
An Overview of Abstract Interpretation

and Program Static Analysis

Patrick COUSOT
École Normale Supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

mailto:Patrick.Cousot@ens.fr , http://www.di.ens.fr/˜cousot

1st Int. Advisory Board Workshop, EECS Dept., KAIST,
Taejon, Korea June 14, 2000, 16:20–17:20

� � ✄

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot

Motivations

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 1 — [] � — ✄✄✄�©P.Cousot

What is (or should be) the main
preoccupation of computer

scientists?

The production of reliable software, its
maintenance and safe evolution year af­
ter year (up to 20 to 30 years).

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 2 — [] � — ✄✄✄�©P.Cousot

What is (or should be) the main
preoccupation of computer

scientists?

The production of reliable software, its
maintenance and safe evolution year af­
ter year (up to 20 to 30 years).

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 2 — [] � — ✄✄✄�©P.Cousot

Computer hardware change of scale

The 25 last years, computer hardware has seen its perfor­
mances multiplied by 104 to 106;

ENIAC (5000 flops) Intel/Sandia Teraflops System (1012 flops)

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 3 — [] � — ✄✄✄�©P.Cousot

The information processing revolution

A scale of 106 is typical of a significant revolution:
-- Energy: nuclear power station / Roman slave;
-- Transportation: distance Earth — Mars / height of Korea

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 4 — [] � — ✄✄✄�©P.Cousot

Computer software change of scale

• The size of the programs executed by these computers has
grown up in similar proportions;
• Example (modern text editor for the general public):

-- > 1 700 000 lines of C ;
-- 20 000 procedures;
-- 400 files;
-- > 15 years of development.

full-time reading of the code (35 hours/week) would take at least 3 months!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 5 — [] � — ✄✄✄�©P.Cousot

Computer software change of scale

• The size of the programs executed by these computers has
grown up in similar proportions;
• Example 1 (modern text editor for the general public):

-- > 1 700 000 lines of C 2;
-- 20 000 procedures;
-- 400 files;
-- > 15 years of development.

2 full-time reading of the code (35 hours/week) would take at least 3 months!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 5 — [] � — ✄✄✄�©P.Cousot

Computer software change of scale (cont’d)

• Example 2 (professional computer system):

-- 30 000 000 lines of code;

-- 30 000 (known) bugs!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 6 — [] � — ✄✄✄�©P.Cousot

Computer software change of scale (cont’d)

• Example 2 (professional computer system):

-- 30 000 000 lines of code;

-- 30 000 (known) bugs!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 6 — [] � — ✄✄✄�©P.Cousot

Bugs
• Software bugs

-- whether anticipated (Y2K bug)
-- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;
• Bugs can be very difficult to discover in huge

software;• Bugs can have catastrophic consequences either very
costly or inadmissible (embedded software in trans­
portation systems);

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 7 — [] � — ✄✄✄�©P.Cousot

Bugs
• Software bugs

-- whether anticipated (Y2K bug)
-- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;
• Bugs can be very difficult to discover in huge

software;
• Bugs can have catastrophic consequences either very
costly or inadmissible (embedded software in trans­
portation systems);

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 7 — [] � — ✄✄✄�©P.Cousot

Bugs
• Software bugs

-- whether anticipated (Y2K bug)
-- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are frequent;
• Bugs can be very difficult to discover in huge

software;
• Bugs can have catastrophic consequences
either very costly or inadmissible (embed­
ded software in transportation systems);

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 7 — [] � — ✄✄✄�©P.Cousot

The estimated cost of an overflow

• $ 500 000 000
• Including indirect costs (delays, lost mar­

kets, etc):
$ 2 000 000 000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 8 — [] � — ✄✄✄�©P.Cousot

The estimated cost of an overflow

• $ 500 000 000
• Including indirect costs (delays, lost mar­

kets, etc):
$ 2 000 000 000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 8 — [] � — ✄✄✄�©P.Cousot

The estimated cost of an overflow

• $ 500 000 000
• Including indirect costs (delays, lost mar­

kets, etc):
$ 2 000 000 000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 8 — [] � — ✄✄✄�©P.Cousot

Capability of computer scientists

• The intellectual capability of computer scientists remains es­
sentially unchanged year after year;

• The size of programmer teams in charge of software design
and maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 9 — [] � — ✄✄✄�©P.Cousot

Capability of computer scientists

• The intellectual capability of computer scientists remains es­
sentially unchanged year after year;

• The size of programmer teams in charge of software design
and maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 9 — [] � — ✄✄✄�©P.Cousot

Capability of computer scientists

• The intellectual capability of computer scientists remains es­
sentiallyunchanged year after year;

• The size of programmer teams in charge of software design
and maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 9 — [] � — ✄✄✄�©P.Cousot

Responsibility of computer scientists
• The paradox is that the computer scientists do not assume

any responsibility for software bugs (compare to the automo­
tive or avionic industry);
• Computer software bugs can become an important societal

problem (collective fears and reactions? new legislation?);
• The combat against software bugs might even be the next

worldwide war;

=⇒ It is absolutely necessary to widen the full set of meth­
ods and tools used to fight against software bugs.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 10 — [] � — ✄✄✄�©P. Cousot

Responsibility of computer scientists
• The paradox is that the computer scientists do not assume

any responsibility for software bugs (compare to the automo­
tive or avionic industry);
• Computer software bugs can become an important societal

problem (collective fears and reactions? new legislation?);
• The combat against software bugs might even be the next

worldwide war;

=⇒ It is absolutely necessary to widen the full set of meth­
ods and tools used to fight against software bugs.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 10 — [] � — ✄✄✄�©P. Cousot

Responsibility of computer scientists
• The paradox is that the computer scientists do not assume

any responsibility for software bugs (compare to the automo­
tive or avionic industry);
• Computer software bugs can become an important societal

problem (collective fears and reactions? new legislation?);
• The combat against software bugs might even be the next

worldwide war;

=⇒ It is absolutely necessary to widen the full set of meth­
ods and tools used to fight against software bugs.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 10 — [] � — ✄✄✄�©P. Cousot

Responsibility of computer scientists
• The paradox is that the computer scientists do not assume

any responsibility for software bugs (compare to the automo­
tive or avionic industry);
• Computer software bugs can become an important societal

problem (collective fears and reactions? new legislation?);
• The combat against software bugs might even be the next

worldwide war;

