An Overview of Abstract Interpretation and Program Static Analysis

Patrick COUSOT

École Normale Supérieure
45 rue d'Ulm
75230 Paris cedex 05, France
mailto:Patrick.Cousot@ens.fr, http://www.di.ens.fr/~cousot
$1^{\text {st }}$ Int. Advisory Board Workshop, EECS Dept., KAIST,
Taejon, Korea June 14, 2000, 16:20-17:20

Motivations

What is (or should be) the main preoccupation of computer

scientists?

What is (or should be) the main preoccupation of computer

 scientists?
The production of reliable software, its maintenance and safe evolution year after year (up to 20 to 30 years).

Computer hardware change of scale

The 25 last years, computer hardware has seen its performances multiplied by 10^{4} to 10^{6};

Intel/Sandia Teraflops System (10^{12} flops)

The information processing revolution

A scale of 10^{6} is typical of a significant revolution:

- Energy: nuclear power station / Roman slave;
- Transportation: distance Earth - Mars / height of Korea

Computer software change of scale

- The size of the programs executed by these computers has grown up in similar proportions;

Computer software change of scale

- The size of the programs executed by these computers has grown up in similar proportions;
- Example 1 (modern text editor for the general public):
- > 1700000 lines of C^{2};
- 20000 procedures;
- 400 files;
- > 15 years of development.

[^0]
Computer software change of scale (cont'd)

- Example 2 (professional computer system):
- 30000000 lines of code;

Computer software change of scale (cont'd)

- Example 2 (professional computer system):
- 30000000 lines of code;
- 30000 (known) bugs!

Bugs

2

- Software bugs
- whether anticipated (Y2K bug)
- or unforeseen (failure of the 5.01 flight of Ariane V launcher)
are quite frequent;

Bugs

- Software bugs

Bugs

- Software bugs
- whether anticipated (Y2K bug)
- or unforeseen (failure of the 5.01 flight of Ariane V launcher)
are frequent;
- Bugs can be very difficult to discover in huge software;
- Bugs can have catastrophic consequences either very costly or inadmissible (embedded software in transportation systems);

The estimated cost of an overflow

The estimated cost of an overflow

-\$500 000000

The estimated cost of an overflow

- \$ 500000000

- Including indirect costs (delays, lost markets, etc):

\$ 2000000000

Capability of computer scientists

- The intellectual capability of computer scientists remains essentially unchanged year after year;

Capability of computer scientists

- The intellectual capability of computer scientists remains essentially unchanged year after year;
- The size of programmer teams in charge of software design and maintenance cannot evolve in such huge proportions;

Capability of computer scientists

- The intellectual capability of computer scientists remains essentiallyunchanged year after year;
- The size of programmer teams in charge of software design and maintenance cannot evolve in such huge proportions;
- Classical manual software verification methods (code reviews, simulations, debugging) do not scale up.

Responsibility of computer scientists

- The paradox is that the computer scientists do not assume any responsibility for software bugs (compare to the automotive or avionic industry);

Responsibility of computer scientists

- The paradox is that the computer scientists do not assume any responsibility for software bugs (compare to the automotive or avionic industry);
- Computer software bugs can become an important societal problem (collective fears and reactions? new legislation?);

Responsibility of computer scientists

- The paradox is that the computer scientists do not assume any responsibility for software bugs (compare to the automotive or avionic industry);
- Computer software bugs can become an important societal problem (collective fears and reactions? new legislation?);
- The combat against software bugs might even be the next worldwide war;

Responsibility of computer scientists

- The paradox is that the computer scientists do not assume any responsibility for software bugs (compare to the automotive or avionic industry);
- Computer software bugs can become an important societal problem (collective fears and reactions? new legislation?);
- The combat against software bugs might even be the next worldwide war;

It is absolutely necessary to widen the full set of methods and tools used to fight against software bugs.

Idea

Use the computer to find programming errors.

(Extremely difficult) question

How can computers be programmed so as to analyze the work they are given to do before effectively doing it?

A simplistic example: a cooking recipe

The soft-boiled egg recipe:

- Take a fresh egg out of the refrigerator;
- Plunged it into salted boiling water;
- Pull it out of the water after 4 mn.

A simplistic example: a cooking recipe

The soft-boiled egg recipe:

- Take a fresh egg out of the refrigerator;
- Plunged it into salted boiling water;
- Pull it out of the water after 4 h.

A simplistic example: a cooking recipe

The soft-boiled egg recipe:

- Take a fresh egg out of the refrigerator;
- Plunged it into salted boiling water;
- Pull it out of the water after 4 h .

Any cook can find the bug before carrying out the recipe!

A simplistic example: a cooking recipe

The soft-boiled egg recipe:

- Take a fresh egg out of the refrigerator;
- Plunged it into salted boiling water;
- Pull it out of the water after 4 h .

Any cook can find the bug before carrying out the recipe!
Why not computers?

A simplistic example: a cooking recipe

The soft-boiled egg recipe:

- Take a fresh egg out of the refrigerator;
- Plunged it into salted boiling water;
- Pull it out of the water after 4 h .

Any cook can find the bug before carrying out the recipe!
Why not computers?
What can we do about it?

Considered approaches for program verification

Considered approaches for program verification

Deductive methods

Considered approaches for program verification

Deductive methods: The proof size is exponential in the program size!

Considered approaches for program verification

Deductive methods: The proof size is exponential in the program size!
Model-checking

Considered approaches for program verification

Deductive methods: The proof size is exponential in the program size!
Model-checking: Gained only a factor of 100 in 10 years and the limit seems to be reached!

Considered approaches for program verification

Deductive methods: The proof size is exponential in the program size!
Model-checking: Gained only a factor of 100 in 10 years and the limit seems to be reached!
What else?

Abstract Interpretation

Introductory Talk

- Four notions to be introduced:
- Semantics,
- Undecidability,
- Abstract interpretation,
- Program static analysis;

Informal Introductory Talk

- Four notions to be introduced:
- Semantics,
- Undecidability,
- Abstract interpretation,
- Program static analysis;
- Completely informal explanation avoiding any formalism;

Informal Introductory Talk

- Four notions to be introduced:
- Semantics,
- Undecidability,
- Abstract interpretation,
- Program static analysis;
- Completely informal explanation avoiding any formalism;
- Illustrated by the work done in my research team and the theses that I directed since 10 years.

