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What is (or should be) the main
preoccupation of computer
scientists?
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What is (or should be) the main
preoccupation of computer
scientists?

The production of reliable software, its
maintenance and safe evolution year af-
ter year (up to 20 to 30 years).
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Computer hardware change of scale

The 25 last years, computer hardware has seen its perfor-
mances multiplied by 10% to 10°;

ENIAC (5000 fo::)s)' | - Intel /Sandia Teraflops System (10'* flops)
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The information processing revolution

A scale of 109 is typical of a significant revolution:
- Energy: nuclear power station / Roman slave;

- Transportation: distance Earth — Mars / height of Korea
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Computer software change of scale

e [he size of the programs executed by these computers has
grown up in similar proportions;
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Computer software change of scale

e [he size of the programs executed by these computers has
grown up in similar proportions;

e Example 1 (modern text editor for the general public):
- > 1700 000 lines of C
- 20 000 procedures;
- 400 files:

- > 15 years of development.

2 full-time reading of the code (35 hours/week) would take at least 3 months!
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Computer software change of scale (cont’d)

e Example 2 (professional computer system):

-30 000 000 lines of code:
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Computer software change of scale (cont’d)

e Example 2 (professional computer system):

-30 000 000 lines of code:
-30 000 (known) bugs!
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Bugs g
e Software bugs

- whether anticipated (Y2K bug)

- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;
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Bugs & &
e Software bugs

- whether anticipated (Y2K bug)

- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;

e Bugs can be very difficult to discover in huge

software:
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e Bugs can have catastrophic consequences

either very costly or inadmissible (embed-

ded software in transportation systems);
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The estimated cost of an overflow
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The estimated cost of an overflow

e$% 500 000 000

15 Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea, June 14, 2000, 16:20-17:20 <1 <| — 8 — [ M — > [ P (© P. Cousor



The estimated cost of an overflow

e$% 500 000 000

e Including indirect costs (delays, lost mar-
kets, etc):

$ 2 000 000 000
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Capability of computer scientists

e [ he intellectual capability of computer scientists remains es-
sentially unchanged year after year;
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Capability of computer scientists

e [ he intellectual capability of computer scientists remains es-
sentially unchanged year after year;

e [ he size of programmer teams in charge of software design
and maintenance cannot evolve in such huge proportions;
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Capability of computer scientists

e [ he intellectual capability of computer scientists remains es-
sentiallyunchanged year after year;

e [he size of programmer teams in charge of software design
and maintenance cannot evolve in such huge proportions;

e Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up.
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Responsibility of computer scientists

e [he paradox is that the computer scientists do not assume
any responsibility for software bugs (compare to the automo-
tive or avionic industry);
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Responsibility of computer scientists

e [he paradox is that the computer scientists do not assume
any responsibility for software bugs (compare to the automo-
tive or avionic industry);

e Computer software bugs can become an important societal
problem (collective fears and reactions? new legislation?);
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Responsibility of computer scientists

e [he paradox is that the computer scientists do not assume
any responsibility for software bugs (compare to the automo-
tive or avionic industry);

e Computer software bugs can become an important societal
problem (collective fears and reactions? new legislation?);

e The combat against software bugs might even be the next
worldwide war;
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Responsibility of computer scientists

e [he paradox is that the computer scientists do not assume
any responsibility for software bugs (compare to the automo-
tive or avionic industry);

e Computer software bugs can become an important societal
problem (collective fears and reactions? new legislation?);

e The combat against software bugs might even be the next
worldwide war;

—> | It is absolutely necessary to widen the full set of meth-
ods and tools used to fight against software bugs.
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(Extremely difficult) question
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A simplistic example: a cooking
recipe

The soft-boiled egg recipe:

e Take a fresh egg out of the refrigerator;
e Plunged it into salted boiling water;

e Pull it out of the water after 4 mn.
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A simplistic example: a cooking
recipe

The soft-boiled egg recipe:

e Take a fresh egg out of the refrigerator;
e Plunged it into salted boiling water;
e Pull it out of the water after 4 h. .
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A simplistic example: a cooking
recipe

The soft-boiled egg recipe:

e Take a fresh egg out of the refrigerator;

e Plunged it into salted boiling water;
e Pull it out of the water after 4 h.
Any cook can find the bug before carrying out the recipe!
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A simplistic example: a cooking
recipe

The soft-boiled egg recipe:

e Take a fresh egg out of the refrigerator;
e Plunged it into salted boiling water;

e Pull it out of the water after 4 h. .

Any cook can find the bug before carrying out the recipe!
Why not computers?
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A simplistic example: a cooking
recipe

The soft-boiled egg recipe:

e Take a fresh egg out of the refrigerator;
e Plunged it into salted boiling water;

e Pull it out of the water after 4 h. .