=⇒ It is absolutely necessary to widen the full set of meth­
ods and tools used to fight against software bugs.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 10 — [] � — ✄✄✄�©P. Cousot

Idea

Use the computer to find programming er­
rors.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 11 — [] � — ✄✄✄�©P. Cousot

(Extremely difficult) question

How can computers be programmed so as to
analyze the work they are given to do before
effectively doing it?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 12 — [] � — ✄✄✄�©P. Cousot

A simplistic example: a cooking
recipe

The soft-boiled egg recipe:
• Take a fresh egg out of the refrigerator;
• Plunged it into salted boiling water;
• Pull it out of the water after 4 mn.
Any cook can find the bug before carrying out the recipe!
Why not computers?
What can we do about it?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 13 — [] � — ✄✄✄�©P. Cousot

A simplistic example: a cooking
recipe

The soft-boiled egg recipe:
• Take a fresh egg out of the refrigerator;
• Plunged it into salted boiling water;
• Pull it out of the water after 4 h.
Any cook can find the bug before carrying out the recipe!
Why not computers?
What can we do about it?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 13 — [] � — ✄✄✄�©P. Cousot

A simplistic example: a cooking
recipe

The soft-boiled egg recipe:
• Take a fresh egg out of the refrigerator;
• Plunged it into salted boiling water;
• Pull it out of the water after 4 h.
Any cook can find the bug before carrying out the recipe!
Why not computers?
What can we do about it?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 13 — [] � — ✄✄✄�©P. Cousot

A simplistic example: a cooking
recipe

The soft-boiled egg recipe:
• Take a fresh egg out of the refrigerator;
• Plunged it into salted boiling water;
• Pull it out of the water after 4 h.
Any cook can find the bug before carrying out the recipe!
Why not computers?
What can we do about it?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 13 — [] � — ✄✄✄�©P. Cousot

A simplistic example: a cooking
recipe

The soft-boiled egg recipe:
• Take a fresh egg out of the refrigerator;
• Plunged it into salted boiling water;
• Pull it out of the water after 4 h.
Any cook can find the bug before carrying out the recipe!
Why not computers?
What can we do about it?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 13 — [] � — ✄✄✄�©P. Cousot

Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Gained only a factor of 100 in 10 years
and the limit seems to be reached!

What else?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 14 — [] � — ✄✄✄�©P. Cousot

Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Gained only a factor of 100 in 10 years
and the limit seems to be reached!

What else?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 14 — [] � — ✄✄✄�©P. Cousot

Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Gained only a factor of 100 in 10 years
and the limit seems to be reached!

What else?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 14 — [] � — ✄✄✄�©P. Cousot

Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Gained only a factor of 100 in 10 years
and the limit seems to be reached!

What else?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 14 — [] � — ✄✄✄�©P. Cousot

Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Gained only a factor of 100 in 10 years
and the limit seems to be reached!

What else?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 14 — [] � — ✄✄✄�©P. Cousot

Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Gained only a factor of 100 in 10 years
and the limit seems to be reached!

What else?

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 14 — [] � — ✄✄✄�©P. Cousot

Abstract Interpretation

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 15 — [] � — ✄✄✄�©P. Cousot

Informal Introductory Talk

• Four notions to be introduced:
-- Semantics ,
-- Undecidability ,
-- Abstract interpretation ,
-- Program static analysis;

• Completely informal explanation avoiding any formalism;
• Illustrated by the work done in my research team and the

theses that I directed since 10 years.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 16 — [] � — ✄✄✄�©P. Cousot

Informal Introductory Talk

• Four notions to be introduced:
-- Semantics ,
-- Undecidability ,
-- Abstract interpretation ,
-- Program static analysis;

• Completely informal explanation avoiding any formalism;
• Illustrated by the work done in my research team and the

theses that I directed since 10 years.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 16 — [] � — ✄✄✄�©P. Cousot

Informal Introductory Talk

• Four notions to be introduced:
-- Semantics ,
-- Undecidability ,
-- Abstract interpretation ,
-- Program static analysis;

• Completely informal explanation avoiding any formalism;
• Illustrated by the work done in my research team and the

theses that I directed since 10 years.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 16 — [] � — ✄✄✄�©P. Cousot

Semantics & Undecidability

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 17 — [] � — ✄✄✄�©P. Cousot

Hence we must first explain semantics, for example:

Syntax:

x, f ∈ X : variables
e ∈ E : expressions

e ::= x | λx · e | e1(e2) |
µf ·λx · e | e1 − e2 |
1 | (e1 ? e2 : e3)

Semantic domains:

W
�
= {ω} error

z ∈ Z integers
u, f, ϕ ∈ U ∼= W⊥ ⊕ Z⊥ ⊕ [U �→ U]⊥ values

R ∈ R
�
= X �→ U environments

φ ∈ S
�
= R �→ U semantic domain

Semantics:

S�x�
�
= �R.R(x)

S�λx · e�
�
= �R. ↑(�u.(u = ⊥ ∨ u = � ? u |

S�e�R[x←u])) :: [U �→ U]⊥
S�e1(e2)�

�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = f :: [U �→ U]⊥ ? ↓(f)(S�e2�R) | �)

S�µf ·λx · e�
�
= �R. lfp

�

↑(�u.⊥)::[U �→U]⊥
�ϕ. S�λx · e�R[f←ϕ]

S�1�
�
= �R. ↑(1) :: Z⊥

S�e1 − e2�
�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = z1 :: Z⊥ ∧ S�e2�R = z2 :: Z⊥ ?
↑(↓(z1)− ↓(z2)) :: Z⊥ | �)

S�(e1 ? e2 : e3)�
�
= �R.(S�e1�R = ⊥ ? ⊥ | S�e1�R = z :: Z⊥ ?