Semantics \& Undecidability

Hence we must first explain semantics, for example:

Syntax:

$$
\begin{aligned}
\mathbf{x}, \mathbf{f} \in \mathbb{X} \quad & : \\
e \in \mathbb{E} \quad & \text { variables } \\
e: & \text { expressions } \\
:= & \mathbf{x}|\boldsymbol{\lambda} \cdot e| e_{1}\left(e_{2}\right) \mid \\
& \boldsymbol{\mu f} \cdot \boldsymbol{\lambda} \mathbf{x} \cdot e\left|e_{1}-e_{2}\right| \\
& \mathbf{1} \mid\left(e_{1} ? e_{2}: e_{3}\right)
\end{aligned}
$$

Semantic domains:

\mathbb{W}	$\stackrel{\wedge}{=}\{\omega\}$	error
$z \in \mathbb{Z}$		integers
$\mathrm{u}, \mathrm{f}, \varphi \in \mathbb{U}$	$\cong \mathbb{W} \perp \oplus \mathbb{Z} \perp \oplus[\mathbb{U} \mapsto \mathbb{U}]_{\perp}$ values	
$\mathrm{R} \in \mathbb{R}$	$\triangleq \mathbb{X} \mapsto \mathbb{U}$	environments
$\phi \in \mathbb{S}$	$\triangleq \mathbb{R} \mapsto \mathbb{U}$	semantic domain

Semantics:

$$
\left.\mathbf{S} \llbracket e_{1} \rrbracket \mathrm{R}=\mathrm{f}::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} ? \downarrow(\mathrm{f})\left(\mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}\right) \mid \Omega\right)
$$

$$
\mathbf{S} \llbracket \mathbb{1} \rrbracket \triangleq \Lambda \mathrm{R} \cdot \uparrow(1):: \mathbb{Z}_{\perp}
$$

$$
\mathbf{S} \llbracket e_{1}-e_{2} \rrbracket \stackrel{\Delta}{=} \mathbf{R} \cdot\left(\mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp \vee \mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R}=\perp ? \perp \mid\right.
$$

$$
\mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\mathrm{z}_{1}:: \mathbb{Z}_{\perp} \wedge \mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}=\mathrm{z}_{2}:: \mathbb{Z}_{\perp} \text { ? }
$$

$$
\left.\uparrow\left(\downarrow\left(\mathbf{z}_{1}\right)-\downarrow\left(\mathbf{z}_{2}\right)\right):: \mathbb{Z}_{\perp} \mid \Omega\right)
$$

$\mathbf{S} \llbracket\left(e_{1} ? e_{2}: e_{3}\right) \rrbracket \stackrel{\Delta}{=} \mathbf{R} \cdot \mathbf{(S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp ? \perp \mid \mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\mathbf{z}:: \mathbb{Z}_{\perp}$? $\left.\left(\downarrow(\mathbf{z})=0 ? \mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R} \mid \mathbf{S} \llbracket e_{3} \rrbracket \mathbf{R}\right) \mid \Omega\right)$

$$
\begin{aligned}
& S \llbracket \mathrm{x} \rrbracket \stackrel{\Delta}{=} \Lambda \cdot R(\mathrm{x}) \\
& \mathbf{S} \llbracket \lambda \mathrm{x} \cdot e \rrbracket \stackrel{\Delta}{=} \mathrm{R} \cdot \uparrow(\Lambda u \cdot(\mathrm{u}=\perp \vee \mathrm{u}=\Omega ? \mathrm{u} \mid \\
& \mathrm{S} \llbracket e \rrbracket \mathrm{R}[\mathrm{x} \leftarrow \mathrm{u}]))::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} \\
& \mathbf{S} \llbracket e_{1}\left(e_{2}\right) \rrbracket \triangleq \Lambda \mathbf{R} \cdot\left(\mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp \vee \mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}=\perp ? \perp \mid\right.
\end{aligned}
$$

Hence we must first explain semantics, for example:

Syntax:

$$
\begin{aligned}
\mathbf{x}, \mathbf{f} \in \mathbb{X} \quad & : \quad \text { variables } \\
e \in \mathbb{E} \quad & : \text { expressions } \\
e: & := \\
& \mathrm{x}|\boldsymbol{\lambda} \cdot \boldsymbol{x} \cdot e| e_{1}\left(e_{2}\right) \mid \\
& \boldsymbol{\mu f} \cdot \boldsymbol{\lambda} \mathbf{x} \cdot e\left|e_{1}-e_{2}\right| \\
& \mathbf{1} \mid\left(e_{1} ? e_{2}: e_{3}\right)
\end{aligned}
$$

Semantic domains:

\mathbb{W}	$\stackrel{\triangle}{=}\{\omega\}$	error
$z \in \mathbb{Z}$		integers
$u, f, \varphi \in \mathbb{U}$	$\cong \mathbb{W} \mathbb{Z}_{\perp} \oplus[\mathbb{U} \mapsto \mathbb{U}]_{\perp}$ values	
$\mathrm{R} \in \mathbb{R}$	$\stackrel{\triangle}{=} \mathscr{X} \mapsto \mathbb{U}$	environments
$\phi \in \mathbb{S}$	$\triangleq \mathbb{R} \mapsto \mathbb{U}$	semantic domain

