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Abstract
From a mathematical point of view, abstract interpretation formalizes the idea of approximation

of sets and set operations as considered in set (or category) theory. From a computer science point of
view, abstract interpretation is a theory of approximation of the semantics of programming languages.
Its main application has been the formal design of static program analyzers aiming at inferring general
runtime properties of programs statically, that is without executing them. Such fully automatic analyzers
have been used successfully to track bugs in safety critical embedded systems and to verify the absence
of runtime errors.

The purpose of this talk is to explain the basic principles of abstract interpretation and to explain,
in an informal way, how the concept of approximation, formalized by this theory, is central to all software
verification methods (from debugging, to typing, model-checking and deductive methods). In abstract
interpretation we consider safe approximations which provide a full coverage of all possible cases at
run-time.

Then, we sketch the application to the formal design of static program analyzers by compositional
abstraction of a programming language semantics. The price to be paid for the effective static safe
approximation of run-time properties is that of uncertainty. Practical analyzers have therefore to provide
a good compromise between the cost of the analysis and its precision. We discuss various methods which
can be used to obtain an acceptable balance.

Finally, we explain an application of static program analysis to abstract testing, a version of
interactive program debugging where the execution of programs on test values are replaced by the static
checking of user provided program properties.
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Introductory Motivations
on Software Reliability

FEmSys

2001
Formal Design of Safety Critical Embedded Systems , 21–23 March 2001 �✁✁✁— 1 — [] � — ✄✄✄� © P. Cousot



The Software Reliability Problem

• The evolution of hardware by a factor of 106 over the past
25 years has lead to the explosion of the program sizes;
• The scope of application of very large software is likely to
widen rapidly in the next decade;
• These big programs will have to be modified and maintained
during their lifetime (often over 20 years);
• The size and efficiency of the programming and maintenance
teams in charge of their design and follow-up cannot grow up
in similar proportions;
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The Software Reliability Problem (Cont’d)

• At a not so uncommon (and often optimistic) rate of one bug
per thousand lines such huge programs might rapidly become
hardly manageable in particular for safety critical systems;
• Therefore in the next 10 years, the software reliability problem
is likely to become a major concern and challenge to modern
highly computer-dependent societies.
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Software Verification Costs

In avionics software:
• Currently, 50% of the software cost;
• Can be significantly exceeded (depending on criticality level);
• Will increase dramatically in the near future without radical
improvements of verification cost-effectiveness.
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What Can We Do About It?

• Use our intelligence (thinking/intellectual tools: abstract in­
terpretation);
• Use our computer (mechanical tools : static program analy­
sis/checking/testing).
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Software Verification
and Validation
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Verification versus Validation

One definition (among others):

Validation: absence of failures and satisfaction of the
formal and proper usage requirements of a fully de­
veloped software;

Verification: satisfaction of the formal requirements
during software development.

As far as static analysis is concerned, not fundamentally differ­
ent (a useful software is permanently evolving).
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The Verification/Validation Problem

Computer
program

Formal
specification

Programming
language
semantics

Specification
language
semantics

Program semantics
=

model of actual
program executions
in all environments

Specification semantics
 =

model of required
program executions

in allowed environments

Satisfaction
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Example: Model Checking
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Other Examples of Software
Verification/Validation Techniques

• Software testing;
• Simulation and prototyping;
• Technical reviews;
• Requirements tracing;
• Formal correctness proofs;
• Etc.

FEmSys

2001
Formal Design of Safety Critical Embedded Systems , 21–23 March 2001 �✁✁✁ — 10 — [] � — ✄✄✄� © P. Cousot



Practical Limitations

• Testing:
-- Testing all data on all paths is impossible;

• Formal methods:
-- No formal specification perfectly reflects informal human
expectations;
-- Proofs grow exponentially in the size of programs/specifi-
cations which is incompatible with friendly user interaction
and full automation;

• etc.
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Fundamental Theoretical Limitations

• Undecidability: full automation of software verification/vali-
dation is impossible;
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Undecidability and Approximation

