
On the Design of Abstractions

for Software Checking

Patrick COUSOT
École Normale Supérieure, 45 rue d’Ulm

75230 Paris cedex 05, France

mailto:cousot@ens.fr
http://www.di.ens.fr/˜cousot

Microsoft Research, Redmond, U.S.A., February 12th , 2001

� � ✄

mailto:cousot@ens.fr
http://www.di.ens.fr/~cousot

Motivations & Results

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 1 — [] � — ✄✄✄� © P. Cousot

Abstraction in Program Analysis &
Model Checking

Abstract interpretation has been successfully applied in:
• static program analysis (by approximation of the semantics);
• model checking (state explosion & infinite state models).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 2 — [] � — ✄✄✄� © P. Cousot

Abstraction in Model Checking

Main abstractions in model checking:
• Implicit abstraction: to informally design the model of refer­

ence;
• Polyhedral abstraction (with widening): synchronous, real-time

& hybrid system verification;
• Finitary abstraction (without widening): hardware & proto­

cole verification 1;

1 Abstracting concrete transition systems to abstract transition systems so as to reuse existing model checkers in the
abstract.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 3 — [] � — ✄✄✄� © P. Cousot

On Completeness in Program
Analysis & Model Checking

• The abstraction must always be sound;
• For completeness:
-- in static program analysis: not required (possible uncer­
tainty);
-- in model checking: required 2 (formal verification method 3).

2 allowing only for yes/no answers, all uncertainty resulting only from getting out of computer resources.
3 otherwise model-checking would be a mere debugging method or equivalent to program/model analysis.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 4 — [] � — ✄✄✄� © P. Cousot

Discovery of Abstractions

• In static program analysis:
-- task of the program analyzer designer ,
-- find a sound abstraction providing useful information for all programs,
-- essentially manual ,
-- partially automated e.g. by combination & refinement of abstract
domains;

• In model checking:
-- task of the user ,
-- find a sound & complete abstraction required to verify one model,
-- looking for automation (e.g. starting from a trivial or user provided
guess and refining by trial and error).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 5 — [] � — ✄✄✄� © P. Cousot

Informal Objective of the Talk

• Understand the logical nature of the problem of finding an
appropriate abstraction (for proving safety properties).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 6 — [] � — ✄✄✄� © P. Cousot

Formalization of the Problem

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 7 — [] � — ✄✄✄� © P. Cousot

Fixpoint Checking

• Model-checking safety properties of transition systems:

lfp
≤

λX . I ∨ F (X) ≤ S ?

• Program static analysis by abstract interpretation:

γ(lfp
≤

λX . α(I ∨ F (γ(X)))) ≤ S ?

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 8 — [] � — ✄✄✄� © P. Cousot

Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive con­
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be
found in the abstract;

Partial completeness: in case of termination of the ab­
stract fixpoint checking algorithm, no positive answer can
be missed.

Termination/resource limitation is therefore considered a sepa­
rate problem (widening/narrowing, etc.).
Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 9 — [] � — ✄✄✄� © P. Cousot

Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive con­
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be
found in the abstract;

Partial completeness: in case of termination of the ab­
stract fixpoint checking algorithm, no positive answer can
be missed.

Termination/resource limitation is therefore considered a sepa­
rate problem (widening/narrowing, etc.).
Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 9 — [] � — ✄✄✄� © P. Cousot

Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive con­
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be
found in the abstract;

Partial completeness: in case of termination of the ab­
stract fixpoint checking algorithm, no positive answer can
be missed.

Termination/resource limitation is therefore considered a sepa­
rate problem (widening/narrowing, etc.).
Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 9 — [] � — ✄✄✄� © P. Cousot

Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive con­
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be
found in the abstract;

Partial completeness: in case of termination of the ab­
stract fixpoint checking algorithm, no positive answer can
be missed.

Termination/resource limitation is therefore considered a sepa­
rate problem (widening/narrowing, etc.).
Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 9 — [] � — ✄✄✄� © P. Cousot

Practical Question

Is it possible to automatize the discovery of complete
abstractions?

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 10 — [] � — ✄✄✄� © P. Cousot

Objective of the Talk (Formally)

Constructively characterize the abstractions 〈α, γ〉 for
which abstract fixpoint algorithms are partially com-
plete.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 11 — [] � — ✄✄✄� © P. Cousot

Concrete Fixpoint Checking

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 12 — [] � — ✄✄✄� © P. Cousot

Concrete Fixpoint Checking Problem

• Complete lattice 〈L, ≤, 0, 1, ∨, ∧〉;
• Monotonic transformer F ∈ L

mon�−→ L;
• Specification 〈I, S〉 ∈ L2;

lfp
≤

λX . I ∨ F (X) ≤ S ?

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 13 — [] � — ✄✄✄� © P. Cousot

Example

• Set of states: 	;
• Initial states: I ⊆ 	;
• Transition relation: τ ⊆ 	× 	;
• Transition system: 〈	, τ, I〉;
• Complete lattice: 〈℘(), ⊆, ∅, 	, ∪, ∩〉;
• Right-image of X ⊆ 	 by τ :

post[τ](X) �= {s′ | ∃s ∈ X : 〈s, s′〉 ∈ τ};
• Reflexive transitive closure of τ : τ

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 14 — [] � — ✄✄✄� © P. Cousot

Example (contd.)

• Safety specification: S ⊆ 	

• Reachable states from I :

post[τ
](I) = lfp
⊆

λX . I ∪ post[τ](X) ;

• Satisfaction of the safety specification (post[τ
](I) ⊆ S):

lfp
⊆

λX . I ∨ post[τ](X) ⊆ S ?

