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What is (or should be) the main
preoccupation of computer

scientists?

The production of reliable software, its
maintenance and safe evolution year af­
ter year (up to 20 to 30 years).
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Computer hardware change of scale

The 25 last years, computer hardware has seen its perfor­
mances multiplied by 104 to 106;

ENIAC (5000 flops) Intel/Sandia Teraflops System (1012 flops)
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The information processing revolution

A scale of 106 is typical of a significant revolution:
-- Energy: nuclear power station / Roman slave;
-- Transportation: distance Earth — Mars / height of Korea
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Computer software change of scale

• The size of the programs executed by these computers has
grown up in similar proportions;
• Example (modern text editor for the general public):

-- > 1 700 000 lines of C ;
-- 20 000 procedures;
-- 400 files;
-- > 15 years of development.

full-time reading of the code (35 hours/week) would take at least 3 months!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 5 — [] � — ✄✄✄�©P.Cousot



Computer software change of scale

• The size of the programs executed by these computers has
grown up in similar proportions;
• Example 1 (modern text editor for the general public):

-- > 1 700 000 lines of C 2;
-- 20 000 procedures;
-- 400 files;
-- > 15 years of development.

2 full-time reading of the code (35 hours/week) would take at least 3 months!

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 5 — [] � — ✄✄✄�©P.Cousot



Computer software change of scale (cont’d)

• Example 2 (professional computer system):

-- 30 000 000 lines of code;

-- 30 000 (known) bugs!
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Bugs
• Software bugs

-- whether anticipated (Y2K bug)
-- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;
• Bugs can be very difficult to discover in huge

software;• Bugs can have catastrophic consequences either very
costly or inadmissible (embedded software in trans­
portation systems);
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The estimated cost of an overflow

• $ 500 000 000
• Including indirect costs (delays, lost mar­

kets, etc):
$ 2 000 000 000
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Capability of computer scientists

• The intellectual capability of computer scientists remains es­
sentially unchanged year after year;

• The size of programmer teams in charge of software design
and maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up.
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Responsibility of computer scientists
• The paradox is that the computer scientists do not assume

any responsibility for software bugs (compare to the automo­
tive or avionic industry);
• Computer software bugs can become an important societal

problem (collective fears and reactions? new legislation?);
• The combat against software bugs might even be the next

worldwide war;

=⇒ It is absolutely necessary to widen the full set of meth­
ods and tools used to fight against software bugs.
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Idea

Use the computer to find programming er­
rors.
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(Extremely difficult) question

How can computers be programmed so as to
analyze the work they are given to do before
effectively doing it?
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A simplistic example: a cooking
recipe

The soft-boiled egg recipe:
• Take a fresh egg out of the refrigerator;
• Plunged it into salted boiling water;
• Pull it out of the water after 4 mn.
Any cook can find the bug before carrying out the recipe!
Why not computers?
What can we do about it?
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Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Gained only a factor of 100 in 10 years
and the limit seems to be reached!

What else?
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Abstract Interpretation
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Informal Introductory Talk

• Four notions to be introduced:
-- Semantics ,
-- Undecidability ,
-- Abstract interpretation ,
-- Program static analysis;

• Completely informal explanation avoiding any formalism;
• Illustrated by the work done in my research team and the

theses that I directed since 10 years.
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Semantics & Undecidability
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Hence we must first explain semantics, for example:

Syntax:

x, f ∈ X : variables
e ∈ E : expressions

e ::= x | λx · e | e1(e2) |
µf ·λx · e | e1 − e2 |
1 | (e1 ? e2 : e3)

Semantic domains:

W
�
= {ω} error

z ∈ Z integers
u, f, ϕ ∈ U ∼= W⊥ ⊕ Z⊥ ⊕ [U �→ U]⊥ values

R ∈ R
�
= X �→ U environments

φ ∈ S
�
= R �→ U semantic domain

Semantics:

S�x�
�
= �R.R(x)

S�λx · e�
�
= �R. ↑(�u.(u = ⊥ ∨ u = � ? u |

S�e�R[x←u])) :: [U �→ U]⊥
S�e1(e2)�

�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = f :: [U �→ U]⊥ ? ↓(f)(S�e2�R) | �)