• Since program verification is undecidable, computer aided pro­
gram verification methods are all partial/incomplete;
• They all involve some form of approximation:
-- practical complexity limitations,
-- require user interaction,
-- semi-algorithms or finiteness hypotheses,
-- restricted specifications or programs;
• Most of these approximations are formalized by Abstract
Interpretation.
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Examples of approximations

• Testing: coverage is partial (so errors are frequently found
until the end of the software lifetime);
• Proofs: specifications are often partial, debugging proofs is
often harder that testing programs (so only parts of very large
software can be formally proved correct);
• Model checking: the model must fit machine limitations (so
some facets of program execution must be left out) and be
redesigned after program modifications;
• Typing: types are weak program properties (so type verifica­
tion cannot be generalized to complex specifications).
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Semantics
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Semantics: intuition

• The semantics of a language defines the semantics of any
program written in this language;
• The semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut­
ing this program (interacting with any possible environment);
• Any semantics of a program can be defined as the solution
of a fixpoint equation;
• All semantics of a program can be organized in a hierarchy
by abstraction.
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Example: trace semantics [? , 26]

Initial states
Final states of the
           finite tracesIntermediate states

Infinite
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0 1 2 3 4 5 6 7 8 9 discrete time
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Examples of computation traces
• Finite (C1+1=):

• Erroneous (C1+1+1+1…):

… …

• Infinite (C+0+0+0…):

… …
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Least Fixpoints: intuition [26]

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors+}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

• In general, the equation has multiple solutions.
• Choose the least one for the partial ordering:

« more finite traces & less infinite traces ».
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Abstract Interpretation
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Abstract Interpretation [1]

• Formalizes the idea of approximation of sets and set opera­
tions as considered in set (or category) theory;
• A theory of approximation of the semantics of programming
languages;
• Main application: formal method for inferring general runtime
properties of programs.

Reference

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Conf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages POPL’77 , Los Angeles, CA, 1977. ACM Press, pp. 238–252.
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Examples of Abstract Interpretations (Cont’d)

• Data flow analysis [2 , 4];
• Set based analysis [3];

References

[2] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6th POPL , pages 269–282,
San Antonio, TX, 1979. ACM Press.

[3] P. Cousot and R. Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis by Abstract
Interpretation. In 7th FPCA , pages 170–181, La Jolla, CA, 25–28 June 1995. ACM Press.

[4] P. Cousot and R. Cousot. Temporal abstract interpretation. In 27th POPL , pages 12–25, Boston, MA, Jan.
2000. ACM Press.
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Examples of Abstract Interpretations (Cont’d)

• Polymorphic type inference [5];
• Model checking [6 , 7].

References

[5] P. Cousot. Types as abstract interpretations, invited paper. In 24th POPL , pages 316–331, Paris, FR, Jan.
1997. ACM Press.

[6] P. Cousot and R. Cousot. Refining model checking by abstract interpretation. Aut . Soft . Eng. , 6:69–95, 1999.
[7] P. Cousot and R. Cousot. Temporal abstract interpretation. In 27th POPL , pages 12–25, Boston, MA, Jan.

2000. ACM Press.
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Abstraction
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Abstraction: intuition

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level of the program executions;

• Abstract interpretation theory formalizes this notion of ap­
proximation/abstraction in a mathematical setting which is
independent of particular applications.
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Abstractions of Semantics [8]

Reference

[8] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in Theoretical Computer Science , (2001).
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Example 1 of Abstraction
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Example 2 of Abstraction
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Example 3 of Abstraction

Reachable states


































Initial states Final states

a

e

g

i

k

�

d

f

h

j

a b c d

e f

g h

i j

k

�

Partial Correctness / Invariance Semantics

FEmSys

2001
Formal Design of Safety Critical Embedded Systems , 21–23 March 2001 �✁✁✁ — 30 — [] � — ✄✄✄� © P. Cousot



Effective Abstractions

Reference

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. POPL’77 , ACM Press, pp. 238–252.
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Effective Abstractions of Semantics