Semantics:

$$
\begin{aligned}
& \mathbf{S} \llbracket \mathrm{x} \rrbracket \triangleq \Lambda \mathrm{R} \cdot \mathrm{R}(\mathrm{x}) \\
& \mathbf{S} \llbracket \lambda \mathrm{x} \cdot e \rrbracket \stackrel{ }{=} \Lambda \mathrm{R} \cdot \uparrow(\Lambda u \cdot(\mathrm{u}=\perp \mathrm{V} \mathbf{u}=\Omega ? \mathrm{u} \mid \\
&\mathbf{S} \llbracket e \rrbracket \mathrm{R}[\mathrm{x} \leftarrow \mathrm{u}]))::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} \\
& \mathbf{S} \llbracket e_{1}\left(e_{2}\right) \rrbracket \triangleq \Lambda \mathbf{R} \cdot\left(\mathbf{S} \llbracket e_{1} \rrbracket \mathrm{R}=\perp \vee \mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}=\perp ? \perp \mid\right.
\end{aligned}
$$

$$
\left.\mathbf{S} \llbracket e_{1} \rrbracket \mathrm{R}=\mathrm{f}::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} ? \downarrow(\mathrm{f})\left(\mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}\right) \mid \Omega\right)
$$

$$
\mathbf{S} \llbracket \mathbb{1} \rrbracket \triangleq \Lambda \mathrm{R} \cdot \uparrow(1):: \mathbb{Z}_{\perp}
$$

$$
\mathbf{S} \llbracket e_{1}-e_{2} \rrbracket \stackrel{\Delta}{=} \mathbf{R} \cdot \mathbf{(S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp \vee \mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R}=\perp ? \perp \mid
$$

$$
\mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\mathrm{z}_{1}:: \mathbb{Z}_{\perp} \wedge \mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}=\mathrm{z}_{2}:: \mathbb{Z}_{\perp} \text { ? }
$$

$$
\left.\uparrow\left(\downarrow\left(\mathbf{z}_{1}\right)-\downarrow\left(\mathbf{z}_{2}\right)\right):: \mathbb{Z}_{\perp} \mid \Omega\right)
$$

$$
\mathbf{S} \llbracket\left(e_{1} ? e_{2}: e_{3}\right) \rrbracket \stackrel{\Delta}{=} \mathbf{R} \cdot \mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp ? \perp \mid \mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\mathrm{z}:: \mathbb{Z}_{\perp} ?
$$

$$
\left.\left(\downarrow(\mathbf{z})=0 ? \mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R} \mid \mathbf{S} \llbracket e_{3} \rrbracket \mathrm{R}\right) \mid \Omega\right)
$$

with this

Hence we must first explain semantics, for example:

Syntax:

$$
\begin{aligned}
\mathbf{x}, \mathbf{f} \in \mathbb{X} \quad & : \quad \text { variables } \\
e \in \mathbb{E} \quad & : \text { expressions } \\
e: & := \\
& \mathrm{x}|\boldsymbol{\lambda} \cdot \boldsymbol{x} \cdot e| e_{1}\left(e_{2}\right) \mid \\
& \boldsymbol{\mu f} \cdot \boldsymbol{\lambda} \mathbf{x} \cdot e\left|e_{1}-e_{2}\right| \\
& \mathbf{1} \mid\left(e_{1} ? e_{2}: e_{3}\right)
\end{aligned}
$$

Semantic domains:

\mathbb{W}	$\stackrel{\triangle}{=}\{\omega\}$	error
$z \in \mathbb{Z}$		integers
$u, f, \varphi \in \mathbb{U}$	$\cong \mathbb{W} \mathbb{Z}_{\perp} \oplus[\mathbb{U} \mapsto \mathbb{U}]_{\perp}$ values	
$\mathrm{R} \in \mathbb{R}$	$\stackrel{\triangle}{=} \mathscr{X} \mapsto \mathbb{U}$	environments
$\phi \in \mathbb{S}$	$\triangleq \mathbb{R} \mapsto \mathbb{U}$	semantic domain

Semantics:

$$
\begin{aligned}
& \mathbf{S} \llbracket \mathrm{x} \rrbracket \triangleq \Lambda \mathrm{R} \cdot \mathrm{R}(\mathrm{x}) \\
& \mathbf{S} \llbracket \lambda \mathrm{x} \cdot e \rrbracket \stackrel{ }{=} \Lambda \mathrm{R} \cdot \uparrow(\Lambda u \cdot(\mathrm{u}=\perp \mathrm{V} \mathbf{u}=\Omega ? \mathrm{u} \mid \\
&\mathbf{S} \llbracket e \rrbracket \mathrm{R}[\mathrm{x} \leftarrow \mathrm{u}]))::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} \\
& \mathbf{S} \llbracket e_{1}\left(e_{2}\right) \rrbracket \triangleq \Lambda \mathbf{R} \cdot\left(\mathbf{S} \llbracket e_{1} \rrbracket \mathrm{R}=\perp \vee \mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}=\perp ? \perp \mid\right.
\end{aligned}
$$

$$
\left.\mathbf{S} \llbracket e_{1} \rrbracket \mathrm{R}=\mathrm{f}::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} ? \downarrow(\mathrm{f})\left(\mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}\right) \mid \Omega\right)
$$

$$
\mathbf{S} \llbracket \mathbb{1} \rrbracket \triangleq \Lambda \mathrm{R} \cdot \uparrow(1):: \mathbb{Z}_{\perp}
$$

$$
\mathbf{S} \llbracket e_{1}-e_{2} \rrbracket \stackrel{\Delta}{=} \mathbf{R} \cdot \mathbf{(S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp \vee \mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R}=\perp ? \perp \mid
$$

$$
\mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\mathrm{z}_{1}:: \mathbb{Z}_{\perp} \wedge \mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}=\mathrm{z}_{2}:: \mathbb{Z}_{\perp} \text { ? }
$$

$$
\left.\uparrow\left(\downarrow\left(\mathbf{z}_{1}\right)-\downarrow\left(\mathbf{z}_{2}\right)\right):: \mathbb{Z}_{\perp} \mid \Omega\right)
$$

$$
\mathbf{S} \llbracket\left(e_{1} ? e_{2}: e_{3}\right) \rrbracket \stackrel{\Delta}{=} \mathbf{R} \cdot \mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp ? \perp \mid \mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\mathrm{z}:: \mathbb{Z}_{\perp} ?
$$

$$
\left.\left(\downarrow(\mathbf{z})=0 ? \mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R} \mid \mathbf{S} \llbracket e_{3} \rrbracket \mathrm{R}\right) \mid \Omega\right)
$$

with this

Hence we must first explain semantics, for example:

Syntax:

$$
\begin{aligned}
\mathbf{x}, \mathbf{f} \in \mathbb{X} \quad & : \quad \text { variables } \\
e \in \mathbb{E} \quad & : \text { expressions } \\
e: & := \\
& \mathrm{x}|\boldsymbol{\lambda} \cdot \boldsymbol{x} \cdot e| e_{1}\left(e_{2}\right) \mid \\
& \boldsymbol{\mu f} \cdot \boldsymbol{\lambda} \mathbf{x} \cdot e\left|e_{1}-e_{2}\right| \\
& \mathbf{1} \mid\left(e_{1} ? e_{2}: e_{3}\right)
\end{aligned}
$$

Semantic domains:

\mathbb{W}	$\stackrel{\triangle}{=}\{\omega\}$	error
$z \in \mathbb{Z}$		integers
$u, f, \varphi \in \mathbb{U}$	$\cong \mathbb{W} \mathbb{Z}_{\perp} \oplus[\mathbb{U} \mapsto \mathbb{U}]_{\perp}$ values	
$\mathrm{R} \in \mathbb{R}$	$\stackrel{\triangle}{=} \mathscr{X} \mapsto \mathbb{U}$	environments
$\phi \in \mathbb{S}$	$\triangleq \mathbb{R} \mapsto \mathbb{U}$	semantic domain

Semantics:

$$
\begin{aligned}
& \mathbf{S} \llbracket \mathrm{x} \rrbracket \triangleq \Lambda \mathrm{R} \cdot \mathrm{R}(\mathrm{x}) \\
& \mathbf{S} \llbracket \lambda \mathrm{x} \cdot e \rrbracket \stackrel{ }{=} \Lambda \mathrm{R} \cdot \uparrow(\Lambda u \cdot(\mathrm{u}=\perp \mathrm{V} \mathbf{u}=\Omega ? \mathrm{u} \mid \\
&\mathbf{S} \llbracket e \rrbracket \mathrm{R}[\mathrm{x} \leftarrow \mathrm{u}]))::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} \\
& \mathbf{S} \llbracket e_{1}\left(e_{2}\right) \rrbracket \triangleq \Lambda \mathbf{R} \cdot\left(\mathbf{S} \llbracket e_{1} \rrbracket \mathrm{R}=\perp \vee \mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}=\perp ? \perp \mid\right.
\end{aligned}
$$

$$
\left.\mathbf{S} \llbracket e_{1} \rrbracket \mathrm{R}=\mathrm{f}::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} ? \downarrow(\mathrm{f})\left(\mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}\right) \mid \Omega\right)
$$

$$
\mathbf{S} \llbracket \mathbb{1} \rrbracket \triangleq \Lambda \mathrm{R} \cdot \uparrow(1):: \mathbb{Z}_{\perp}
$$

$$
\mathbf{S} \llbracket e_{1}-e_{2} \rrbracket \stackrel{\Delta}{=} \mathbf{R} \cdot \mathbf{(S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp \vee \mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R}=\perp ? \perp \mid
$$

$$
\mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\mathrm{z}_{1}:: \mathbb{Z}_{\perp} \wedge \mathbf{S} \llbracket e_{2} \rrbracket \mathrm{R}=\mathrm{z}_{2}:: \mathbb{Z}_{\perp} \text { ? }
$$

$$
\left.\uparrow\left(\downarrow\left(\mathbf{z}_{1}\right)-\downarrow\left(\mathbf{z}_{2}\right)\right):: \mathbb{Z}_{\perp} \mid \Omega\right)
$$

$$
\mathbf{S} \llbracket\left(e_{1} ? e_{2}: e_{3}\right) \rrbracket \stackrel{\Delta}{=} \mathbf{R} \cdot \mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp ? \perp \mid \mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\mathrm{z}:: \mathbb{Z}_{\perp} ?
$$

$$
\left.\left(\downarrow(\mathbf{z})=0 ? \mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R} \mid \mathbf{S} \llbracket e_{3} \rrbracket \mathrm{R}\right) \mid \Omega\right)
$$

with this

Semantics

- The semantics of a program provides a formal mathematical model of all possible behaviors of a computer system executing this program (interacting with any possible environment);

Semantics

- The semantics of a program provides a formal mathematical model of all possible behaviors of a computer system executing this program (interacting with any possible environment);
- The semantics of a language defines the semantics of any program written in this language.

Example 1: trace semantics

Examples of computation traces

－Finite（ $\mathrm{C} 1+1=$ ）：

mencmat	Comellator	Cememator	Comemator	cmatren
	－	\square	\square	
9］0⿴囗	9可回	9可回	可可回	可可回
7e99	［1999	［999		799］
9590	9 969	9 969	9 959	959
0	P13		1230	0
0	\bigcirc	0	－	0

－Erroneous（C1＋1＋1＋1．．．）：

－Infinite（ $C+0+0+0 . .$.$) ：$

[^1]
Example 2: geometric semantics

$\mathbb{I} \mathrm{Pa} \cdot \mathrm{Pb} \cdot \mathrm{Va} \cdot \mathrm{Vb}$
$\| \mathrm{Pb} \cdot \mathrm{Pc} \cdot \mathrm{Vb} \cdot \mathrm{Vc}$
$\| \mathrm{Pc} \cdot \mathrm{Pa} \cdot \mathrm{Vc} \cdot \mathrm{Va} \mathbb{\square}$

É. Goubault thesis, 1995

Example 2: geometric semantics

(deadlock)

II $\mathrm{Pa} . \mathrm{Pb} . \mathrm{Va} . \mathrm{Vb}$
\| Pb.Pc.Vb.Vc
\| Pc.Pa.Vc.Va 】

deadlock

É. Goubault thesis, 1995

Undecidability

Undecidability

- All interesting questions relative to the semantics of non trivial programs are undecidable;

Undecidability

- All interesting questions relative to the semantics of non trivial programs are undecidable:
\Rightarrow no computer can always exactly answer such questions in finite time;

Undecidability

- All interesting questions relative to the semantics of non trivial programs are undecidable:
\Rightarrow no computer can always exactly answer such questions in finite time;
- One can mathematically define the semantics of a program as the solution of a fixpoint equation;

Undecidability

- All interesting questions relative to the semantics of non trivial programs are undecidable:
\Rightarrow no computer can always exactly answer such questions in finite time;
- One can mathematically define the semantics of a program as the solution of a fixpoint equation:
\Rightarrow but no computer can exactly solve these equations in finite time.

