1.,26); */
x = 1125899973951488.0;

y =x+1

z =x - 1;

r=y - z;

printf ("%f\n", 1);

+

% gcc double-error.c
% ./a.out

134217728 .000000

47
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Clock Abstract Domain for Counters

e Code Sample:

ihilz, (1) { - Output T is true iff the volatile input I has been true
if (1) for the last n clock ticks.
{ R = R+1; } - The clock ticks every s seconds for at most h hours,
else thus R is bounded.
{R=0;1 - To prove that R cannot overflow, we must prove that R
T = (R>=n); cannot exceed the elapsed clock ticks (impossible using
} wait_for_clock Q); only intervals).

e Solution:
- We add a phantom variable clock in the concrete user semantics to track elapsed clock ticks.

- For each variable X, we abstract three intervals: X, X+clock, and X-clock.

- If X+clock or X-clock is bounded, so is X.

P
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Boolean Relations for Boolean Control

e Code Sample:

/* boolean.c */

BOOL B;
void main () {
unsigned int X, Y;

while (1) {
= (X == 0);
if ('B) {
1/ X
}
}

typedef enum {F=0,T=1} BOOL;

1l e I

RAC’04, March 28, 2004

The boolean relation abstract domain is pa-
rameterized by the height of the decision tree
(an analyzer option) and the abstract domain
at the leafs
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Control Partitionning for Case Analysis
e Code Sample:

/* trace_partitionning.c */ Control point partitionning:
void main() {
AN AN AYAYAYAYANANANR
float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0}; +ofeol (ol (o) {o)l fol (ol ol fo (o
float c[4] = {0.0, 2.0, 2.0, 0.03};
float d[4] = {-20.0, -20.0, 0.0, 20.0}; INENAENENENENENMENMENERE
float x, r; jol ol ol ol ol ol lol ol ol ol
int i = 0;
S R e e R e L
. found invariant —100 < x <100 ... I N N N N N g
while ((i < 3) & (x >= t[i+1])) { Trace partitionning;:
i=1i+1;
} TIATATATATATATATATNATAE
r = (x - t[i]) * c[i] + d[i]l;
} -+ @ @ @ \./ \./ @ @ @ O——
IREMECACACACAC A S IRy
—+C @ @ @ @ @ @ O——
) O NGANTANTENY,
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Ellipsoid Abstract Domain for
Filters

29 Order Digital Filter:

F . E e Computes X, — { ?anq + 06X, 2 +Y,
R 6!): J o e The cogcrete computation is bounded, which must be
i ] proved in the abstract.
@, s M e There is no stable interval or octagon.
X [Tle s [ B ﬁ e The simplest stable surface is an ellipsoid.
N | —==3
i< l
| F) /| |
X : ,
ol VA l :\
X U F(X) X U F(X)
unstable interval stable ellipsoid

_ Reference

[6] J. Feret. Static analysis of digital filters. In ESOP’04, Barcelona, LNCS | Springer, 2004 (to appear).
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The main loop invariant
A textual file over 4.5 Mb with

e 6,900 boolean interval assertions (z € [0;1])

e 9,600 interval assertions (z € [a; b])

e 25400 clock assertions (x +clk € [a;b] A x — clk € [a;b])
e 19,100 additive octagonal assertions (a <z +y < b)

e 19,200 subtractive octagonal assertions (a <z —y < b)

e 100 decision trees
o 60 ellipse mvariants, etc . ..

involving over 16,000 floating point constants (only 550 ap-
pearing in the program text) x 75,000 LOCs,
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Conclusion

e Most applications of abstract interpretation tolerate a small rate (typically 5 to
15%) of false alarms:

- Program transtormation — do not optimize,

- Typing — reject some correct programs, etc,

- WCET analysis — overestimate;
e Some applications require no false alarm at all:
- Program verification.

e Theoretically possible [SARA '00|, practically feasible |PLDI 03|

_ Reference

[SARA’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4% Int. Symp. SARA '2000, LNAI 1864,
Springer, pp. 1-25, 2000.

[PLDI’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for large
safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.
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THE END, THANK YOU

More references at URL www.di.ens.fr/ cousot
WWw.astree.ens.fr.
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