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• The computation of this abstract semantics amounts to the
effective iterative resolution of fixpoint equations;

• By effective computation of the abstract semantics , the com­
puter is able to analyze the behavior of programs and of soft­
ware before and without executing them.
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Effective Numerical Abstractions
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Effective Abstractions of an [In]finite Set of
Points; Example 1: Signs

x

y {. . . , 〈19, 88〉, . . . ,
〈19, 99〉, . . .}
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Effective Abstractions of an [In]finite Set of
Points; Example 1: Signs [10]

x

y
{
x ≥ 0
y ≥ 0

Reference

[10] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6th POPL , pages 269–282,
San Antonio, TX, 1979. ACM Press.
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Effective Abstractions of an [In]finite Set of
Points; Example 2: Intervals [11]

x

y
{
x ∈ [19, 88]
y ∈ [19, 99]

Reference

[11] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In 2nd Int. Symp. on
Programming , pages 106–130. Dunod, 1976.
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Effective Abstractions of an [In]finite Set of
Points; Example 3: Octagons [12]

x

y




1 ≤ x ≤ 9
x + y ≤ 88
1 ≤ y ≤ 9
x− y ≤ 99

Reference

[12] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In 2nd Symposium on
Programs as Data Objects, PADO’2001 , To appear in LNCS, Springer, 2001.
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Effective Abstractions of an [In]finite Set of
Points; Example 4: Polyhedra [13]

x

y
{

19x + 88y ≤ 2000
19x + 99y ≥ 0

Reference

[13] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In 5th

POPL , pages 84–97, Tucson, AZ, 1978. ACM Press.
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Effective Abstractions of an [In]finite Set of
Points; Example 5: Simple Congruences [14]

x

y
{
x = 19 mod 88
y = 19 mod 99

Reference

[14] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput. Math. , 30:165–190, 1989.
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Effective Abstractions of an [In]finite Set of
Points; Example 6: Linear Congruences [15]

x

y
{

1x + 9y = 8 mod 8
1x− 9y = 9 mod 9

Reference

[15] P. Granger. Static analysis of linear congruence equalities among variables of a program. CAAP ’91 , LNCS
493, pp. 169–192. Springer, 1991.
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Effective Abstractions of an [In]finite Set of
Points; Example 7: Trapezoidal Linear Con-

gruences [16]

x

y {
1x + 9y ∈ [0, 88] mod 10
1x− 9y ∈ [0, 99] mod 11

Reference

[16] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences. In ACM Int. Conf.
on Supercomputing, ICS ’92 , pages 226–235, 1992.
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Effective Symbolic Abstractions
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Effective Abstractions
of Symbolic Structures

• Most structures manipulated by programs are symbolic struc­
tures such as control structures (call graphs), data structures
(search trees), communication structures (distributed & mo­
bile programs), etc;
• It is very difficult to find compact and expressive abstractions
of such sets of objects (languages, automata, trees, graphs,
etc.).
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Example of Abstractions of Infinite Sets of
Finite Trees• Program : �� ��

���

����

����� 	 

��

Y := copy(X)

���

���

���

�

�

����� 	 

��

Example of
impossible
configuration:

• Alias analysis:
∅
Y := copy(X)
{(X �→ (tl �→)i �→ hd, Y �→ (tl �→)j �→ hd) | i = j}

Reference

[17] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In PLDI’94 , pp. 230–241, 1994.

FEmSys

2001
Formal Design of Safety Critical Embedded Systems , 21–23 March 2001 �✁✁✁ — 44 — [] � — ✄✄✄� © P. Cousot



Example of Abstractions of Infinite Sets of
Infinite Trees

Binary Decision Graphs: [18]

Reference

[18] L. Mauborgne. Binary decision graphs. SAS ’ 99 , LNCS 1694, pp. 101–116. Springer, 1999.
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Example of Abstractions of Infinite Sets of
Infinite Trees (Cont’d)

Tree Schemata: [19 , 20]

Reference

[19] L. Mauborgne. Improving the representation of infinite trees to deal with sets of trees. ESOP ’ 2000 , LNCS
1782, pp. 275–289. Springer, 2000.