Semantics and fixpoints

Syntax:

$$
\begin{aligned}
\mathbf{x}, \mathbf{f} \in \mathbb{X} \quad & : \quad \text { variables } \\
e \in \mathbb{E} \quad & : \text { expressions } \\
e: & :=\mathbf{x}|\boldsymbol{\lambda} \cdot e| e_{1}\left(e_{2}\right) \mid \\
& \boldsymbol{\mu f} \cdot \boldsymbol{\lambda} \mathbf{x} \cdot e\left|e_{1}-e_{2}\right| \\
& \mathbf{1} \mid\left(e_{1} ? e_{2}: e_{3}\right)
\end{aligned}
$$

Semantic domains:

Semantics:

$$
\begin{aligned}
& S \llbracket x \rrbracket \stackrel{\Delta}{=} \Lambda R \cdot R(x) \\
& \mathrm{S} \llbracket \lambda \mathrm{x} \cdot e \rrbracket \stackrel{\triangle}{=} \Lambda \mathrm{R} \cdot \uparrow(\Lambda \mathrm{u} \cdot(\mathrm{u}=\perp \vee \mathrm{u}=\Omega ? \mathrm{u} \mid \\
& \mathrm{S} \llbracket e \rrbracket \mathrm{R}[\mathrm{x} \leftarrow \mathrm{u}]))::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} \\
& \mathbf{S} \llbracket e_{1}\left(e_{2}\right) \rrbracket \stackrel{\triangle}{=} \mathbf{R} \cdot\left(\mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\perp \vee \mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R}=\perp ? \perp \mid\right. \\
& \left.\mathbf{S} \llbracket e_{1} \rrbracket \mathbf{R}=\mathrm{f}::[\mathbb{U} \mapsto \mathbb{U}]_{\perp} ? \downarrow(\mathrm{f})\left(\mathbf{S} \llbracket e_{2} \rrbracket \mathbf{R}\right) \mid \Omega\right)
\end{aligned}
$$

Fixpoints: Intuition

Behaviors =

Fixpoints: Intuition

Behaviors $=\{0 \mid \circ$ is a final state $\}$

Fixpoints: Intuition

$$
\begin{aligned}
\text { Behaviors } & =\{0 \mid \circ \text { is a final state }\} \\
\cup\{\longrightarrow & \ldots \\
& \ldots \longrightarrow \text { is an elementary step \& }
\end{aligned}
$$

Fixpoints: Intuition

$$
\begin{aligned}
\text { Behaviors } & =\{0 \mid \circ \text { is a final state }\} \\
\cup\{\ldots & \ldots \\
\cup\{\ldots & \text { is an elementary step \& } \\
\cup & \ldots
\end{aligned}
$$

Fixpoints: Intuition

Behaviors $=\{0 \mid \circ$ is a final state $\}$

In general, the equation has multiple solutions.

Least Fixpoints: Intuition

Behaviors $=\{\bullet \mid \bullet$ is a final state $\}$

In general, the equation has multiple solutions. Choose the least one for the partial ordering:
« more finite traces \& less infinite traces».

Abstract Interpretation

Abstract interpretation

- Abstract interpretation is a theory of the approximation of the behavior of discrete systems, including the semantics of (programming or specification) languages;

Abstract interpretation

- Abstract interpretation is a theory of the approximation of the behavior of discrete systems, including the semantics of (programming or specification) languages;
- Abstract interpretation formalizes the intuitive idea that a semantics is more or less precise according to the considered observation level.

Familiar abstraction examples

concrete	abstract
citizen	
road network	
film	
car	
scientific article	
scientific article	
number	

Familiar abstraction examples

concrete	abstract
citizen	ID card
road network	road map
film	bill
car	trade mark
scientific article	abstract
scientific article	keywords
number	sign and/or parity

Examples of approximate semantics ${ }^{3}$

[^2]
Information loss

- Because of the information loss, not all questions can be definitely answered;

Information loss

- Because of the information loss, not all questions can be definitely answered;
- All answers given by the abstract semantics are always correct with respect to the concrete semantics.

Example of information loss

Concrete \leftarrow
Question
trace semantics

denotational semantics

\rightarrow Abstract

natural semantics

Starting from state g can execution terminate in state h ?

Semantics

Example of information loss

Concrete \leftarrow
Question

Starting from state g can execution terminate in yes yes
yes
\rightarrow Abstract
natural semantics state h ?

Example of information loss

Concrete \leftarrow
Question

Starting from state g can execution terminate in state h ?
Does execution starting from state k always terminate?

Semantics

Example of information loss

Concrete \leftarrow
Question
trace semantics

denotational semantics

\rightarrow Abstract
natural semantics

Starting from state g
can execution terminate in state h ?
$\begin{array}{lll}\text { Does execution starting } \\ \text { from state } k & \text { always }\end{array}$ from state k always no no ?? terminate?
yes
yes
yes

Example of information loss

Concrete \leftarrow
Question
trace semantics

denotational semantics
\rightarrow Abstract
natural semantics

Starting from state g can execution terminate in state h ?
Does execution starting from state k always no ??? terminate?

Can state b be immediately followed by state c ?

Semantics

Example of information loss

Concrete \leftarrow
Question
trace semantics

denotational semantics
\rightarrow Abstract
natural semantics

Starting from state g can execution terminate in state h ?
$\begin{array}{llr}\text { Does } & \text { execution } & \text { starting } \\ \text { from } & \text { state } & k \\ \text { always }\end{array}$ from state k always no no ?? terminate?
Can state b be immediately followed by state c ?
yes
yes
yes

Example of information loss

Concrete \leftarrow
 Question
 trace semantics

\rightarrow Abstract
natural
semantics

Starting from state g can execution terminate in yes yes
yes state h ?

Does execution starting from state k always no no ?? terminate?

Can state b be immediately followed by state c ?
yes ???
???
The more concrete semantics can answer more questions. The more abstract semantics are more simple.

Example of non comparable approximated semantics ${ }^{4}$

Initial states

Transitions

Final states

Operational semantics

[^3]
What is the information loss?

Concrete \leftarrow

\rightarrow Abstract

Question

trace semantics

denotational semantics
natural semantics
operational semantics

Starting from state g can execution terminate yes yes yes in state h ?