Any cook can find the bug before carrying out the recipe!
Why not computers?
What can we do about it?
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Considered approaches for program
verification
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Considered approaches for program
verification

Deductive methods
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Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!
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Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking

15 Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea, June 14, 2000, 16:20-17:20 <1 <] — 14 — | ll — > [& P (© P. CousoT



Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Gained only a factor of 100 in 10 years
and the limit seems to be reached!
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Considered approaches for program
verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Gained only a factor of 100 in 10 years
and the limit seems to be reached!

What else?
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Abstract Interpretation

15 Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea, June 14, 2000, 16:20-17:20 € <1 <] — 15 — | Il — > [& P (© P. CousoT



Introductory Talk

e Four notions to be introduced:
- Semantics,
- Undecidability,
- Abstract interpretation,

- Program static analysis;
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Informal Introductory Talk

e Four notions to be introduced:
- Semantics,
- Undecidability,
- Abstract interpretation,
- Program static analysis;

e Completely informal explanation avoiding any formalism;
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Informal Introductory Talk

e Four notions to be introduced:
- Semantics,
- Undecidability,
- Abstract interpretation,
- Program static analysis;
e Completely informal explanation avoiding any formalism;

e |llustrated by the work done in my research team and the
theses that | directed since 10 years.
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Semantics & Undecidability
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Hence we must first explain semantics, for example:
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Hence we must first explain semantics, for example:

with this ' '
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Hence we must first explain semantics, for example:

with this ' '
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Hence we must first explain semantics, for example:

with this ' '
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Semantics

e [ he semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut-
ing this program (interacting with any possible environment);
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Semantics

e [ he semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut-
ing this program (interacting with any possible environment);

e The semantics of a language defines the semantics of any
program written in this language.
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Example 1: trace semantics

Initial states
iIntermediate states

(o—o—o—o—o—o—o—o

a b c

Final states of the
finite traces \

Infinite
traces

VY

£ | |
01 2 3 45 6 7 8 9 discrete time
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Examples of computation traces
e (Cl+1=):
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Example 2: geometric semantics

[ Pa.Pb.Va.VDb
| Pb.Pc.Vb.Vc
| Pc.Pa.Vc.Va 1

E. Goubault thesis, 1995
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Example 2: geometric semantics
(deadlock)

[ Pa.Pb.Va.VDb
| Pb.Pc.Vb.Vc
| Pc.Pa.Vc.Va 1

. deadlock

E. Goubault thesis, 1995
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Undecidability
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Undecidability

e All interesting questions relative to the semantics of non triv-
lal programs are undecidable;
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Undecidability

e All interesting questions relative to the semantics of non triv-
lal programs are undecidable:

= no computer can always exactly answer such questions in
finite time;
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Undecidability

e All interesting questions relative to the semantics of non triv-
lal programs are undecidable:

= no computer can always exactly answer such questions in
finite time;
e One can mathematically define the semantics of a program
as the solution of a fixpoint equation;
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Undecidability

e All interesting questions relative to the semantics of non triv-
lal programs are undecidable:

= no computer can always exactly answer such questions in
finite time;
e One can mathematically define the semantics of a program
as the solution of a fixpoint equation:

= but no computer can exactly solve these equations in fi-
nite time.
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Semantics and fixpoints

AR-1fp_ A+ S[Ax - e]R[f ]

T(AU* 1):[U—T] |
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Fixpoints: Intuition

Behaviors =

15 Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea, June 14, 2000, 16:20-17:20 € <1 <] — 25 — | ll — > [& P> (© P. CousoT



Fixpoints: Intuition

Behaviors = {¢ | » is a final state}
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Fixpoints: Intuition

Behaviors = is a final state}

U { ——=——.—— | —— is an elementary step &

—— . —= € Behaviors}
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Fixpoints: Intuition

Behaviors = is a final state}

U { ——=——.—— | —— is an elementary step &

—— . —= € Behaviors}

U {——.——..| —= is an elementary step &

—— . —— .. € Behaviors™}

15 Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea, June 14, 2000, 16:20-17:20 € <1 <] — 25 — | ll — > [& P> (© P. CousoT



Fixpoints: Intuition

Behaviors = is a final state}

U { ——=——.—— | —— is an elementary step &

—— . —= € Behaviors}

U {——.——..| —= is an elementary step &

—— . —— .. € Behaviors™}

In general, the equation has multiple solutions.
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Least Fixpoints: Intuition