[20] L. Mauborgne. Tree schemata and fair termination. SAS ’ 2000 , LNCS 1824, pp. 302–321. Springer, 2000.
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Effective Fixpoint Abstraction
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Function Abstraction

F

F

Concrete domain

Abstract domain
�

α F � = α ◦ F ◦ γ
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Fixpoint Abstraction

F

F
�

Concrete domain

Abstract domain

α

F F F F F
FF

F

F
� F

� F
�

F
�

F
F

α α α α Approximation
relation �

⊥

⊥�

lfpF � γ(lfpF�)
FEmSys

2001
Formal Design of Safety Critical Embedded Systems , 21–23 March 2001 �✁✁✁ — 49 — [] � — ✄✄✄� © P. Cousot



Abstract Static Program Analysis
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Objective of Abstract Static Program
Analysis

• Program analysis is the automatic static determination of
dynamic run-time properties of programs;
• The principle is to compute an approximate semantics of the
program to check a given specification;
• Abstract interpretation is used to derive, from a standard
semantics, the approximate and computable abstract seman­
tics;
• This derivation is itself not (fully) mechanizable.
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Principle of an Abstract Static Program Analyzer

(Approximate) solution

Interfacor

Information on
program executions

Solver

Generator

Program

Program
analyzer

System of fixpoint equations/constraints
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Generic of an Abstract Static Program Analyzer

(Approximate) solution

Interfacor

Information on
program executions

Solver

Generator

Program

Program
analyzer

System of fixpoint equations/constraints

Abstract
algebra
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Design of a Static Program Analyzer
by Abstract Interpretation

Information about
actual program executions

in all environments

Abstract
program
semantics

Abstract Static Program Analysis

Computer
program

Programming
language
semantics

Program semantics
=

model of actual
program executions
in all environments

ABSTRACTION
Abstract

Interpretation
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A Classical Example:
Interval Analysis
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Example: interval analysis (1975) 1

Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]

The analyzer reads the program text and produces
(a representation of) the above equations and
then solve them iteratively. The equations are an
abstraction of the trace semantics of the program.
The formal derivation of the algorithm producing
the equation by abstract interpretation of the pro­
gram trace semantics is (mainly) manual.

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 1

Constraints (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 ⊇ [1, 1]
X2 ⊇ (X1 ∪X3) ∩ [−∞, 9999]
X3 ⊇ X2 ⊕ [1, 1]
X4 ⊇ (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]

The analyzer reads the program text and produces
(a representation of) the above constraints and
then solve them iteratively. The constraints are an
abstraction of the trace semantics of the program.
The formal derivation of the algorithm producing
the constraints by abstract interpretation of the
program trace semantics is (mainly) manual.

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration, initialization:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = ∅
X2 = ∅
X3 = ∅
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 1

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = ∅
X3 = ∅
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 1]
X3 = ∅
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 1]
X3 = [2, 2]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 2]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration: convergence?

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 3]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration: convergence??

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 3]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration: convergence???

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 4]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration: convergence????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 4]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 1

Increasing chaotic iteration: convergence?????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 5]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration: convergence??????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 5]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Increasing chaotic iteration: convergence???????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 6]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Convergence speed-up by extrapolation:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1,+∞] ⇐ widening
X3 = [2, 6]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Widening
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Example: interval analysis (1975) 1

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1,+∞]
X3 = [2,+∞]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+∞]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = ∅

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 1

Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
FEmSys
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Example: interval analysis (1975) 1

Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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A More Intriguing Example
program Variant_of_McCarthy_91_function;

var X, Y : integer;
function F(X : integer) : integer;
begin

if X > 100 then F := X − 10
else F := F(F(F(F(F(F(F(F(F(F(X + 90))))))))));

end;
begin

readln(X);
Y := F(X);
{ Y ∈ [91,+∞] }

end.