Does execution starting from state k always no no ??? terminate?

Can state b be immediately followed by state c ????

Operational semantics

Operational semantics

The information loss is incomparable

Concrete \longleftarrow	\rightarrow Abstract	Incomparable	
Question	trace	denotational	natural semantics
semantics	operational semantics	semantics	

Starting from state g can execution terminate yes yes yes??? in state h ?

Does execution starting from state k always
no
???
??? terminate?

Can state b be immediately followed by state c ?
yes ??? ??? yes

Computable approximations

- If the approximation is rough enough, the abstraction of a semantics can lead to a version which is less precise but is effectively computable by a computer;

Computable approximations

- If the approximation is rough enough, the abstraction of a semantics can lead to a version which is less precise but is effectively computable by a computer;
- By effective computation of the abstract semantics, the computer is able to analyze the behavior of programs and of software before and without executing them.

Example of computable approximations of an [in]finite set of points

Example of computable approximations of an [in]finite set of points (signs)

Example of computable approximations of an [in]finite set of points (intervals)

Example of computable approximations of an [in]finite set of points (octagons)

Example of computable approximations of an [in]finite set of points (polyhedra)

P. Cousot \& N. Halbwachs, POPL'78

Example of computable approximations of an

 [in]finite set of points (simple congruences)

$$
\left\{\begin{array}{l}
x=19 \bmod 88 \\
y=19 \bmod 99
\end{array}\right.
$$

thesis P. Granger, 1991

Example of computable approximations of an

 [in]finite set of points (linear congruences)
thesis P. Granger, 1991

Example of computable approximations of an

 [in]finite set of points (trapezoidal linear con- gruences)
thesis F. Masdupuy, 1993

Application of the congruence analysis: communications in OCCAM

thesis N. Mercouroff, 1990

More difficult: non numerical structures

More difficult: non numerical structures

- Most structures manipulated by programs are not numerical (so called symbolic structures);

More difficult: non numerical

structures

- Most structures manipulated by programs are not numerical (so called symbolic structures);
- It is the case, for example, of the following structures:
- control structures (call graphs, recursion trees),

More difficult: non numerical

structures

- Most structures manipulated by programs are not numerical (so called symbolic structures);
- It is the case, for example, of the following structures:
- control structures (call graphs, recursion trees),
- data structures (search trees),

More difficult: non numerical structures

- Most structures manipulated by programs are not numerical (so called symbolic structures);
- It is the case, for example, of the following structures:
- control structures (call graphs, recursion trees),
- data structures (search trees),
- communication structures (distributed programs),

More difficult: non numerical

structures

- Most structures manipulated by programs are not numerical (so called symbolic structures);
- It is the case, for example, of the following structures:
- control structures (call graphs, recursion trees),
- data structures (search trees),
- communication structures (distributed programs),
- information transfer structures (mobile programs), etc.

Example 1: (infinite) sets of (infinite) decorated trees

Example 2: (infinite) set of (infinite) decorated graphs

Precise compact approximations

Precise compact approximations

- It is very difficult to find compact and expressive computer representations of such sets of objects (languages, automata, trees, graphs, etc.)

Precise compact approximations

- It is very difficult to find compact and expressive computer representations of such sets of objects (languages, automata, trees, graphs, etc.) such that:
- the various set-theoretic operations can be efficiently implemented;

Precise compact approximations

- It is very difficult to find compact and expressive computer representations of such sets of objects (languages, automata, trees, graphs, etc.) such that:
- the various set-theoretic operations can be efficiently implemented;
- the memory size does not explode combinatorially for complex and/or irregular sets;

Precise compact approximations

- It is very difficult to find compact and expressive computer representations of such sets of objects (languages, automata, trees, graphs, etc.) such that:
- the various set-theoretic operations can be efficiently implemented;
- the memory size does not explode combinatorially for complex and/or irregular sets;
- the approximations remain precise.

Precise compact approximations

- It is very difficult to find compact and expressive computer representations of such sets of objects (languages, automata, trees, graphs, etc.) such that:
- the various set-theoretic operations can be efficiently implemented;
- the memory size does not explode combinatorially for complex and/or irregular sets;
- the approximations remain precise.

> theses I. Stransky, 1988, A. Deutsch, 1992, A. Venet, 1998, L. Mauborgne, 1999, F. Védrine, 2000

Example of compact approximations of infinite sets of infinite trees

Binary Decision Graphs:

Tree schemata:

Note that E is the equality relation.
these L. Mauborgne, 1999

Program Static Analysis

Difficulty of programming

- Large scale computer programming is very difficult;

Difficulty of programming

- Large scale computer programming is very difficult;
- Reasoning on large programs is very difficult;

Difficulty of programming

- Large scale computer programming is very difficult;
- Reasoning on large programs is very difficult;
- Errors are quite frequent.

Example 1: first year exam at the École polytechnique

What is the effect of the following Pascal program:

```
program P (input, output);
    procedure NewLine; begin writeln end;
    procedure P (X : integer; procedure Q);
        procedure R;
            begin write(X); Q; end;
    begin
        if X > 0 then begin R; P(X - 1, R); end;
    end;
begin
    P(5, NewLine);
end.
```


Example 1: first year exam at the École polytechnique

What is the effect of the following Pascal program:

```
program P (input, output);
5
    procedure NewLine; begin writeln end; 4 5
    procedure P (X : integer; procedure Q); 3 4 5
        procedure R; }2
            begin write(X); Q; end; 1 % 2 % 3 4 4
    begin
        if X > 0 then begin R; P(X - 1, R); end;
        end;
begin
    P(5, NewLine);
end.
```

Less than 5% of the answers are correct!

Example 2: first year exam at the École polytechnique

Prove that the following program prints the value ≥ 91 :

```
program MacCarthy (input,output);
    var x, m : integer;
    function MC(n : integer) : integer;
        begin
            if n > 100 then MC := n - 10
            else MC := MC(MC (n + 11));
        end;
begin
    read(x); m := MC(x); writeln(m);
end.
```


Example 2: first year exam at the École polytechnique

Prove that the following program prints the value ≥ 91 :

```
program MacCarthy (input,output);
    var x, m : integer;
    function MC(n : integer) : integer;
        begin
            if n > 100 then MC := n - 10
            else MC := MC(MC (n + 11));
        end;
begin
    read(x); m := MC(x); writeln(m);
end.
```

Less than 50 \% of the proofs given as answers are correct!