(↓(z) = 0 ? S�e2�R | S�e3�R) | �)

with this

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 18 — [] � — ✄✄✄�©P. Cousot

Hence we must first explain semantics, for example:

Syntax:

x, f ∈ X : variables
e ∈ E : expressions

e ::= x | λx · e | e1(e2) |
µf ·λx · e | e1 − e2 |
1 | (e1 ? e2 : e3)

Semantic domains:

W
�
= {ω} error

z ∈ Z integers
u, f, ϕ ∈ U ∼= W⊥ ⊕ Z⊥ ⊕ [U �→ U]⊥ values

R ∈ R
�
= X �→ U environments

φ ∈ S
�
= R �→ U semantic domain

Semantics:

S�x�
�
= �R.R(x)

S�λx · e�
�
= �R. ↑(�u.(u = ⊥ ∨ u = � ? u |

S�e�R[x←u])) :: [U �→ U]⊥
S�e1(e2)�

�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = f :: [U �→ U]⊥ ? ↓(f)(S�e2�R) | �)

S�µf ·λx · e�
�
= �R. lfp

�

↑(�u.⊥)::[U �→U]⊥
�ϕ. S�λx · e�R[f←ϕ]

S�1�
�
= �R. ↑(1) :: Z⊥

S�e1 − e2�
�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = z1 :: Z⊥ ∧ S�e2�R = z2 :: Z⊥ ?
↑(↓(z1)− ↓(z2)) :: Z⊥ | �)

S�(e1 ? e2 : e3)�
�
= �R.(S�e1�R = ⊥ ? ⊥ | S�e1�R = z :: Z⊥ ?

(↓(z) = 0 ? S�e2�R | S�e3�R) | �)

with this

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 18 — [] � — ✄✄✄�©P. Cousot

Hence we must first explain semantics, for example:

Syntax:

x, f ∈ X : variables
e ∈ E : expressions

e ::= x | λx · e | e1(e2) |
µf ·λx · e | e1 − e2 |
1 | (e1 ? e2 : e3)

Semantic domains:

W
�
= {ω} error

z ∈ Z integers
u, f, ϕ ∈ U ∼= W⊥ ⊕ Z⊥ ⊕ [U �→ U]⊥ values

R ∈ R
�
= X �→ U environments

φ ∈ S
�
= R �→ U semantic domain

Semantics:

S�x�
�
= �R.R(x)

S�λx · e�
�
= �R. ↑(�u.(u = ⊥ ∨ u = � ? u |

S�e�R[x←u])) :: [U �→ U]⊥
S�e1(e2)�

�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = f :: [U �→ U]⊥ ? ↓(f)(S�e2�R) | �)

S�µf ·λx · e�
�
= �R. lfp

�

↑(�u.⊥)::[U �→U]⊥
�ϕ. S�λx · e�R[f←ϕ]

S�1�
�
= �R. ↑(1) :: Z⊥

S�e1 − e2�
�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = z1 :: Z⊥ ∧ S�e2�R = z2 :: Z⊥ ?
↑(↓(z1)− ↓(z2)) :: Z⊥ | �)

S�(e1 ? e2 : e3)�
�
= �R.(S�e1�R = ⊥ ? ⊥ | S�e1�R = z :: Z⊥ ?

(↓(z) = 0 ? S�e2�R | S�e3�R) | �)

with this

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 18 — [] � — ✄✄✄�©P. Cousot

Hence we must first explain semantics, for example:

Syntax:

x, f ∈ X : variables
e ∈ E : expressions

e ::= x | λx · e | e1(e2) |
µf ·λx · e | e1 − e2 |
1 | (e1 ? e2 : e3)

Semantic domains:

W
�
= {ω} error

z ∈ Z integers
u, f, ϕ ∈ U ∼= W⊥ ⊕ Z⊥ ⊕ [U �→ U]⊥ values

R ∈ R
�
= X �→ U environments

φ ∈ S
�
= R �→ U semantic domain

Semantics:

S�x�
�
= �R.R(x)

S�λx · e�
�
= �R. ↑(�u.(u = ⊥ ∨ u = � ? u |

S�e�R[x←u])) :: [U �→ U]⊥
S�e1(e2)�

�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = f :: [U �→ U]⊥ ? ↓(f)(S�e2�R) | �)

S�µf ·λx · e�
�
= �R. lfp

�

↑(�u.⊥)::[U �→U]⊥
�ϕ. S�λx · e�R[f←ϕ]

S�1�
�
= �R. ↑(1) :: Z⊥

S�e1 − e2�
�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = z1 :: Z⊥ ∧ S�e2�R = z2 :: Z⊥ ?
↑(↓(z1)− ↓(z2)) :: Z⊥ | �)

S�(e1 ? e2 : e3)�
�
= �R.(S�e1�R = ⊥ ? ⊥ | S�e1�R = z :: Z⊥ ?

(↓(z) = 0 ? S�e2�R | S�e3�R) | �)

with this

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 18 — [] � — ✄✄✄�©P. Cousot

Semantics

• The semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut­
ing this program (interacting with any possible environment);

• The semantics of a language defines the semantics of any
program written in this language.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 19 — [] � — ✄✄✄�©P. Cousot

Semantics

• The semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut­
ing this program (interacting with any possible environment);

• The semantics of a language defines the semantics of any
program written in this language.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 19 — [] � — ✄✄✄�©P. Cousot

Example 1: trace semantics

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

�













1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 20 — [] � — ✄✄✄�©P. Cousot

Examples of computation traces
• Finite (C1+1=):

• Erroneous (C1+1+1+1…):

… …

• Infinite (C+0+0+0…):

… …

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 21 — [] � — ✄✄✄�©P. Cousot

Example 2: geometric semantics
(deadlock)

[[Pa.Pb.Va.Vb
|| Pb.Pc.Vb.Vc
|| Pc.Pa.Vc.Va]]

deadlock

É. Goubault thesis, 1995

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 22 — [] � — ✄✄✄�©P. Cousot

Example 2: geometric semantics
(deadlock)

[[Pa.Pb.Va.Vb
|| Pb.Pc.Vb.Vc
|| Pc.Pa.Vc.Va]]

deadlock

É. Goubault thesis, 1995

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 22 — [] � — ✄✄✄�©P. Cousot

Undecidability

• All interesting questions relative to the semantics of non triv­
ial programs are undecidable;
⇒ no computer can always exactly answer such questions in

finite time;
• One can mathematically define the semantics of a program

as the solution of a fixpoint equation
⇒ but no computer can exactly solve these equations in fi-

nite time.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 23 — [] � — ✄✄✄�©P. Cousot

Undecidability

• All interesting questions relative to the semantics of non triv­
ial programs are undecidable;
⇒ no computer can always exactly answer such questions in

finite time;
• One can mathematically define the semantics of a program

as the solution of a fixpoint equation
⇒ but no computer can exactly solve these equations in fi-

nite time.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 23 — [] � — ✄✄✄�©P. Cousot