Behaviors = {¢ | » is a final state}

U { ——=——.—— | —— is an elementary step &

—— . —= € Behaviors}

U {——.——..| —= is an elementary step &

—— . —— .. € Behaviors™}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces >.
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Abstract Interpretation
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Abstract interpretation

e Abstract interpretation is a theory of the approximation of
the behavior of discrete systems, including the semantics of
(programming or specification) languages;
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Abstract interpretation

e Abstract interpretation is a theory of the approximation of
the behavior of discrete systems, including the semantics of
(programming or specification) languages;

e Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered

observation level.
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Familiar abstraction examples

concrete abstract
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Familiar abstraction examples

concrete abstract
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Examples of approximate semantics*

Initial states

Initial states ]
Final states of l y Final states

i Intermediate states

finite traces \ ( o .d \
‘a b ¢ T T d a
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ) ) Y ) (‘ """ ‘d\
C Infinite .6 .f ’.C.Lm.
g R traces 2 g h V&L O 8
——— —— — — ——_——_——— @ o9
2 e l i g g h
o o 0 0 0o 0 0 0 0 0 0 o o o -:- ®..0 .0
\k T ) K E L \ vt
e ® @
A e e ¢ L
01 23 45 6728 9 discrete time
Trace semantics Denotational Natural
semantics semantics

3 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).
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Information loss

e Because of the information loss, not all questions can be
definitely answered;
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Information loss

e Because of the information loss, not all questions can be
definitely answered;

e All answers given by the abstract semantics are always correct
with respect to the concrete semantics.
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Example of information loss

Concrete « — Abstract
Question trace denotational natural
semantics semantics semantics

Starting from state ¢
can execution terminate In — — —
state h?
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Semantics

.- Initial states
Initial states .
i Int dinte stat Final states of l Final states
ntermediate states finite traces \ (. ..... .5
a b c . . o d a
L Y ) ®:@® \
O Infinite il (%%
——0—0—0—0—0—0—0—9, traces 16" o .h o & -®f
T S S R S S L s — (Y y — \
H—Q—.—Q—H—Q—H—.—.—.‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ . ®Q L IO
X A A A A A | l i g h
o o o o ¢ 0 0 0 0 0 0 0 o o o -:- °..® L )
\k e ) \ E L K vt
e — - - ®®
A e e e ¢ L
01 23 45 6 78 9 discrete time
Trace semantics Denotational Natural
semantics semantics
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Example of information loss

Concrete «— — Abstract
Question trace denotational natural
semantics semantics semantics
Starting from state ¢
can execution terminate In yes yes yes

state h?
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Example of information loss

Concrete «— — Abstract
Question trace denotational natural
semantics semantics semantics
Starting from state ¢
can execution terminate In yes yes yes

state h?

Does execution starting
from state &k always — — —
terminate?
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Semantics

Initial states

Initial states .
Final states of l y Final states

i Intermediate states finite traces \ ( o .d \
a

Y ) o9 \
Infinite e f (.a .d
o9 | . | @
traces , Xy ) g h >2>< ef>
Q@ L _JEE
1] g h
®--0 @9
| kL K v ]
\ ) &
2 e e e ¢ L
01 23 45 6 78 9 discrete time
Trace semantics Denotational Natural
semantics semantics
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Example of information loss

Concrete «— —Abstract
Question trace denotational natural
semantics semantics semantics
Starting from state ¢
can execution terminate In yes yes yes
state h?
Does execution starting
from state £ always no no 277

terminate?
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Example of information loss

Concrete «— —Abstract
Question trace denotational natural
semantics semantics semantics
Starting from state ¢
can execution terminate In yes yes yes
state h?
Does execution starting
from state £ always no no 277

terminate?

Can state b be immedi-
ately followed by state c?
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Semantics

Initial states Initial states

i Intermediate states [ inal states of l ¢F1nal states
( finite traces \ ( oo
altb el T d a
e Y ) ®:@® \
e oo o Infinite e f (’&.d
| -0 | . | e
SOOI races 12y h L &l C Y
| — — — — — —— —— — @0 e @
2 l i g h
*—0—0—0—0—0—0—0—0—0—0—0—0—0—0— - | - ® @ ® 9
\k S ) \ E L K vt
—_—_————_——_——_— — — — — — — — —- - - o9
A e e e ¢ L
01 23 45 678 9 discrete time
Trace semantics Denotational Natural
semantics semantics
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Example of information loss

Concrete « — Abstract
Question trace denotational natural
semantics semantics semantics
Starting from state ¢
can execution terminate In yes yes yes
state h?
Does execution starting
from state £ always no no 277
terminate?
Can state b be immedi- Jes 277 277

ately followed by state c?
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Example of information loss

Concrete « — Abstract
Question trace denotational natural
semantics semantics semantics

Starting from state ¢

can execution terminate In yes yes yes
state h?