Program static analysis

- Objective: discover programming errors before they lead to disastrous catastrophes!

Program static analysis

- Objective: discover programming errors before they lead to disastrous catastrophes!
- Program static analysis uses abstract interpretation to derive, from a standard semantics, an approximate and computable semantics;

Program static analysis

- Objective: discover programming errors before they lead to disastrous catastrophes!
- Program static analysis uses abstract interpretation to derive, from a standard semantics, an approximate and computable semantics;
- It follows that the computer is able to analyze the behavior of software before and without executing it;

Program static analysis

- Objective: discover programming errors before they lead to disastrous catastrophes!
- Program static analysis uses abstract interpretation to derive, from a standard semantics, an approximate and computable semantics;
- It follows that the computer is able to analyze the behavior of software before and without executing it;
- This is essential for computer-based safety-critical systems (for example: planes, trains, launchers, nuclear plants, etc.).

Example: interval analysis (1975) ${ }^{5}$
 Program to be analyzed:

```
    x := 1;
1:
    while x < 10000 do
2:
        x := x + 1
3:
    od;
4:
    5 P. Cousot & R. Cousot, ISOP'76.
1 st Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea, June 14, 2000,16:20-17:20<&&& & Cousot
```


Example: interval analysis (1975) ${ }^{5}$

Equations (abstract interpretation of the semantics):

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

2:

$$
x:=x+1
$$

3:
od;
4:
5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.
$1^{\text {st }}$ Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea, June 14, 2000, 16:20-17:20 $\nleftarrow \&-67-\Omega \square-\perp \square \perp$ C. Cousot

Example: interval analysis (1975) ${ }^{5}$

Increasing chaotic iteration, initialization:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:

3:

$$
x:=x+1
$$

od;
4 :

$$
\left\{\begin{array}{l}
X_{1}=\emptyset \\
X_{2}=\emptyset \\
X_{3}=\emptyset \\
X_{4}=\emptyset
\end{array}\right.
$$

[^4]
Example: interval analysis (1975) ${ }^{5}$

Increasing chaotic iteration:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:
$3:$

$$
x:=x+1
$$

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\emptyset \\
X_{3}=\emptyset \\
X_{4}=\emptyset
\end{array}\right.
$$

5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.
$1^{\text {st }}$ Int. Advisory Board Workshop, EECS Dept., KAIST, Taejon, Korea, June 14, 2000, 16:20-17:20 $\nleftarrow \subset-69-\rrbracket \square-\perp \square \perp$ C. Cousot

Example: interval analysis (1975) ${ }^{5}$

Increasing chaotic iteration:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

2:
$3:$

$$
x:=x+1
$$

od;
4 :

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,1] \\
X_{3}=\emptyset \\
X_{4}=\emptyset
\end{array}\right.
$$

[^5]
Example: interval analysis (1975) ${ }^{5}$

Increasing chaotic iteration:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:
$3:$

$$
\mathrm{x}:=\mathrm{x}+1
$$

od;

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,1] \\
X_{3}=[2,2] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^6]
Example: interval analysis (1975) ${ }^{5}$

Increasing chaotic iteration:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:
$3:$

$$
\mathrm{x}:=\mathrm{x}+1
$$

od;
4 :

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,2] \\
X_{3}=[2,2] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^7]
Example: interval analysis (1975) ${ }^{5}$

Increasing chaotic iteration: convergence?

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:

3:

$$
\mathrm{x}:=\mathrm{x}+1
$$

od;

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,2] \\
X_{3}=[2,3] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^8]
Example: interval analysis (1975) ${ }^{5}$

Increasing chaotic iteration: convergence??

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:
$3:$

$$
x:=x+1
$$

od;
4 :

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,3] \\
X_{3}=[2,3] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^9]
Example: interval analysis (1975) ${ }^{5}$

 Increasing chaotic iteration: convergence???$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:
$3:$

$$
\mathrm{x}:=\mathrm{x}+1
$$

od;
4:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,3] \\
X_{3}=[2,4] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^10]
Example: interval analysis (1975) ${ }^{5}$

 Increasing chaotic iteration: convergence????$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:
$3:$

$$
x:=x+1
$$

od;
4 :

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,4] \\
X_{3}=[2,4] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^11]
Example: interval analysis (1975) ${ }^{5}$

 Increasing chaotic iteration: convergence?????$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:

3:

$$
x:=x+1
$$

od;
4:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,4] \\
X_{3}=[2,5] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^12]
Example: interval analysis (1975) ${ }^{5}$

 Increasing chaotic iteration: convergence??????$$
\mathrm{X}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:

3:

$$
x:=x+1
$$

od;
4:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,5] \\
X_{3}=[2,5] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^13]
Example: interval analysis (1975) ${ }^{5}$

 Increasing chaotic iteration: convergence???????$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:

3:

$$
\mathrm{x}:=\mathrm{x}+1
$$

od;
4:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,5] \\
X_{3}=[2,6] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^14]
Example: interval analysis (1975) ${ }^{5}$

Convergence speed-up by extrapolation:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

2:

$$
x:=x+1
$$

3:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,+\infty] \Leftarrow \text { widening } \\
X_{3}=[2,6] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^15]
Example: interval analysis (1975) ${ }^{5}$

Decreasing chaotic iteration:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:

$$
x:=x+1
$$

3:
od;

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,+\infty] \\
X_{3}=[2,+\infty] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^16]
Example: interval analysis (1975) ${ }^{5}$

Decreasing chaotic iteration:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

2:

$$
x:=x+1
$$

3:
od;

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,9999] \\
X_{3}=[2,+\infty] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^17]
Example: interval analysis (1975) ${ }^{5}$

Decreasing chaotic iteration:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

while x < 10000 do
2:
$3:$

$$
\mathrm{x}:=\mathrm{x}+1
$$

od;

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,9999] \\
X_{3}=[2,+10000] \\
X_{4}=\emptyset
\end{array}\right.
$$