Undecidability

• All interesting questions relative to the semantics of non triv­
ial programs are undecidable:
⇒ no computer can always exactly answer such questions in

finite time;
• One can mathematically define the semantics of a program

as the solution of a fixpoint equation:
⇒ but no computer can exactly solve these equations in fi-

nite time.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 23 — [] � — ✄✄✄�©P. Cousot

Undecidability

• All interesting questions relative to the semantics of non triv­
ial programs are undecidable:
⇒ no computer can always exactly answer such questions in

finite time;
• One can mathematically define the semantics of a program

as the solution of a fixpoint equation;
⇒ but no computer can exactly solve these equations in fi-

nite time.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 23 — [] � — ✄✄✄�©P. Cousot

Undecidability

• All interesting questions relative to the semantics of non triv­
ial programs are undecidable:
⇒ no computer can always exactly answer such questions in

finite time;
• One can mathematically define the semantics of a program

as the solution of a fixpoint equation:
⇒ but no computer can exactly solve these equations in fi-

nite time.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 23 — [] � — ✄✄✄�©P. Cousot

Semantics and fixpoints
Syntax:

x, f ∈ X : variables
e ∈ E : expressions

e ::= x | λx · e | e1(e2) |
µf ·λx · e | e1 − e2 |
1 | (e1 ? e2 : e3)

Semantic domains:

W
�
= {ω} error

z ∈ Z integers
u, f, ϕ ∈ U ∼= W⊥ ⊕ Z⊥ ⊕ [U �→ U]⊥ values

R ∈ R
�
= X �→ U environments

φ ∈ S
�
= R �→ U semantic domain

Semantics:

S�x�
�
= �R.R(x)

S�λx · e�
�
= �R. ↑(�u.(u = ⊥ ∨ u = � ? u |

S�e�R[x←u])) :: [U �→ U]⊥
S�e1(e2)�

�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = f :: [U �→ U]⊥ ? ↓(f)(S�e2�R) | �)

S�µf ·λx · e�
�
= �R. lfp

�

↑(�u.⊥)::[U �→U]⊥
�ϕ. S�λx · e�R[f←ϕ]

S�1�
�
= �R. ↑(1) :: Z⊥

S�e1 − e2�
�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = z1 :: Z⊥ ∧ S�e2�R = z2 :: Z⊥ ?
↑(↓(z1)− ↓(z2)) :: Z⊥ | �)

S�(e1 ? e2 : e3)�
�
= �R.(S�e1�R = ⊥ ? ⊥ | S�e1�R = z :: Z⊥ ?

(↓(z) = 0 ? S�e2�R | S�e3�R) | �)

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 24 — [] � — ✄✄✄�©P. Cousot

Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot

Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot

Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot

Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot

Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot

Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot

Abstract Interpretation

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 26 — [] � — ✄✄✄�©P. Cousot

Abstract interpretation

• Abstract interpretation is a theory of the approximation of
the behavior of discrete systems , including the semantics of
(programming or specification) languages;

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 27 — [] � — ✄✄✄�©P. Cousot

Abstract interpretation

• Abstract interpretation is a theory of the approximation of
the behavior of discrete systems , including the semantics of
(programming or specification) languages;

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 27 — [] � — ✄✄✄�©P. Cousot

Familiar abstraction examples

concrete abstract

citizen ID card

road network road map

film bill

car trade mark

scientific article abstract

scientific article keywords

number sign and/or parity

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 28 — [] � — ✄✄✄�©P. Cousot

Familiar abstraction examples

concrete abstract

citizen ID card

road network road map

film bill

car trade mark

scientific article abstract

scientific article keywords

number sign and/or parity

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 28 — [] � — ✄✄✄�©P. Cousot

Examples of approximate semantics 3

a d

e f

g h

i j

k

�











⊥
⊥

a d

e f

g h

i j








α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

�













Trace semantics Denotational
semantics

Natural
semantics

Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states
Initial states

3 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 29 — [] � — ✄✄✄�©P. Cousot

Information loss

• Because of the information loss, not all questions can be
definitely answered;
• All answersgiven by the abstract semantics are always correct

with respect to the concrete semantics.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 30 — [] � — ✄✄✄�©P. Cousot

Information loss

• Because of the information loss, not all questions can be
definitely answered;
• All answers given by the abstract semantics are always correct

with respect to the concrete semantics.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 30 — [] � — ✄✄✄�©P. Cousot

Example of information loss
Concrete ← →Abstract

Question trace denotational natural
semantics semantics semantics

Starting from state g
can execution terminate in
state h?

— — —

Does execution starting
from state k always
terminate?

no no ???

Can state b be immedi­
ately followed by state c?

yes ??? ???

The more concrete semantics can answer more questions. The more ab­
stract semantics are more simple.
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 31 — [] � — ✄✄✄�©P. Cousot

Semantics

a d

e f

g h

i j

k

�











⊥
⊥

a d

e f

g h

i j








α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

�













Trace semantics Denotational
semantics

Natural
semantics

Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states
Initial states

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 32 — [] � — ✄✄✄�©P. Cousot

Example of information loss
Concrete ← →Abstract

Question trace denotational natural
semantics semantics semantics

Starting from state g
can execution terminate in
state h?

yes yes yes

Does execution starting
from state k always
terminate?

no no ???

Can state b be immedi­
ately followed by state c?

yes ??? ???

The more concrete semantics can answer more questions. The more ab­
stract semantics are more simple.
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 33 — [] � — ✄✄✄�©P. Cousot

Example of information loss
Concrete ← →Abstract

Question trace denotational natural
semantics semantics semantics

Starting from state g
can execution terminate in
state h?

yes yes yes

Does execution starting
from state k always
terminate?

— — —

Can state b be immedi­
ately followed by state c?

yes ??? ???

The more concrete semantics can answer more questions. The more ab­
stract semantics are more simple.
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 34 — [] � — ✄✄✄�©P. Cousot

Semantics

a d

e f

g h

i j

k

�











⊥
⊥

a d

e f

g h

i j








α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

�













Trace semantics Denotational
semantics

Natural
semantics

Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states
Initial states

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 35 — [] � — ✄✄✄�©P. Cousot

Example of information loss
Concrete ← →Abstract

Question trace denotational natural
semantics semantics semantics

Starting from state g
can execution terminate in
state h?

yes yes yes

Does execution starting
from state k always
terminate?

no no ???