S�µf ·λx · e�
�
= �R. lfp

�

↑(�u.⊥)::[U �→U]⊥
�ϕ. S�λx · e�R[f←ϕ]

S�1�
�
= �R. ↑(1) :: Z⊥

S�e1 − e2�
�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = z1 :: Z⊥ ∧ S�e2�R = z2 :: Z⊥ ?
↑(↓(z1)− ↓(z2)) :: Z⊥ | �)

S�(e1 ? e2 : e3)�
�
= �R.(S�e1�R = ⊥ ? ⊥ | S�e1�R = z :: Z⊥ ?

(↓(z) = 0 ? S�e2�R | S�e3�R) | �)

with this
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�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = z1 :: Z⊥ ∧ S�e2�R = z2 :: Z⊥ ?
↑(↓(z1)− ↓(z2)) :: Z⊥ | �)

S�(e1 ? e2 : e3)�
�
= �R.(S�e1�R = ⊥ ? ⊥ | S�e1�R = z :: Z⊥ ?

(↓(z) = 0 ? S�e2�R | S�e3�R) | �)

with this
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Semantics

• The semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut­
ing this program (interacting with any possible environment);

• The semantics of a language defines the semantics of any
program written in this language.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 19 — [] � — ✄✄✄�©P. Cousot



Semantics

• The semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut­
ing this program (interacting with any possible environment);

• The semantics of a language defines the semantics of any
program written in this language.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 19 — [] � — ✄✄✄�©P. Cousot



Example 1: trace semantics

Initial states
Final states of the
           finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time
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Examples of computation traces
• Finite (C1+1=):

• Erroneous (C1+1+1+1…):

… …

• Infinite (C+0+0+0…):

… …
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Example 2: geometric semantics
(deadlock)

[[ Pa.Pb.Va.Vb
|| Pb.Pc.Vb.Vc
|| Pc.Pa.Vc.Va ]]

deadlock

É. Goubault thesis, 1995
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Undecidability

• All interesting questions relative to the semantics of non triv­
ial programs are undecidable;
⇒ no computer can always exactly answer such questions in

finite time;
• One can mathematically define the semantics of a program

as the solution of a fixpoint equation
⇒ but no computer can exactly solve these equations in fi-

nite time.
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Semantics and fixpoints
Syntax:

x, f ∈ X : variables
e ∈ E : expressions

e ::= x | λx · e | e1(e2) |
µf ·λx · e | e1 − e2 |
1 | (e1 ? e2 : e3)

Semantic domains:

W
�
= {ω} error

z ∈ Z integers
u, f, ϕ ∈ U ∼= W⊥ ⊕ Z⊥ ⊕ [U �→ U]⊥ values

R ∈ R
�
= X �→ U environments

φ ∈ S
�
= R �→ U semantic domain

Semantics:

S�x�
�
= �R.R(x)

S�λx · e�
�
= �R. ↑(�u.(u = ⊥ ∨ u = � ? u |

S�e�R[x←u])) :: [U �→ U]⊥
S�e1(e2)�

�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = f :: [U �→ U]⊥ ? ↓(f)(S�e2�R) | �)

S�µf ·λx · e�
�
= �R. lfp

�

↑(�u.⊥)::[U �→U]⊥
�ϕ. S�λx · e�R[f←ϕ]

S�1�
�
= �R. ↑(1) :: Z⊥

S�e1 − e2�
�
= �R.(S�e1�R = ⊥ ∨ S�e2�R = ⊥ ? ⊥ |

S�e1�R = z1 :: Z⊥ ∧ S�e2�R = z2 :: Z⊥ ?
↑(↓(z1)− ↓(z2)) :: Z⊥ | �)

S�(e1 ? e2 : e3)�
�
= �R.(S�e1�R = ⊥ ? ⊥ | S�e1�R = z :: Z⊥ ?