Does execution starting

from state £ always no no 277
terminate?

Can state b be immedi-

yes 277 77
ately followed by state c?

The more concrete semantics can answer more questions. The more ab-
stract semantics are more simple.
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Example of non comparable
approximated semantics*

Initial states Transitions Final states
® —o 06— --- 0—o

( a\ (a b b c d \ (‘d\
® *—o 0—0 0—90 0—90---0—9 ®
(& e f f
° e—o 06—0 06—0 --- o0—o o ¢

TSI ; L
Yy *—e 06—9 0—90 o—9 --- *—o . ®.
() 1 J K ])
.k: kH —o 0—0 06—0 o0—° --- *—o- - -

\.6) \gH *—o 0—0 06— o0—° 0—0---0—0---)

Operational semantics

4 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).
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What is the information loss?

Concrete«— — Abstract
Question trace denotational natural operational
semantics semantics semantics semantics

Starting from state g

can execution terminate yes yes yes —
in state A?

Does execution starting

from state £ always no no 277 —
terminate?

Can state b be immedi-

es 277 777 —
ately followed by state c? Y
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Operational semantics

Initial states Transitions Final states
® o—o ([0—90 ) --- o—o

/ a\ (a b Ub ¢ d \ {’d\
® —o 06—90 06— 0—90---0—9 ®
(& e f f>

% og> % go—o —o oo --- oo, > X ‘h
o —o 0—0 06—90 06— --- *—o . ®.
i i J K J}
.k kH —o 06—0 0—90 o0—° --- —o- - -

\.5) \EH e—o 0—0 06—0 0—° 0—0---0—0---)

Operational semantics
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The information loss is incomparable

Concrete«— —Abstract Incomparable
Question trace denotational natural operational
semantics semantics semantics semantics
Starting from state ¢
can execution terminate yes yes yes 277
In state h?
Does execution starting
from state k& always no no 277 277
terminate?
Can state b be immedi- yes 277 277 Jes

ately followed by state c?
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Computable approximations

e If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;
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Computable approximations

e If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is

effectively computable by a computer;
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Example of computable approximations of an
[in]finite set of points

A
=
=
% + o+
S +
TR + ++ * {,,,,<19, 88>,---7
S * (19, 99),...}
=
T
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Example of computable approximations of an
[in]finite set of points (signs)

xIr
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Example of computable approximations of an
[in]finite set of points (intervals)

z € [19, 88]
y € [19, 99

xIr
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Example of computable approximations of an
[in]finite set of points (octagons)

r1§x§9
T+ 1y < 38
V1<y<o
\x—y§99

xIr
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Example of computable approximations of an
[in]finite set of points (polyhedra)

192 4+ 88y < 2000
192 4+ 99y > 0

xIr

P. Cousot & N. Halbwachs, POPL'78
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Example of computable approximations of an

[in]finite set of points (simple congruences)

r = 19 mod 88
y = 19 mod 99

{

................».

0000000000000 00O0
0000000000000 00O0
0000000000000 0O0O0
0000000000000 000
0000000000000 000
0000000000000 000
©e0000d0000000O0O0O0
0000000000000 O0O
000000 c¢0000000O0
0000000000000 000
000000600 060000000
0000000000000 000
0000000000000 00
ooooooo@oooooo”mm

00000000O0C0OCGOOOO
A 1

00000000 00000O06OCGOCGS
)

thesis P. Granger, 1991
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Example of computable approximations of an

[in]finite set of points (linear congruences)

o, © o o o

<
O
O
o
.o @
®
O
® o
o o
O
e o o o

.\%

0
x

lr + 9y = 8 mod 8
lx — 9y =9 mod 9

thesis P. Granger, 1991
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Example of computable approximations of an
[in]finite set of points (trapezoidal linear con-

- o o gruences)

y 4 A
- -
y A A Ay
BRI gl B Y

A -

\

-

\

> .
-/ -

\
\

thesis F. Masdupuy, 1993
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Application of the congruence analysis:
communications in OCCAM