Reference

[21] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. FMPA , LNCS 735, pages 128–141.
Springer, 1993.
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Probabilistic Program Analysis 3

double x, i;
assume (-1.0 < x < 0.0);
i = 0.0;
while (i < 3.0) {

x += uniform();
i += 1.0;

};
assert (x < 1.0);

With 99% safety:
• the probability of the outcome

(x < 1) is less than 0.859 ,
• assuming:
-- worst-case nondeterministic
choices of the precondition
(−1.0 < x < 0.0) ,
-- random choices uniform() cho­
sen in [0, 1] with the Lebesgue
uniform distribution.

1 D. Monniaux, SAS’00, POPL’01
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Communication Topology of Mobile Processes 1

A BS
Request

1 J. Feret, SAS’00, ENTCS Vol. 39
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Communication Topology of Mobile Processes 1

A BS
Request

P

Request
A BS

Q

1 J. Feret, SAS’00, ENTCS Vol. 39
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Communication Topology of Mobile Processes 1
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Other Applications of Abstract Static
Program Analysis

• Escape analysis for functional [22] and object oriented lan­
guages [23];
• Security analysis of cryptographic protocoles in hostile envi­
ronments [24]; …/…

References

[22] B. Blanchet. – Escape analysis: correctness proof, implementation and experimental results. 25th POPL ’98 ,
pp. 25–37. ACM, 1998

[23] B. Blanchet. – Escape Analysis for Object-Oriented Languages: Application to Java. OOPSLA99 , pp. 20–34.
ACM, 1999.

[24] D. Monniaux. – Abstracting cryptographic protocols with tree automata. SAS ’99. LNCS, pp. 149–163. Springer,
1999.
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Other Applications of Abstract Static
Program Analysis (Cont’d)

• Liveness proofs under weak fairness [25];
• Design of hierarchies of semantics of programming languages
[26];
• Precision analysis of floating point computations;
• Software source watermarking/tatooing;
• Etc.

References

[25] L. Mauborgne. – Tree schemata and fair termination. SAS ’ 00 , LNCS 1824, pp. 302–320. Springer, 2000.
[26] P. Cousot. – Constructive design of a hierarchy of semantics of a transition system by abstract interpretation.

Theoret. Comput. Sci. , to appear in 2001.
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Abstract Static Program Checking
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Objective of Abstract Static Program Checking

Program checker

Program Specification

Diagnosis
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Principle of an Abstract Static Program Checker

(Approximate) solution

Diagnoser

Diagnosis

Solver

Generator

Program Specification

Program
checker

System of fixpoint equations/constraints
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Design of a Static Program Checker by
Abstract Interpretation

Abstract
semantics

specification

Abstract
program
semantics

Checking

�
Abstract Static Program CheckingComputer

program
Formal

specification

Programming
language
semantics

Specification
language
semantics

Program semantics
=

model of actual
program executions
in all environments

Specification semantics
 =

model of required
program executions

in allowed environments

Satisfaction

ABSTRACTION
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Example: interval analysis (1975) 1

Exploitation of the result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




←− no overflow
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

1 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Other Examples of Faultless Execution Checks

• Absence of runtime errors (array bounds violations, arithmetic
overflow, erroneous data accesses, etc.),
• Absence of memory leaks (dangling pointers, uninitialized
variables, etc.),
• Handling of all possible runtime exceptions (failures of I/O
and system calls, etc.),
• No resource contention and race conditions in concurrent pro­
grams (deadlocks & livelocks),
• Termination / non termination conditions,
• Etc.
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Information Loss
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Information Loss

• All answers given by the abstract semantics are always correct
with respect to the concrete semantics;
• Because of the information loss, not all questions can be
definitely answered with the abstract semantics;
• The more concrete semantics can answer more questions;
• The more abstract semantics are more simple.
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Example of Information Loss

• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes

x

y


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Example of Information Loss

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know

x

y


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Example of Information Loss

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes

x

y


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What Can We Do When Too Much
Information Is Lost?