Can state b be immedi­
ately followed by state c?

yes ??? ???

The more concrete semantics can answer more questions. The more ab­
stract semantics are more simple.
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 36 — [] � — ✄✄✄�©P. Cousot

Example of information loss
Concrete ← →Abstract

Question trace denotational natural
semantics semantics semantics

Starting from state g
can execution terminate in
state h?

yes yes yes

Does execution starting
from state k always
terminate?

no no ???

Can state b be immedi­
ately followed by state c?

— — —

The more concrete semantics can answer more questions. The more ab­
stract semantics are more simple.
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 37 — [] � — ✄✄✄�©P. Cousot

Semantics

a d

e f

g h

i j

k

�











⊥
⊥

a d

e f

g h

i j








α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

�













Trace semantics Denotational
semantics

Natural
semantics

Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states
Initial states

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 38 — [] � — ✄✄✄�©P. Cousot

Example of information loss
Concrete ← →Abstract

Question trace denotational natural
semantics semantics semantics

Starting from state g
can execution terminate in
state h?

yes yes yes

Does execution starting
from state k always
terminate?

no no ???

Can state b be immedi­
ately followed by state c?

yes ??? ???

The more concrete semantics can answer more questions. The more ab­
stract semantics are more simple.
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 39 — [] � — ✄✄✄�©P. Cousot

Example of information loss
Concrete ← →Abstract

Question trace denotational natural
semantics semantics semantics

Starting from state g
can execution terminate in
state h?

yes yes yes

Does execution starting
from state k always
terminate?

no no ???

Can state b be immedi­
ately followed by state c?

yes ??? ???

The more concrete semantics can answer more questions. The more ab­
stract semantics are more simple.
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 40 — [] � — ✄✄✄�©P. Cousot

Example of non comparable
approximated semantics 4

Transitions


































Initial states Final states

a b c d

e f

g h

i j

k

�

a

e

g

i

k

�

d

f

h

j

b

Operational semantics

4 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 41 — [] � — ✄✄✄�©P. Cousot

What is the information loss?
Concrete← →Abstract

Question trace denotational natural operational
semantics semantics semantics semantics

Starting from state g
can execution terminate
in state h?

yes yes yes —

Does execution starting
from state k always
terminate?

no no ??? —

Can state b be immedi­
ately followed by state c?

yes ??? ??? —

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 42 — [] � — ✄✄✄�©P. Cousot

Operational semantics

Transitions


































Initial states Final states

a b c d

e f

g h

i j

k

�

a

e

g

i

k

�

d

f

h

j

b

Operational semantics

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 43 — [] � — ✄✄✄�©P. Cousot

The information loss is incomparable
Concrete← →Abstract Incomparable

Question trace denotational natural operational
semantics semantics semantics semantics

Starting from state g
can execution terminate
in state h?

yes yes yes ???

Does execution starting
from state k always
terminate?

no no ??? ???

Can state b be immedi­
ately followed by state c?

yes ??? ??? yes

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 44 — [] � — ✄✄✄�©P. Cousot

Computable approximations

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• By effective computation of the abstract semantics , the com­
puter is able to analyze the behavior of programs and of soft­
ware before and without executing them.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 45 — [] � — ✄✄✄�©P. Cousot

Computable approximations

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• By effective computation of the abstract semantics , the com­
puter is able to analyze the behavior of programs and of soft­
ware before and without executing them.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 45 — [] � — ✄✄✄�©P. Cousot

Example of computable approximations of an
[in]finite set of points (signs)

x

y {. . . , 〈19, 88〉, . . . ,
〈19, 99〉, . . .}

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 46 — [] � — ✄✄✄�©P. Cousot

Example of computable approximations of an
[in]finite set of points (signs)

x

y {
x ≥ 0
y ≥ 0

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 47 — [] � — ✄✄✄�©P. Cousot

Example of computable approximations of an
[in]finite set of points (intervals)

x

y {
x ∈ [19, 88]
y ∈ [19, 99]

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 48 — [] � — ✄✄✄�©P. Cousot

Example of computable approximations of an
[in]finite set of points (octagons)

x

y




1 ≤ x ≤ 9
x + y ≤ 88
1 ≤ y ≤ 9
x− y ≤ 99

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 49 — [] � — ✄✄✄�©P. Cousot

Example of computable approximations of an
[in]finite set of points (polyhedra)

x

y {
19x + 88y ≤ 2000
19x + 99y ≥ 0

P. Cousot & N. Halbwachs, POPL’78
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 50 — [] � — ✄✄✄�©P. Cousot

Example of computable approximations of an
[in]finite set of points (simple congruences)

x

y {
x = 19 mod 88
y = 19 mod 99

thesis P. Granger, 1991
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 51 — [] � — ✄✄✄�©P. Cousot

Example of computable approximations of an
[in]finite set of points (linear congruences)

x

y {
1x + 9y = 8 mod 8
1x− 9y = 9 mod 9

thesis P. Granger, 1991
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 52 — [] � — ✄✄✄�©P. Cousot

Example of computable approximations of an
[in]finite set of points (trapezoidal linear con-

gruences)

x

y {
1x + 9y ∈ [0, 88] mod 10
1x− 9y ∈ [0, 99] mod 11

thesis F. Masdupuy, 1993
1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 53 — [] � — ✄✄✄�©P. Cousot

Application of the congruence analysis:
communications in OCCAM

thesis N. Mercouroff, 1990

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 54 — [] � — ✄✄✄�©P. Cousot

More difficult: non numerical
structures

• Most structures manipulated by programs are not numerical
(so called symbolic structures);
• It is the case, for example, of the following structures:
-- control structures (call graphs, recursion trees),
-- data structures (search trees),
-- communication structures (distributed programs),
-- information transfer structures (mobile programs), etc.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 55 — [] � — ✄✄✄�©P. Cousot

More difficult: non numerical
structures

• Most structures manipulated by programs are not numerical
(so called symbolic structures);
• It is the case, for example, of the following structures:
-- control structures (call graphs, recursion trees),
-- data structures (search trees),
-- communication structures (distributed programs),
-- information transfer structures (mobile programs), etc.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 55 — [] � — ✄✄✄�©P. Cousot

More difficult: non numerical
structures

• Most structures manipulated by programs are not numerical
(so called symbolic structures);
• It is the case, for example, of the following structures:
-- control structures (call graphs, recursion trees),
-- data structures (search trees),
-- communication structures (distributed programs),
-- information transfer structures (mobile programs), etc.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 55 — [] � — ✄✄✄�©P. Cousot