Communications of “i/o buffer”
Process 1 Process 3 Process 2
i:= 0; iouk:= 0; = 0; T
ALT* — Pp[F17 n; —» 737 n; )
CASE BLT+ BLT+
i<10; i CASE i CASE
- E n= 1; n= 1;
1 T P -
1 3 Ti[i]; p|E 17 tuf[in]; —» % a7 TE[i];
i:= i+ 1; —”-" 17 n; )’-“ 37 n;
F&LT : in:= in+ 1; : ji= j+ 1;
TR i CASE FALT
ouk<in; 5
-
2101
21 buf[ouk];
H out = ouk+ 1;
: FALT : |
213, r
=l @ =l E

thesis N. Mercouroff, 1990
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More difficult: non numerical
structures
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More difficult: non numerical
structures

e Most structures manipulated by programs are not numerical
(so called symbolic structures);
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More difficult: non numerical
structures

e Most structures manipulated by programs are not numerical
(so called symbolic structures);

e It is the case, for example, of the following structures:
— control structures (call graphs, recursion trees),
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More difficult: non numerical
structures

e Most structures manipulated by programs are not numerical
(so called symbolic structures);

e It is the case, for example, of the following structures:
- control structures (call graphs, recursion trees),
- data structures (search trees),
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More difficult: non numerical
structures

e Most structures manipulated by programs are not numerical
(so called symbolic structures);
e It is the case, for example, of the following structures:
- control structures (call graphs, recursion trees),
- data structures (search trees),
- communication structures (distributed programs),
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More difficult: non numerical
structures

e Most structures manipulated by programs are not numerical
(so called symbolic structures);
e It is the case, for example, of the following structures:
- control structures (call graphs, recursion trees),
- data structures (search trees),
- communication structures (distributed programs),
- information transfer structures (mobile programs), etc.
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Example 1: (infinite) sets of (infinite) decorated trees

VAV.EDN
SN MR,
FANENF SN
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Example 2: (infinite) set of (infinite) decorated

graphs

&
P Ohnd
Q" K V"-’A-‘:‘s a»v" X
OB a

1130336 0P

XX

(/
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Precise compact approximations
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Precise compact approximations

e It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.)
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Precise compact approximations

e It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:

- the various set-theoretic operations can be efficiently im-
plemented;
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Precise compact approximations

e It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:

~ the various set-theoretic operations can be efficiently im-
plemented;

- the memory size does not explode combinatorially for com-
plex and/or irregular sets;
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Precise compact approximations

e It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:

~ the various set-theoretic operations can be efficiently im-
plemented;

- the memory size does not explode combinatorially for com-
plex and/or irregular sets;

- the approximations remain precise.
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Precise compact approximations

e It is very difficult to find compact and expressive computer
representations of such sets of objects (languages, automata,
trees, graphs, etc.) such that:

~ the various set-theoretic operations can be efficiently im-
plemented;

- the memory size does not explode combinatorially for com-
plex and/or irregular sets;

- the approximations remain precise.

theses |. Stransky, 1988, A. Deutsch, 1992, A. Venet, 1998,
L. Mauborgne, 1999, F. Védrine, 2000
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Example of compact approximations

of infinite sets of infinite trees
Binary Decision Graphs:

VN D YN
Dl><l0 tru\e/ C \T ?/ D tru{

true false true
0“,1¢ infinite number of 0’s fair vectors ends by 0¥
Y

Tree schemata: .

‘- oD PR <N
A

]

QmEmomEmo

{a"b|n € N} {f(a™e,b"e,c"e)|n € N}
Note that E is the equality relation.

these L. Mauborgne, 1999
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Program Static Analysis
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Difficulty of programming

e Large scale computer programming is very difficult;
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Difficulty of programming

e Large scale computer programming is very difficult;

e Reasoning on large programs is very difficult;
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Difficulty of programming

e Large scale computer programming is very difficult;
e Reasoning on large programs is very difficult;

e Errors are quite frequent.
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Example 1: first year exam at the Ecole
polytechnique
What is the effect of the following PASCAL program:

program P (input, output);
procedure NewLine; begin writeln end,
procedure P (X : integer; procedure Q) ;
procedure R;
begin write(X); Q; end;
begin
if X > O then begin R; P(X - 1, R); end;
end;
begin
P(5, NewLine);
end.
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Example 1: first year exam at the Ecole
polytechnique
What is the effect of the following PASCAL program:

program P (input, output);
procedure NewLine; begin writeln end,
procedure P (X : integer; procedure Q) ;
procedure R;
begin write(X); Q; end;
begin
if X > O then begin R; P(X - 1, R); end;
end;
begin
P(5, NewLine);
end.

= N W b O
N W & O
= Ol
o

Less than 5% of the answers are correct!
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Example 2: first year exam at the Ecole
polytechnique
Prove that the following program prints the value > 91:

program MacCarthy (input,output);
var x, m : 1nteger;

function MC(n : integer) : integer;

begin

if n > 100 then MC := n - 10
else MC := MC(MC(n + 11));

end;
begin

read(x); m := MC(x); writeln(m);
end.
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Example 2: first year exam at the Ecole
polytechnique
Prove that the following program prints the value > 91:

program MacCarthy (input,output);
var x, m : 1nteger;

function MC(n : integer) : integer;

begin

if n > 100 then MC := n - 10
else MC := MC(MC(n + 11));

end;
begin

read(x); m := MC(x); writeln(m);
end.