[^18]
Example: interval analysis (1975) ${ }^{5}$

Final solution:

$$
\mathrm{x}:=1 ;
$$

1:

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

2:
$3:$

$$
x:=x+1
$$

od;
4 :

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,9999] \\
X_{3}=[2,+10000] \\
X_{4}=[+10000,+10000]
\end{array}\right.
$$

[^19]
Example: interval analysis (1975) ${ }^{5}$

Result of the interval analysis:

$$
\begin{aligned}
& x:=1 ; \\
1: & \{x=1\} \\
& \text { while } x<10000 \text { do } \\
2: & \{x \in[1,9999]\} \\
& \quad x:=x+1 \\
3: & \{x \in[2,+10000]\} \\
& \text { od; } \\
4: & \{x=10000\}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=\left(X_{1} \cup X_{3}\right) \cap[-\infty, 9999] \\
X_{3}=X_{2} \oplus[1,1] \\
X_{4}=\left(X_{1} \cup X_{3}\right) \cap[10000,+\infty]
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
X_{1}=[1,1] \\
X_{2}=[1,9999] \\
X_{3}=[2,+10000] \\
X_{4}=[+10000,+10000]
\end{array}\right.
$$

[^20]
Example: interval analysis (1975) ${ }^{5}$

Exploitation of the result of the interval analysis:

```
    x := 1;
1: {x=1}
    while x < 10000 do
2: {x\in[1,9999]}
                x := x + 1
                            \longleftarrow no overflow
3: {x\in[2,+10000]}
    od;
4: {x=10000}
    5 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
```


For imperative languages like PASCAL ...

thesis F. Bourdoncle, 1992

[^21]
An impressive application (1996/97)

An impressive application (1996/97)

- A. Deutsch uses abstract interpretation (including interval analysis) for the static analysis of the embedded ADA software of the Ariane 5 launcher ${ }^{6}$;

[^22]
An impressive application (1996/97)

- A. Deutsch uses abstract interpretation (including interval analysis) for the static analysis of the embedded ADA software of the Ariane 5 launcher ${ }^{6}$;
- Automatic detection of the definiteness, potentiality, impossibility or inaccessibility of run-time errors ${ }^{7}$;

[^23]
An impressive application (1996/97)

- A. Deutsch uses abstract interpretation (including interval analysis) for the static analysis of the embedded ADA software of the Ariane 5 launcher ${ }^{6}$;
- Automatic detection of the definiteness, potentiality, impossibility or inaccessibility of run-time errors ${ }^{7}$;
- Success for the 502 \& 503 flights and the ARD ${ }^{8}$.

[^24]
Some other recent applications of static analysis by abstract interpretation

- program transformation \& optimization;
- abstract model-checking of infinite systems;
- abstract testing;
- type inference (for undecidable systems);
- mobile code communication topology;
- automatic differentiation;
- ...

> theses F. Bourdoncle, 1992, B. Monsuez, 1994,A. Venet, 1998,
> F. Védrine, 2000, R. Cridlig, 2000

Example of application of static analysis to program transformation \& optimization

Example of application of static analysis to program transformation \& optimization

Some other recent applications of abstract interpretation

- Fundamental applications:
- design of hierarchies of semantics,
- ...;
- Practical applications:
- security (analysis of cryptographic protocols, mobile code),
- semantic tattooing of software,
- data mining,
-
ongoing theses J. Feret, D. Monniaux

Lattice of semantics

Forthcoming research

A lot of fundamental research remains to be one:

- modularity,
- higher order functions \& modules,
- floating point numbers,
- probabilistic analyses,
- liveness properties with fairness,
- ...;

A few references

Starter:

P. Cousot. Abstract interpretation. ACM Computing Surveys 28 (2), 1996, 324-328.

On the web:

http://www.di.ens.fr/~ cousot/

Industrialization of static analysis by abstract interpretation

- First research results: 1975;
- First industrializations:
- 臖 Connected Components Corporation (U.S.A.), L. Harrison, 1993;
- © AbsInt Angewandte Informatik GmbH (Germany), R. Wilhelm, 1998;
- Polsprace Polyspace Technologies (France), A. Deutsch \& D. Pilaud, 1999.

Prospects

- The fundamental problems of computer science are difficult to explain to non specialists (only applications are well understood);

Prospects

- The fundamental problems of computer science are difficult to explain to non specialists (only applications are well understood);
- In the future, the society will certainly be better aware of these computer software related problems (e.g. through catastrophes);

Prospects

- The fundamental problems of computer science are difficult to explain to non specialists (only applications are well understood);
- In the future, the society will certainly be better aware of these computer software related problems (e.g. through catastrophes);
- Research on fundamental ideas on software design is essential for modern societies;

Prospects

- The fundamental problems of computer science are difficult to explain to non specialists (only applications are well understood);
- In the future, the society will certainly be better aware of these computer software related problems (e.g. through catastrophes);
- Research on fundamental ideas on software design is essential for modern societies;
- The application of such fundamental research can hardly be scheduled in the short term (3 years);

Conclusion

Computer scientists need long term research funding.

Conclusion

Computer scientists need long term research funding.

THANK YOU FOR YOUR ATTENTION

[^0]: 2 full-time reading of the code (35 hours/week) would take at least 3 months!

[^1]: $1^{\text {st }}$ Int．Advisory Board Workshop，EECS Dept．，KAIST，Taejon，Korea，June 14，2000，16：20－17：20 $\nleftarrow \subset-21-\rrbracket \square-\perp \square \perp$ C Cousot

[^2]: 3 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To appear in TCS (2000).

[^3]: 4 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To appear in TCS (2000).

[^4]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^5]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^6]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^7]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^8]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^9]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^10]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^11]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^12]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^13]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^14]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^15]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^16]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^17]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^18]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^19]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^20]: 5 P. Cousot \& R. Cousot, ISOP'1976, POPL'77.

[^21]:

[^22]: 6 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).

[^23]: ${ }^{6}$ Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
 7 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions, uninitialized variables, data races on shared data structures, etc.

[^24]: 6 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
 7 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions, uninitialized variables, data races on shared data structures, etc.
 8 Atmospheric Reentry Demonstrator: module coming back to earth.