More difficult: non numerical
structures

• Most structures manipulated by programs are not numerical
(so called symbolic structures);
• It is the case, for example, of the following structures:
-- control structures (call graphs, recursion trees),
-- data structures (search trees),
-- communication structures (distributed programs),
-- information transfer structures (mobile programs), etc.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 55 — [] � — ✄✄✄�©P. Cousot

More difficult: non numerical
structures

• Most structures manipulated by programs are not numerical
(so called symbolic structures);
• It is the case, for example, of the following structures:
-- control structures (call graphs, recursion trees),
-- data structures (search trees),
-- communication structures (distributed programs),
-- information transfer structures (mobile programs), etc.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 55 — [] � — ✄✄✄�©P. Cousot

More difficult: non numerical
structures

• Most structures manipulated by programs are not numerical
(so called symbolic structures);
• It is the case, for example, of the following structures:
-- control structures (call graphs, recursion trees),
-- data structures (search trees),
-- communication structures (distributed programs),
-- information transfer structures (mobile programs), etc.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 55 — [] � — ✄✄✄�©P. Cousot

Example 1: (infinite) sets of (infinite) decorated trees













1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 56 — [] � — ✄✄✄�©P. Cousot

Example 2: (infinite) set of (infinite) decorated
graphs










1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 57 — [] � — ✄✄✄�©P. Cousot

Precise compact approximations

• It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:
-- the various set-theoretic operations can be efficiently im­
plemented;

-- the memory size does not explode combinatorially for com­
plex and/or irregular sets;

-- the approximations remain precise.

theses I. Stransky, 1988, A. Deutsch, 1992, A. Venet, 1998,
L. Mauborgne, 1999, F. Védrine, 2000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 58 — [] � — ✄✄✄�©P. Cousot

Precise compact approximations

• It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:
-- the various set-theoretic operations can be efficiently im­
plemented;

-- the memory size does not explode combinatorially for com­
plex and/or irregular sets;

-- the approximations remain precise.

theses I. Stransky, 1988, A. Deutsch, 1992, A. Venet, 1998,
L. Mauborgne, 1999, F. Védrine, 2000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 58 — [] � — ✄✄✄�©P. Cousot

Precise compact approximations

• It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:
-- the various set-theoretic operations can be efficiently im­
plemented;

-- the memory size does not explode combinatorially for com­
plex and/or irregular sets;

-- the approximations remain precise.

theses I. Stransky, 1988, A. Deutsch, 1992, A. Venet, 1998,
L. Mauborgne, 1999, F. Védrine, 2000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 58 — [] � — ✄✄✄�©P. Cousot

Precise compact approximations

• It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:
-- the various set-theoretic operations can be efficiently im­
plemented;

-- the memory size does not explode combinatorially for com­
plex and/or irregular sets;

-- the approximations remain precise.

theses I. Stransky, 1988, A. Deutsch, 1992, A. Venet, 1998,
L. Mauborgne, 1999, F. Védrine, 2000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 58 — [] � — ✄✄✄�©P. Cousot

Precise compact approximations

• It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:
-- the various set-theoretic operations can be efficiently im­
plemented;

-- the memory size does not explode combinatorially for com­
plex and/or irregular sets;

-- the approximations remain precise.

theses I. Stransky, 1988, A. Deutsch, 1992, A. Venet, 1998,
L. Mauborgne, 1999, F. Védrine, 2000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 58 — [] � — ✄✄✄�©P. Cousot

Precise compact approximations

• It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:
-- the various set-theoretic operations can be efficiently im­
plemented;

-- the memory size does not explode combinatorially for com­
plex and/or irregular sets;

-- the approximations remain precise.

theses I. Stransky, 1988, A. Deutsch, 1992, A. Venet, 1998,
L. Mauborgne, 1999, F. Védrine, 2000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 58 — [] � — ✄✄✄�©P. Cousot

Example of compact approximations
of infinite sets of infinite trees

Binary Decision Graphs:

Tree schemata:

these L. Mauborgne, 1999

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 59 — [] � — ✄✄✄�©P. Cousot

Program Static Analysis

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 60 — [] � — ✄✄✄�©P. Cousot

Difficulty of programming

• Large scale computer programming is very difficult;
• Reasoning on large programs is very difficult;
• Errors are quite frequent.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 61 — [] � — ✄✄✄�©P. Cousot

Difficulty of programming

• Large scale computer programming is very difficult;
• Reasoning on large programs is very difficult;
• Errors are quite frequent.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 61 — [] � — ✄✄✄�©P. Cousot

Difficulty of programming

• Large scale computer programming is very difficult;
• Reasoning on large programs is very difficult;
• Errors are quite frequent.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 61 — [] � — ✄✄✄�©P. Cousot

Example 1: first year exam at the École
polytechnique

What is the effect of the following Pascal program:
program P (input, output);
procedure NewLine; begin writeln end;
procedure P (X : integer; procedure Q);
procedure R;
begin write(X); Q; end;

begin
if X > 0 then begin R; P(X - 1, R); end;
end;

begin
P(5, NewLine);

end.

5
4 5
3 4 5
2 3 4 5
1 2 3 4 5

Less than 5% of the answers are correct!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 62 — [] � — ✄✄✄�©P. Cousot

Example 1: first year exam at the École
polytechnique

What is the effect of the following Pascal program:
program P (input, output);
procedure NewLine; begin writeln end;
procedure P (X : integer; procedure Q);
procedure R;
begin write(X); Q; end;

begin
if X > 0 then begin R; P(X - 1, R); end;
end;

begin
P(5, NewLine);

end.

5
4 5
3 4 5
2 3 4 5
1 2 3 4 5

Less than 5% of the answers are correct!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 62 — [] � — ✄✄✄�©P. Cousot

Example 2: first year exam at the École
polytechnique

Prove that the following program prints the value ≥ 91:
program MacCarthy (input,output);
var x, m : integer;
function MC(n : integer) : integer;
begin
if n > 100 then MC := n - 10
else MC := MC(MC(n + 11));

end;
begin
read(x); m := MC(x); writeln(m);

end.