Less than 50 % of the proofs given as answers are correct!
P g
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Program static analysis

e Objective: discover programming errors before they lead to
disastrous catastrophes!
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Program static analysis

e Objective: discover programming errors before they lead to
disastrous catastrophes!

e Program static analysis uses abstract interpretation to derive,
from a standard semantics, an approximate and computable
semantics;
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Program static analysis

e Objective: discover programming errors before they lead to
disastrous catastrophes!

e Program static analysis uses abstract interpretation to derive,
from a standard semantics, an approximate and computable
semantics;

e It follows that the computer is able to analyze the behavior
of software before and without executing it;
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Program static analysis

e Objective: discover programming errors before they lead to
disastrous catastrophes!

e Program static analysis uses abstract interpretation to derive,
from a standard semantics, an approximate and computable
semantics;

e It follows that the computer is able to analyze the behavior
of software before and without executing it;

e This is essential for computer-based safety-critical systems
(for example: planes, trains, launchers, nuclear plants, etc.).
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Example: interval analysis (1975) °

Program to be analyzed:

x = 1;

while x < 10000 do

od;

5 P. Cousot & R. Cousot, ISOP'76.
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Example: interval analysis (1975) °
Equations (abstract interpretation of the semantics):
X1 =[1,1]
Xo = (X7 U X3) N |—00,9999]

1.X b X3 = Xo @ [1,1]
while x < 10000 do (X4 = (X1UX3)M {10000, +00
2:
x :=x + 1
3:
od;
4

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Increasing chaotic iteration, initialization:
X1 = [17 1]
Xo = (X7 U X3) N |—00,9999]

1: s 1, XSZXQ@[L”
while x < 10000 do Xy = (X1 U X3) N (10000, +00]
2
X := X + ]_ X1 :®
3: X2:@
od; X3:@
4: X4:@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Increasing chaotic iteration:
X1 =[1,1]
Xo = (X7 U X3) N |—00,9999]

1: b 1, XSZXQ@[L”
while x < 10000 do \*4 = (X1 U X3) M {10000, +o0]
2:
x :=x + 1 X = |1,1]
3: X2:@
od; XgZ@
4 - X4:@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Increasing chaotic iteration:
X1 =[1,1]
Xo = (X7 U X3) N |[—00,9999

1.X o X3 =Xo®[L1]
while x < 10000 do (X4 = (KX1UX5) M [10000, Foo)
2:
X :=x +1 X1 = [1,1]
3 X9 = [171]
od; Xz =10
4. X4:(Z)

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Increasing chaotic iteration:
X1 =[1,1]
Xo = (X7 U X3) N |—00,9999]

1: s 1, XSZXQ@[LH
| while x < 10000 do Xy = (X1 U X3) N [10000, +oo]
2 o
x :=x + 1 X1 — _1,1_
3: Xo = [1,1
od; X3 =12,2]
4 X4 :@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Increasing chaotic iteration:
X1 =[1,1]
Xo = (X7 U X3) N |[—00,9999

1: s 1, X3:X2@[171]
| while x < 10000 do Xy = (X1 U X3) N [10000, +oo]
2 o
x :=x + 1 X1 — _1,1_
3: Xo =11, 2]
od; X3 =12,2
4 X4 :@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Increasing chaotic iteration: convergence?
X = |1,1]
Xo = (X7 U X3) N |—00,9999]

1: b 1, XSZXQ@[LH
| while x < 10000 do \*4 = (X1 U X3) N {10000, +00
2: o
x :=x + 1 X1 — _1,1_
3: Xo =1[1,2
od; Xg — :2,3:
4 X4 :@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Increasing chaotic iteration: convergence??
X = |1,1]
Xo = (X7 U X3) N |[—00,9999

1: s 1, X3:X2@[171]
| while x < 10000 do Xy = (X1 U X3) N [10000, +oo]
2 o
x :=x +1 X1 =1[1,1
3: Xo =11, 3]
od; X3 =12,3
4 X4 :@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Increasing chaotic iteration: convergence???
X = |1,1]
Xo = (X7 U X3) N |—00,9999]

1: s 1, XSZXQ@[LH
| while x < 10000 do Xy = (X1 U X3) N [10000, +oo]
2 o
x :=x +1 X1 =1[1,1
3: Xo =[1,3
od; X3 = 2,4
4 X4 :@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.