• Automatic inference/refinement of abstractions:
-- Mathematically, a most abstract sound and complete ab­
straction always exists for proving correctness;
-- Finding such a sound and complete abstraction is logically
equivalent to the discovery of an inductive argument and
checking of a proof obligation [27];
-- In practice: I have no hope!
Reference

[27] P. Cousot. Partial Completeness of Abstract Fixpoint Checking. In Proc. 4th Int. Symp. SARA’2000 , LNAI
1864, pp. 1–25, Springer, 2000.
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What Can We Do When Too Much
Information Is Lost? (Cont’d)

• A modest alternative:
-- Interactive choice of abstractions within a predefined broad
spectrum;
-- Manual decomposition of complex specifications into partial
requirements;
-- User-interaction in the form of abstract testing.
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Abstract Static Program Testing

FEmSys

2001
Formal Design of Safety Critical Embedded Systems , 21–23 March 2001 �✁✁✁ — 82 — [] � — ✄✄✄� © P. Cousot



Combining Empirical and Formal Methods

• The user provides local formal abstractions of the program
specifications using predefined abstractions 2;
• The program is evaluated by abstract interpretation of the
formal semantics of the program 3;
• If the local abstract specification cannot be proved correct, a
more precise abstract domain must be considered 4;
• The process is repeated until appropriate coverage of the spec­
ification.
2 thus replacing infinitely many test data.
3 thus replacing program execution on the test data.
4 similarly to different test data.
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Abstract Program Testing

Debugging Abstract testing
Run the program Compute the abstract semantics
On test data Choosing a predefined abstraction
Checking if all right Checking user-provided abstract

assertions
Providing more tests With more refined abstractions
Until coverage Until enough assertions proved or

no predefined abstraction can do.
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Example of predefined abstraction

n

f
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Example of predefined abstraction: intervals

n

f
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A Tiny Example
0: { n:[−∞ ,+∞]?; f:[−∞ ,+∞]? } static analyzer inference
read(n); diagnosis: definite error

1: { n:[0,+∞]; f:[−∞ ,+∞]? }
f := 1;

2: { n:[0,+∞]; f:[1,+∞] }
while (n <> 0) do no error
3: { n:[1,+∞]; f:[1,+∞] }
f := (f * n); potential error

4: { n:[1,+∞]; f:[1,+∞] }
n := (n - 1)

5: { n:[0,+∞]; f:[1,+∞] }
od;

6: { n:[0,0]; f:[1,+∞] } user program
sometime true;; user specification

FEmSys

2001
Formal Design of Safety Critical Embedded Systems , 21–23 March 2001 �✁✁✁ — 87 — [] � — ✄✄✄� © P. Cousot



A Tiny Example (Cont’d)
0: { n:⊥; f:⊥ } static analyzer inference
initial (n < 0); user specification

1: { n:[−∞ ,-1]; f:[−∞ ,+∞]? }
f := 1; user program

2: { n:[−∞ ,-1]; f:[−∞ ,+∞] }
while (n <> 0) do diagnosis: no error
3: { n:[−∞ ,-1]; f:[−∞ ,+∞] }
f := (f * n); potential error

4: { n:[−∞ ,-1]; f:[−∞ ,+∞] }
n := (n - 1) potential error

5: { n:[−∞ ,-2]; f:[−∞ ,+∞] }
od

6: { n:⊥; f:⊥ } ⊥ unreachable code
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A More Intriguing Example
program Variant_of_McCarthy_91_function;

var X, Y : integer;
function F(X : integer) : integer;
begin

if X > 100 then F := X − 10
else F := F(F(F(F(F(F(F(F(F(F(X +

91
90))))))))));

end;
begin

readln(X);
{% X > 100 %}

Y := F(X);
{% sometime true %}

end.