Less than 50 % of the proofs given as answers are correct!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 63 — [] � — ✄✄✄�©P. Cousot

Example 2: first year exam at the École
polytechnique

Prove that the following program prints the value ≥ 91:
program MacCarthy (input,output);
var x, m : integer;
function MC(n : integer) : integer;
begin
if n > 100 then MC := n - 10
else MC := MC(MC(n + 11));

end;
begin
read(x); m := MC(x); writeln(m);

end.

Less than 50 % of the proofs given as answers are correct!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 64 — [] � — ✄✄✄�©P. Cousot

Program static analysis

• Objective: discover programming errors before they lead to
disastrous catastrophes!
• Program static analysis uses abstract interpretation to derive,

from a standard semantics, an approximate and computable
semantics;
• It follows that the computer is able to analyze the behavior

of software before and without executing it;
• This is essential for computer-based safety-critical systems

(for example: planes, trains, launchers, nuclear plants, etc.).

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 65 — [] � — ✄✄✄�©P. Cousot

Program static analysis

• Objective: discover programming errors before they lead to
disastrous catastrophes!
• Program static analysis uses abstract interpretation to derive,

from a standard semantics, an approximate and computable
semantics;
• It follows that the computer is able to analyze the behavior

of software before and without executing it;
• This is essential for computer-based safety-critical systems

(for example: planes, trains, launchers, nuclear plants, etc.).

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 65 — [] � — ✄✄✄�©P. Cousot

Program static analysis

• Objective: discover programming errors before they lead to
disastrous catastrophes!
• Program static analysis uses abstract interpretation to derive,

from a standard semantics, an approximate and computable
semantics;
• It follows that the computer is able to analyze the behavior

of software before and without executing it;
• This is essential for computer-based safety-critical systems

(for example: planes, trains, launchers, nuclear plants, etc.).

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 65 — [] � — ✄✄✄�©P. Cousot

Program static analysis

• Objective: discover programming errors before they lead to
disastrous catastrophes!
• Program static analysis uses abstract interpretation to derive,

from a standard semantics, an approximate and computable
semantics;
• It follows that the computer is able to analyze the behavior

of software before and without executing it;
• This is essential for computer-based safety-critical systems

(for example: planes, trains, launchers, nuclear plants, etc.).

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 65 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]

5 P. Cousot & R. Cousot, ISOP’76.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 66 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 67 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration, initialization:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = ∅
X2 = ∅
X3 = ∅
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 68 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = ∅
X3 = ∅
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 69 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 1]
X3 = ∅
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 70 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 1]
X3 = [2, 2]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 71 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 2]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 72 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence?

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 3]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 73 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence??

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 3]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 74 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence???

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 4]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 75 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 4]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 76 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence?????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 5]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 77 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence??????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 5]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 78 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence???????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 6]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 79 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Convergence speed-up by extrapolation:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1,+∞] ⇐ widening
X3 = [2, 6]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 80 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1,+∞]
X3 = [2,+∞]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 81 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+∞]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 82 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+10000]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 83 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+10000]
X4 = [+10000,+10000]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 84 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2,+10000]}

od;
4: {x = 10000}




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+10000]
X4 = [+10000,+10000]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 85 — [] � — ✄✄✄�©P. Cousot

Example: interval analysis (1975) 5

Exploitation of the result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2,+10000]}

od;
4: {x = 10000}




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




←− no overflow
X2 = [1, 9999]
X3 = [2,+10000]
X4 = [+10000,+10000]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 86 — [] � — ✄✄✄�©P. Cousot

For imperative languages like PASCAL …

thesis F. Bourdoncle,
1992

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 87 — [] � — ✄✄✄�©P. Cousot

An impressive application (1996/97)

• A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft­
ware of the Ariane 5 launcher ;
• Automatic detection of the definiteness , potentiality , impos­

sibility or inaccessibility of run-time errors ;
• Success for the 502 & 503 flights and the ARD .

8 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
8 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions, uninitialized variables, data races on
shared data structures, etc.

8 Atmospheric Reentry Demonstrator: module coming back to earth.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 88 — [] � — ✄✄✄�©P. Cousot

An impressive application (1996/97)

• A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft­
ware of the Ariane 5 launcher 6;
• Automatic detection of the definiteness , potentiality , impos­

sibility or inaccessibility of run-time errors ;
• Success for the 502 & 503 flights and the ARD .

6 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
6 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions, uninitialized variables, data races on
shared data structures, etc.

6 Atmospheric Reentry Demonstrator: module coming back to earth.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 88 — [] � — ✄✄✄�©P. Cousot

An impressive application (1996/97)

• A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft­
ware of the Ariane 5 launcher 6;
• Automatic detection of the definiteness , potentiality , impos­

sibility or inaccessibility of run-time errors 7;
• Success for the 502 & 503 flights and the ARD .

6 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
7 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,
uninitialized variables, data races on shared data structures, etc.

7 Atmospheric Reentry Demonstrator: module coming back to earth.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 88 — [] � — ✄✄✄�©P. Cousot

An impressive application (1996/97)

• A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft­
ware of the Ariane 5 launcher 6;
• Automatic detection of the definiteness , potentiality , impos­

sibility or inaccessibility of run-time errors 7;
• Success for the 502 & 503 flights and the ARD 8.

6 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
7 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,
uninitialized variables, data races on shared data structures, etc.

8 Atmospheric Reentry Demonstrator: module coming back to earth.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 88 — [] � — ✄✄✄�©P. Cousot

Some other recent applications of static
analysis by abstract interpretation

• program transformation & optimization;
• abstract model-checking of infinite systems;
• abstract testing;
• type inference (for undecidable systems);
• mobile code communication topology;
• automatic differentiation;
• …

theses F. Bourdoncle, 1992, B. Monsuez, 1994,A. Venet, 1998,
F. Védrine, 2000, R. Cridlig, 2000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 89 — [] � — ✄✄✄�©P. Cousot

Example of application of static analysis to program
transformation & optimization

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 90 — [] � — ✄✄✄�©P. Cousot

Example of application of static analysis to program
transformation & optimization

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 91 — [] � — ✄✄✄�©P. Cousot

Some other recent applications of
abstract interpretation

• Fundamental applications:
-- design of hierarchies of semantics,
-- …;

• Practical applications:
-- security (analysis of cryptographic protocols, mobile code),
-- semantic tattooing of software,
-- data mining,
-- ….

ongoing theses J. Feret, D. Monniaux

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 92 — [] � — ✄✄✄�©P. Cousot

Lattice of semantics

Hoare logics

Weakest precondition
semantics

Denotational semantics

Relational semantics

Trace semantics

equivalence
abstraction✲

restriction
infinite

demoniac
determinist
naturalangelic

τ✁!