(↓(z) = 0 ? S�e2�R | S�e3�R) | �)
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Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot



Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot



Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot



Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot



Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot



Least Fixpoints: Intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 25 — [] � — ✄✄✄�©P. Cousot



Abstract Interpretation
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Abstract interpretation

• Abstract interpretation is a theory of the approximation of
the behavior of discrete systems , including the semantics of
(programming or specification) languages;

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level.
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Familiar abstraction examples

concrete abstract

citizen ID card

road network road map

film bill

car trade mark

scientific article abstract

scientific article keywords

number sign and/or parity
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Examples of approximate semantics 3
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Trace semantics Denotational
semantics

Natural
semantics

Initial states
Intermediate states Final states of

           finite traces

Infinite
traces

Final states
Initial states

3 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).
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Information loss

• Because of the information loss, not all questions can be
definitely answered;
• All answersgiven by the abstract semantics are always correct

with respect to the concrete semantics.
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Example of information loss
Concrete ← →Abstract

Question trace denotational natural
semantics semantics semantics

Starting from state g
can execution terminate in
state h?

— — —

Does execution starting
from state k always
terminate?

no no ???

Can state b be immedi­
ately followed by state c?

yes ??? ???

The more concrete semantics can answer more questions. The more ab­
stract semantics are more simple.
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Semantics
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Example of non comparable
approximated semantics 4
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4 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).
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What is the information loss?
Concrete← →Abstract

Question trace denotational natural operational
semantics semantics semantics semantics

Starting from state g
can execution terminate
in state h?

yes yes yes —

Does execution starting
from state k always
terminate?

no no ??? —

Can state b be immedi­
ately followed by state c?

yes ??? ??? —
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Operational semantics
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The information loss is incomparable
Concrete← →Abstract Incomparable

Question trace denotational natural operational
semantics semantics semantics semantics

Starting from state g
can execution terminate
in state h?

yes yes yes ???

Does execution starting
from state k always
terminate?

no no ??? ???

Can state b be immedi­
ately followed by state c?

yes ??? ??? yes
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Computable approximations

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• By effective computation of the abstract semantics , the com­
puter is able to analyze the behavior of programs and of soft­
ware before and without executing them.
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Example of computable approximations of an
[in]finite set of points (signs)

x

y {. . . , 〈19, 88〉, . . . ,
〈19, 99〉, . . .}
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Example of computable approximations of an
[in]finite set of points (signs)

x

y {
x ≥ 0
y ≥ 0
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Example of computable approximations of an
[in]finite set of points (intervals)

x

y {
x ∈ [19, 88]
y ∈ [19, 99]
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Example of computable approximations of an
[in]finite set of points (octagons)

x

y




1 ≤ x ≤ 9
x + y ≤ 88
1 ≤ y ≤ 9
x− y ≤ 99
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Example of computable approximations of an
[in]finite set of points (polyhedra)

x

y {
19x + 88y ≤ 2000
19x + 99y ≥ 0

P. Cousot & N. Halbwachs, POPL’78
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Example of computable approximations of an
[in]finite set of points (simple congruences)

x

y {
x = 19 mod 88
y = 19 mod 99

thesis P. Granger, 1991
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Example of computable approximations of an
[in]finite set of points (linear congruences)

x

y {
1x + 9y = 8 mod 8
1x− 9y = 9 mod 9

thesis P. Granger, 1991
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Example of computable approximations of an
[in]finite set of points (trapezoidal linear con-

gruences)

x

y {
1x + 9y ∈ [0, 88] mod 10
1x− 9y ∈ [0, 99] mod 11

thesis F. Masdupuy, 1993
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Application of the congruence analysis:
communications in OCCAM

thesis N. Mercouroff, 1990
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More difficult: non numerical
structures

• Most structures manipulated by programs are not numerical
(so called symbolic structures);
• It is the case, for example, of the following structures:
-- control structures (call graphs, recursion trees),
-- data structures (search trees),
-- communication structures (distributed programs),
-- information transfer structures (mobile programs), etc.
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Example 1: (infinite) sets of (infinite) decorated trees












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Example 2: (infinite) set of (infinite) decorated
graphs









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Precise compact approximations

• It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:
-- the various set-theoretic operations can be efficiently im­
plemented;