Example of cycle: F(100) → F(190) → F(180) → F(170) → F(160) → F(150) →
F(140) → F(130) → F(120) → F(110) → F(100) → …
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Comparing with program debugging

• Similarity: user interaction, on the source code;
• Essential differences:

-- user provided test data are replaced by abstract specifica­
tions;
-- evaluation of an abstract semantics instead of program
execution/simulation;
-- one can prove the absence of (some categories of) bugs ,
not only their presence;
-- abstract evaluation can be forward and/or backward (re­
verse execution).
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Comparing with abstract model-checking
(cont’d)• Similarities:

-- use of specifications instead of test data sets;
-- ability to automatically produce counter-examples 2;

2 or specifications of infinitely many such counter-examples in the case of abstract program testing.
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Comparing with abstract model-checking
(cont’d)• Essential differences:

-- reasoning on the concrete program (not on a program
model);
-- no attempt to make a one-shot complete formal proof of
the specification;
-- interaction with user repeatedly providing partial specifi­
cations in a form close to conventional debugging;
-- predefined abstractions (not user defined);
-- finite and infinite abstract domains are allowed.
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Examples of Functional Specifications for
Abstract Testing

• Worst-case execution/response time in real-time systems run­
ning on a computer with pipelines and caches;
• Periodicity of some action over time/with respect to some
clock;
• Possible reactions to real-time event/message sequences;
• Compatibility with state/transition/sequence diagrams/charts;
• Absence of deadlock/livelock with different scheduling poli­
cies;
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Conclusion
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Concluding Remarks

• Program debugging is still the prominent industrial program
“verification” method. Complementary program verification
methods are needed;

• Fully mechanized program verification by formal methods is
either impossible (e.g. typing/program analysis) or extremely
costly since it ultimately requires user interaction (e.g. ab­
stract model checking/deductive methods for large programs);

• For program verification, semantic abstraction is mandatory
but difficult whence hardly automatizable , even with the help
of programmers;
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Concluding Suggestions

• Abstract interpretation introduces the idea of safe approxima­
tion within formal methods;
• So you might think to use it for partial verification of the
source specification/program code:
-- Abstract checking (fully automatic and exhaustive diagno­
sis on run-time safety properties),
-- Abstract testing (interactive/planned diagnosis on func­
tional, behavioural and resources-usage requirements),

using tools providing predefined abstractions. …/…
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• Does apply to any computer-related language with a well-
specified semantics describing computations (e.g. specifica­
tion languages, data base languages, sequential, concurrent,
distributed, mobile, logical, functional, object oriented, … pro­
gramming languages, etc.);
• Does apply to any property and combinations of properties
(such as safety, liveness, timing, event preconditions, …);
• Can follow up program modifications over time;
• Very cost effective , especially in early phases of program de­
velopment (see e.g. next talk).
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Industrialization of Static Analysis/Checking
by Abstract Interpretation

• Connected Components Corporation (U.S.A.),
L. Harrison, 1993 3;
• AbsInt Angewandte Informatik GmbH (Germany),
R. Wilhelm & C. Ferdinand, 1998;
• Polyspace Technologies (France),
A. Deutsch & D. Pilaud, 1999.

3 Internal use for compiler design.
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AE

DA D LUS European project on the verification of
critical real-time avionic software (oct. 2000 — sep. 2002):

• P. Cousot (ENS, France), scientific coordinator;

• R. Cousot (École polytechnique, France);

• A. Deutsch & D. Pilaud (Polyspace Technologies , France);

• C. Ferdinand (AbsInt , Germany);

• É. Goubault (CEA, France);

• N. Jones (DIKU, Denmark);

• F. Randimbivololona & J. Souyris (EADS Airbus, France), coord.;

• M. Sagiv (Univ. Tel Aviv, Israel);

• H. Seidel (Univ. Trier, Germany);

• R. Wilhelm (Univ. Sarrebrücken, Germany);
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A reference (with a large bibliography)

P. Cousot.
Abstract interpretation based formal methods and future chal­
lenges.

In R. Wilhelm (editor), « Informatics — 10 Years Back,
10 Years Ahead ».
Volume 2000 of Lecture Notes in Computer Science ,
pages 138–156. Springer-Verlag, 2001.

An extended electroning version is also available on Springer-Verlag web
site together with a very long electroning version with a complete bibli­
ography.
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THE END
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