τ ∂

τ EM

τD

τ�τ S τ♦τ �τ �

τ
τwp

τ tHτ pH

τwlp

τ �+

τ+ τω

τ �ω

τ gH

τ gwp

τ✁?

τ �

τ∞

τ �∞

τ

✟✟✟✯ ✈

✘✘✘✘✘✘✘✘✘✘✘✘✘✿ ✈

✈

✈

✡
✡

✡
✡✡✣

✈

✈ ✈ ✈

✈

✻

✻ ✻✏✏✏✶

✈

✈

✈✟✟✟✟✟✟✯

✟✟✟✟✟✟✯

✟✟✟✟✟✟✯

❍❍❍❍❍❍

❍❍❍❍❍❍

❍❍❍❍❍❍

❍❍❍❍❍❍

❍❍❍❍❍❍ ✈

✈

✈

✈

✈

✈✈

✈

✈

✈

✈

✏✏✏✏✏✏✏✏✏✏

✏✏✏✏✏✏✏✏✏✏✶

✏✏✏✏✏✏✶

✈

✈

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 93 — [] � — ✄✄✄�©P. Cousot

Forthcoming research

A lot of fundamental research remains to be one:

• modularity,

• higher order functions & modules,

• floating point numbers,

• probabilistic analyses,

• liveness properties with fairness,

• …;

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 94 — [] � — ✄✄✄�©P. Cousot

A few references

• Starter:

P. Cousot. Abstract interpretation. ACM Computing
Surveys 28 (2), 1996, 324–328.

• On the web:

http://www.di.ens.fr/˜cousot/

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 95 — [] � — ✄✄✄�©P. Cousot

http://www.di.ens.fr/~cousot/

Industrialization of static analysis by
abstract interpretation

• First research results: 1975;
• First industrializations:

-- Connected Components Corporation (U.S.A.),
L. Harrison, 1993;

-- AbsInt Angewandte Informatik GmbH (Germany),
R. Wilhelm, 1998;

-- Polyspace Technologies (France),
A. Deutsch & D. Pilaud, 1999.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 96 — [] � — ✄✄✄�©P. Cousot

http://www.concmp.com/index.html
http://www.absint.com
http://www.polyspace.com

Prospects

• The fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un­
derstood);

• In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);

• Research on fundamental ideas on software design is essen­
tial for modern societies;

• The application of such fundamental research can hardly be
scheduled in the short term (3 years);

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 97 — [] � — ✄✄✄�©P. Cousot

Prospects

• The fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un­
derstood);

• In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);

• Research on fundamental ideas on software design is essen­
tial for modern societies;

• The application of such fundamental research can hardly be
scheduled in the short term (3 years);

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 97 — [] � — ✄✄✄�©P. Cousot

Prospects

• The fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un­
derstood);

• In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);

• Research on fundamental ideas on software design is essen­
tial for modern societies;

• The application of such fundamental research can hardly be
scheduled in the short term (3 years);

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 97 — [] � — ✄✄✄�©P. Cousot

Prospects

• The fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un­
derstood);

• In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);

• Research on fundamental ideas on software design is essen­
tial for modern societies;

• The application of such fundamental research can hardly be
scheduled in the short term (3 years);

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 97 — [] � — ✄✄✄�©P. Cousot

Conclusion

Computer scientists need long term research
funding.

THANK YOU FOR YOUR
ATTENTION

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 98 — [] � — ✄✄✄�©P. Cousot

Conclusion

Computer scientists need long term research
funding.

THANK YOU FOR YOUR
ATTENTION

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 98 — [] � — ✄✄✄�©P. Cousot

	redThe estimated cost of an overflow
	redCapability of computer scientists
	redResponsibility of computer scientists
	redIdea
	red(Extremely difficult) question
	redA simplistic example: a cooking recipe
	redConsidered approaches for program verification
	whiteInformal redIntroductory Talk
	redHence we must first explain redsemantics, for example:
	redHence we must first explain redsemantics, for example:
	redHence we must first explain redsemantics, for example:
	redHence we must first explain redsemantics, for example:
	redSemantics
	redSemantics
	redExample 1: trace semantics
	redExamples of computation traces
	redExample 2: geometric semantics
	redUndecidability
	redSemantics and fixpoints
	whiteLeast redFixpoints: Intuition
	redAbstract interpretation
	redFamiliar abstraction examples
	redExamples of approximate semantics
	redInformation loss
	redExample of information loss
	redSemantics
	redExample of non comparable approximated semantics
	redWhat is the information loss?
	redOperational semantics
	redThe information loss is incomparable
	redComputable approximations
	redExample of computable approximations of an [in]finite set of points towhite(signs)
	redExample of computable approximations of an [in]finite set of points tored(signs)
	redExample of computable approximations of an [in]finite set of points tored(intervals)
	redExample of computable approximations of an [in]finite set of points tored(octagons)
	redExample of computable approximations of an [in]finite set of points tored(polyhedra)
	redExample of computable approximations of an [in]finite set of points tored(simple congruences)
	redExample of computable approximations of an [in]finite set of points tored(linear congruences)
	redExample of computable approximations of an [in]finite set of points
	redApplication of the congruence analysis: communications in OCCAM
	redMore difficult: non numerical structures
	redExample 1: (infinite) sets of (infinite) decorated trees
	redExample 2: (infinite) set of (infinite) decorated graphs
	redPrecise compact approximations
	redExample of compact approximations of infinite sets of infinite trees
	redDifficulty of programming
	redExample 1: first year exam at the École polytechnique
	redExample 2: first year exam at the École polytechnique
	redProgram static analysis
	redExample: interval analysis (1975)
	redExample: interval analysis (1975)
	redFor imperative languages like PASCAL …
	redAn impressive application (1996/97)
	redSome other recent applications of static analysis by abstract interpretation
	redExample of application of static analysis to program transformation & optimization
	redSome other recent applications of abstract interpretation
	redLattice of semantics
	redForthcoming research
	redA few references
	redIndustrialization of static analysis by abstract interpretation
	redProspects
	redConclusion
	redConclusion