-- the memory size does not explode combinatorially for com­
plex and/or irregular sets;

-- the approximations remain precise.

theses I. Stransky, 1988, A. Deutsch, 1992, A. Venet, 1998,
L. Mauborgne, 1999, F. Védrine, 2000
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Example of compact approximations
of infinite sets of infinite trees

Binary Decision Graphs:

Tree schemata:

these L. Mauborgne, 1999
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Program Static Analysis
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Difficulty of programming

• Large scale computer programming is very difficult;
• Reasoning on large programs is very difficult;
• Errors are quite frequent.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 61 — [] � — ✄✄✄�©P. Cousot



Difficulty of programming

• Large scale computer programming is very difficult;
• Reasoning on large programs is very difficult;
• Errors are quite frequent.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 61 — [] � — ✄✄✄�©P. Cousot



Difficulty of programming

• Large scale computer programming is very difficult;
• Reasoning on large programs is very difficult;
• Errors are quite frequent.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 61 — [] � — ✄✄✄�©P. Cousot



Example 1: first year exam at the École
polytechnique

What is the effect of the following Pascal program:
program P (input, output);
procedure NewLine; begin writeln end;
procedure P (X : integer; procedure Q);
procedure R;
begin write(X); Q; end;

begin
if X > 0 then begin R; P(X - 1, R); end;
end;

begin
P(5, NewLine);

end.

5
4 5
3 4 5
2 3 4 5
1 2 3 4 5

Less than 5% of the answers are correct!
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Example 2: first year exam at the École
polytechnique

Prove that the following program prints the value ≥ 91:
program MacCarthy (input,output);
var x, m : integer;
function MC(n : integer) : integer;
begin
if n > 100 then MC := n - 10
else MC := MC(MC(n + 11));

end;
begin
read(x); m := MC(x); writeln(m);

end.

Less than 50 % of the proofs given as answers are correct!
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Program static analysis

• Objective: discover programming errors before they lead to
disastrous catastrophes!
• Program static analysis uses abstract interpretation to derive,

from a standard semantics, an approximate and computable
semantics;
• It follows that the computer is able to analyze the behavior

of software before and without executing it;
• This is essential for computer-based safety-critical systems

(for example: planes, trains, launchers, nuclear plants, etc.).
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Example: interval analysis (1975) 5

Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]

5 P. Cousot & R. Cousot, ISOP’76.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 66 — [] � — ✄✄✄�©P. Cousot



Example: interval analysis (1975) 5

Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration, initialization:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = ∅
X2 = ∅
X3 = ∅
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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2:
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


X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 1]
X3 = ∅
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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2:
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od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 1]
X3 = [2, 2]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 71 — [] � — ✄✄✄�©P. Cousot



Example: interval analysis (1975) 5

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 2]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence?

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 3]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence??

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 3]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence???

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 4]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 4]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence?????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 5]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence??????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 5]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence???????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 6]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 79 — [] � — ✄✄✄�©P. Cousot



Example: interval analysis (1975) 5

Convergence speed-up by extrapolation:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1,+∞] ⇐ widening
X3 = [2, 6]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1,+∞]
X3 = [2,+∞]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+∞]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+10000]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+10000]
X4 = [+10000,+10000]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2,+10000]}

od;
4: {x = 10000}




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+10000]
X4 = [+10000,+10000]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Exploitation of the result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2,+10000]}

od;
4: {x = 10000}




X1 = [1, 1]
X2 = (X1 ∪X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪X3) ∩ [10000,+∞]




←− no overflow
X2 = [1, 9999]
X3 = [2,+10000]
X4 = [+10000,+10000]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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For imperative languages like PASCAL …

thesis F. Bourdoncle,
1992
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An impressive application (1996/97)

• A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft­
ware of the Ariane 5 launcher ;
• Automatic detection of the definiteness , potentiality , impos­

sibility or inaccessibility of run-time errors ;
• Success for the 502 & 503 flights and the ARD .

8 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
8 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions, uninitialized variables, data races on
shared data structures, etc.