15 Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea, June 14, 2000, 16:20-17:20 <1 <] — 75 — | ll — > [& P> (© P. CousoT



Example: interval analysis (1975) °
Increasing chaotic iteration: convergence????
X = |1,1]
Xo = (X7 U X3) N |[—00,9999

1: s 1, X3:X2@[171]
| while x < 10000 do Xy = (X1 U X3) N [10000, +oo]
2 o
x :=x + 1 X1 — _1,1_
3: Xo =1, 4]
od; X3 = 2,4
4 X4 :@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °

X1 =11,1]
Xo = (X7 U X3) N |—00,9999]

1: b 1, XSZXQ@[LH
| while x < 10000 do \*4 = (X1 U X3) N {10000, +00
2: o
x :=x + 1 X1 — _1,1_
3: Xo = (1,4
od; Xg — :2,5:
4 X4 :@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °

X1 =11,1]
Xo = (X7 U X3) N |[—00,9999

1: s 1, X3:X2@[171]
| while x < 10000 do Xy = (X1 U X3) N [10000, +oo]
2 o
x :=x + 1 X1 — _1,1_
3: Xo =1, 5]
od; X3 =12,5
4 X4 :@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °

X1 =11,1]
Xo = (X7 U X3) N |—00,9999]

1: b 1, XSZXQ@[LH
| while x < 10000 do \*4 = (X1 U X3) N {10000, +00
2: o
x :=x +1 X1 =1[1,1
3: Xo = [1,5
od; Xg — :2,6:
4 X4 :@

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °

Convergence speed-up by extrapolation:
X = |1,1]

x = 1;
1: | X, =
while x < 10000 do
2:
x :=x + 1 Xy =
3 X9 =
od; X3 =
4 : Xy =

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.

Xo = (X7 U X3) N |[—00,9999
X3 = Xo & [1,1]

(X7 U X3) N [10000, +oc]

)

)

)

—_

|
|

_I_

00| <= widening

@)
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Example: interval analysis (1975) °
Decreasing chaotic iteration:
X1 =[1,1]
Xo = (X7 U X3) N |—00,9999]

1.X°_1’ X3 =Xo® |[1,1]
while x < 10000 do (A4 = (X1UX3)M {10000, +o00]
2:
x :=x + 1 Xlz:lal]
3: X2 — :17—|_OO]
od; X3 = :27—|_OO]
4. Xy = )

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Decreasing chaotic iteration:
X1 =[1,1]
Xo = (X7 U X3) N |[—00,9999

1.X b X3 =Xo&[L,1]
while x < 10000 do (X4 = (X1UX5) M [10000, Foo)
2:
X :=x + 1 X = :171]
3. X5 = [1,9999]
od; X3 = :27+OO]
2 Xy=10

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °

Decreasing chaotic iteration:

X1 =[1,1]
x := 1 Xo = (XU X3) N |—00,9999
1: - X3 =Xo®[1,1]
while x < 10000 do Xy = (X1 U X3) N {10000, 400
2 |
x :=x + 1 X1::1,1]
3: X5 = [1,9999]
od; X5 = [2,410000]
4. Xy =10

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °

Final solution:

X = |1,1]
x =1 Xo = (XU X3) N |—00,9999
1 - X3 =Xo®[1,1]
while x < 10000 do (4 = (X1 U X3) 110000, +00
2: |
X :=x + 1 X1::1,1]
3: X5 = [1,9999
od: X3 = [2,+10000]
4 X, = [+10000, +10000]

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Result of the interval analysis:
X = |1,1]
Xo = (X7 U X3) N |—00,9999]
X3 =Xy |[1,1]
X, = (X1 U X3) N [10000, 00|

x = 1;
1: {x=1}%

while x < 10000 do
2: {x € [1,9999]}

X :=x + 1 Xlz;l,l]
3: {x € [2,+10000]} Xy = [1,9999]
od: X5 = [2,+10000]
4. {x = 10000} X, = [+10000, +10000]

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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Example: interval analysis (1975) °
Exploitation of the result of the interval analysis:

x = 1;
1: {x=1}

while x < 10000 do
2: {x € [1,9999}

x = % + 1 «—— no overflow

3: {x € |2,+10000]}

od;
4. {x = 10000}

5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
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For imperative languages like PASCAL ...

Pascal Abstract Debugger

File| |Options| | Analyze| Edit| [Hide| [Show

File: /users/absint2/cousot/bin/Syntox/programs/MacCarthy0.p

program HacCarthy(input,output); (* HacCarthy’s 91-function *)
var x, m : integer;

function HC{n : integer) : integer;
begin
if (n = 100) then
MC := n-10
else beqgin
MC := MC(HC{n + 11))
end;
end;

begin
read{x);
m = HMC({x):;

ritelnim)g

end.

m [91..hi-10]
X top

@« First Condition. | »» | | Negation | Iterations: - 3 |+ thesis F. Bourdoncle.

1992
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An impressive application (1996/97)
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An impressive application (1996/97)

e A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft-

ware of the Ariane 5 launcher

© Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
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An impressive application (1996/97)

e A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft-

ware of the Ariane 5 launcher

e Automatic detection of the definiteness, potentiality, impos-

sibility or inaccessibility of run-time errors ’;

© Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).

7 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
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An impressive application (1996/97)

e A. Deutsch uses abstract interpretation (including interval
analysis) for the static analysis of the embedded ADA soft-

ware of the Ariane 5 launcher

e Automatic detection of the definiteness, potentiality, impos-

sibility or inaccessibility of run-time errors ’;

e Success for the 502 & 503 flights and the ARD °.

© Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).

7 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,
uninitialized variables, data races on shared data structures, etc.

8 Atmospheric Reentry Demonstrator: module coming back to earth.
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Some other recent applications of static
analysis by abstract interpretation

e program transformation & optimization;

e abstract model-checking of infinite systems;
e abstract testing;

e type inference (for undecidable systems);

e mobile code communication topology;

e automatic differentiation:

theses F. Bourdoncle, 1992, B. Monsuez, 1994 A. Venet, 1998,
F. Védrine, 2000, R. Cridlig, 2000
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Example of application of static analysis to program
transformation & optimization

[0 =——————— Netscape: Stan=—"—"—— M H
4« ® DA A 2 pwm &6 &S &
Back Forward PReload Harne Search  Metscape Images Print  Security

T S
.| Logation @ |http:.-".-"www'.Iix.p-:-Iytechnique.fr.-"cgi—stivy.-"Stan /session himl | ﬁl Wwhat's Related

-

STAN - the STatic ANalyser for CLP programs

The progream
mc(A,B) :- A>=101, A-B=10.'
mc(A,B) - A<=100, A-C=-11, mc(C,D), mc(D,B).

]

[4]»

The Goal (if any)
Goals |

Type of the analysis
# Backward
() Forward
i) Combined

Do the anl!mia ]

=== [ 456 %5 W B3 L[4
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Example of application of static analysis to program
transformation & optimization

-| Location .@|http.n Itr aliz< polytechnique fr fegi-stivy #Stan /stan cgi | @ ‘what's Related
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Some other recent applications of
abstract interpretation

e Fundamental applications:

— design of hierarchies of semantics,

e Practical applications:
~ security (analysis of cryptographic protocols, mobile code),
- semantic tattooing of software,
- data mining,

ongoing theses J. Feret, D. Monniaux
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Lattice of semantics

Hoare logics TpHv it
et
Weakest precondition ¢
. Twlp WP
semantics
Denotational semantics
0
Relational semantics
7-+
Trace semantics }
,7-+
- __ abstraction
| ] ___ equivalence
angelic natural demoniac --- restriction

determinist infinite
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Forthcoming research

A lot of fundamental research remains to be one:
e modularity,
e higher order functions & modules,
e floating point numbers,
e probabilistic analyses,

e liveness properties with fairness,
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A few references

Starter:

P. Cousot. Abstract interpretation. ACM Computing
Surveys 28 (2), 1996, 324-328.

On the web:
http://www.di.ens.fr/"cousot/
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http://www.di.ens.fr/~cousot/

Industrialization of static analysis by
abstract interpretation

e First research results: 1975;
e First industrializations:

- ¥ Connected Components Corporation (U.S.A.),
L. Harrison, 1993;

B Absint Angewandte Informatik GmbH (Germany),
R. Wilhelm, 1998:

. .
— Poyspace  Polyspace Technologies (France),

A. Deutsch & D. Pilaud, 1999.
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http://www.concmp.com/index.html
http://www.absint.com
http://www.polyspace.com

Prospects

e [ he fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un-
derstood);
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Prospects

e [ he fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un-
derstood);

e In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);
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Prospects

e [ he fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un-
derstood);

e In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);

e Research on fundamental ideas on software design is essen-
tial for modern societies;
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Prospects

e [ he fundamental problems of computer science are difficult
to explain to non specialists (only applications are well un-
derstood);

e In the future, the society will certainly be better aware
of these computer software related problems (e.g. through
catastrophes);

e Research on fundamental ideas on software design is essen-
tial for modern societies;

e T he application of such fundamental research can hardly be
scheduled in the short term (3 years);
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Conclusion
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Conclusion

THANK YOU FOR YOUR
ATTENTION
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