8 Atmospheric Reentry Demonstrator: module coming back to earth.
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An impressive application (1996/97)

• A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft­
ware of the Ariane 5 launcher 6;
• Automatic detection of the definiteness , potentiality , impos­

sibility or inaccessibility of run-time errors ;
• Success for the 502 & 503 flights and the ARD .

6 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
6 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions, uninitialized variables, data races on
shared data structures, etc.

6 Atmospheric Reentry Demonstrator: module coming back to earth.
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An impressive application (1996/97)

• A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft­
ware of the Ariane 5 launcher 6;
• Automatic detection of the definiteness , potentiality , impos­

sibility or inaccessibility of run-time errors 7;
• Success for the 502 & 503 flights and the ARD .

6 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
7 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,
uninitialized variables, data races on shared data structures, etc.

7 Atmospheric Reentry Demonstrator: module coming back to earth.
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An impressive application (1996/97)

• A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft­
ware of the Ariane 5 launcher 6;
• Automatic detection of the definiteness , potentiality , impos­

sibility or inaccessibility of run-time errors 7;
• Success for the 502 & 503 flights and the ARD 8.

6 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
7 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,
uninitialized variables, data races on shared data structures, etc.

8 Atmospheric Reentry Demonstrator: module coming back to earth.
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Some other recent applications of static
analysis by abstract interpretation

• program transformation & optimization;
• abstract model-checking of infinite systems;
• abstract testing;
• type inference (for undecidable systems);
• mobile code communication topology;
• automatic differentiation;
• …

theses F. Bourdoncle, 1992, B. Monsuez, 1994,A. Venet, 1998,
F. Védrine, 2000, R. Cridlig, 2000

1st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea , June 14, 2000, 16:20–17:20�✁✁✁ — 89 — [] � — ✄✄✄�©P. Cousot



Example of application of static analysis to program
transformation & optimization
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Example of application of static analysis to program
transformation & optimization
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Some other recent applications of
abstract interpretation

• Fundamental applications:
-- design of hierarchies of semantics,
-- …;

• Practical applications:
-- security (analysis of cryptographic protocols, mobile code),
-- semantic tattooing of software,
-- data mining,
-- ….

ongoing theses J. Feret, D. Monniaux
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Lattice of semantics

Hoare logics

Weakest precondition
semantics

Denotational semantics

Relational semantics

Trace semantics

equivalence
abstraction✲

restriction
infinite

demoniac
determinist
naturalangelic
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Forthcoming research

A lot of fundamental research remains to be one:

• modularity,

• higher order functions & modules,

• floating point numbers,

• probabilistic analyses,

• liveness properties with fairness,

• …;
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A few references

• Starter:

P. Cousot. Abstract interpretation. ACM Computing
Surveys 28 (2), 1996, 324–328.

• On the web:

http://www.di.ens.fr/˜cousot/
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Industrialization of static analysis by
abstract interpretation

• First research results: 1975;
• First industrializations:

-- Connected Components Corporation (U.S.A.),
L. Harrison, 1993;

-- AbsInt Angewandte Informatik GmbH (Germany),
R. Wilhelm, 1998;

-- Polyspace Technologies (France),
A. Deutsch & D. Pilaud, 1999.
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Prospects

• The fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un­
derstood);

• In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);

• Research on fundamental ideas on software design is essen­
tial for modern societies;

• The application of such fundamental research can hardly be
scheduled in the short term (3 years);
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derstood);

• In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
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• Research on fundamental ideas on software design is essen­
tial for modern societies;

• The application of such fundamental research can hardly be
scheduled in the short term (3 years);
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Prospects

• The fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un­
derstood);

• In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);

• Research on fundamental ideas on software design is essen­
tial for modern societies;

• The application of such fundamental research can hardly be
scheduled in the short term (3 years);
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Prospects

• The fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un­
derstood);

• In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);

• Research on fundamental ideas on software design is essen­
tial for modern societies;

• The application of such fundamental research can hardly be
scheduled in the short term (3 years);
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Computer scientists need long term research
funding.

THANK YOU FOR YOUR
ATTENTION
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