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 15 — [] � — ✄✄✄� © P. Cousot

Concrete Fixpoint Checking
Algorithm 4

Algorithm 1

X := I ; Go := (X ≤ S);
while Go do

X ′ := I ∨ F (X);
Go := (X �= X ′) & (X ′ ≤ S);
X := X ′;

od;
return (X ≤ S);

4 P. Cousot & R. Cousot, POPL’77

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 16 — [] � — ✄✄✄� © P. Cousot

Partial correctness of Alg. 1

Alg. 1 is partially correct: if it ever terminates then it returns

lfp
≤

λX . I ∨ F (X) ≤ S.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 17 — [] � — ✄✄✄� © P. Cousot

Concrete Invariants

A ∈ L is an invariant for 〈F, I, S〉 if and only if I ≤
A & F (A) ≤ A & A ≤ S;

Note 1 (Floyd’s proof method): lfp
≤

λX . I ∨ F (X) ≤ S if
and only if there exists an invariant A ∈ L for 〈F, I, S〉;

Note 2: if Alg. 1 terminates successfully, then it has computed
an invariant (X = lfp

≤
λX ′. I ∨ F (X ′)).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 18 — [] � — ✄✄✄� © P. Cousot

Dual and Adjoined
Concrete Fixpoint Checking

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 19 — [] � — ✄✄✄� © P. Cousot

Galois connection

A Galois connection , written

〈L, ≤〉 −−−→←−−−
f

g
〈M, �〉,

is such that:
• 〈L, ≤〉 and 〈M, �〉 are posets;
• the maps f ∈ L �→M and g ∈ M �→ L satisfy

∀x ∈ L : ∀y ∈ M :f(x) � y if and only if x ≤ g(y) .

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 20 — [] � — ✄✄✄� © P. Cousot

Concrete Adjoinedness

In general, F has an adjoint F̃ such that 〈L, ≤〉 −−−→←−−−
F

F̃ 〈L, ≤〉.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 21 — [] � — ✄✄✄� © P. Cousot

Example of Concrete Adjoinedness

• τ−1 is the inverse of τ ;

• pre[τ] �= post[τ−1];

• Set complement ¬X
�= 	 \X;

• p̃re[τ](X) �= ¬pre[τ](¬X);

〈℘(), ⊆〉 −−−−−−→←−−−−−−
post [τ]

p̃re[τ]
〈℘(), ⊆〉 .

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 22 — [] � — ✄✄✄� © P. Cousot

Fixpoint Concrete Adjoinedness

〈L, ≤〉 −−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
λI . lfp

≤
λX . I∨F (X)

λS . gfp
≤

λX . S∧F̃ (X)
〈L, ≤〉

Proof:

lfp
≤

λX . I ∨ F (X) ≤ S
⇐⇒ ∃A ∈ L : I ≤ A & F (A) ≤ A & A ≤ S (1)
⇐⇒ ∃A ∈ L : I ≤ A & A ≤ F̃ (A) & A ≤ S

⇐⇒ I ≤ gfp
≤

λX . S ∧ F̃ (X) .

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 23 — [] � — ✄✄✄� © P. Cousot

The Complete Lattice of Concrete
Invariants

• The set I of invariants for 〈F, I, S〉 is a complete lattice
〈I, ≤ , lfp

≤
λX . I ∨ F (X) , gfp

≤
λX . S ∧ F̃ (X) , ∨ , ∧〉.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 24 — [] � — ✄✄✄� © P. Cousot

Dual Concrete Fixpoint Checking
Algorithm 5

Algorithm 2

Y := S; Go := (I ≤ Y);
while Go do

Y ′ := S ∧ F̃ (Y);
Go := (Y �= Y ′) & (I ≤ Y ′);
Y := Y ′;

od;
return (I ≤ Y);

5 P. Cousot, 1981; E.M. Clarke & E.A. Emerson, 1981; J.-P. Queille and J. Sifakis, 1982.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 25 — [] � — ✄✄✄� © P. Cousot

Partial correctness of Alg. 2

Alg. 2 is partially correct: if it ever terminates then it returns

lfp
≤

λX . I ∨ F (X) ≤ S.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 26 — [] � — ✄✄✄� © P. Cousot

On (Dual) Fixpoint Checking

lfp
≤

λX . I ∨ F (X) ≤ S

if and only if

I ≤ gfp
≤

λX . S ∧ F̃ (X).
if and only if

lfp
≤

λX . I ∨ F (X) ≤ gfp
≤

λX . S ∧ F̃ (X)

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 27 — [] � — ✄✄✄� © P. Cousot

The Adjoined Concrete Fixpoint
Checking Algorithm

Algorithm 3

X := I ; Y := S; Go := (X ≤ Y);
while Go do

X ′ := I ∨ F (X); Y ′ := S ∧ F̃ (Y);
Go := (X �= X ′) & (Y �= Y ′) & (X ′ ≤ Y ′);
X := X ′; Y := Y ′;

od;
return (X ≤ Y);

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 28 — [] � — ✄✄✄� © P. Cousot

Partial correctness of Alg. 3

Alg. 3 is partially correct: if it ever terminates then it returns

lfp
≤

λX . I ∨ F (X) ≤ S.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 29 — [] � — ✄✄✄� © P. Cousot

Abstract Fixpoint Checking

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 30 — [] � — ✄✄✄� © P. Cousot

Abstract Interpretation

• Concrete complete lattice: 〈L, ≤, 0, 1, ∨, ∧〉;
• Abstract complete lattice: 〈M, �, ⊥, , !, "〉;
• Abstraction/concretization pair 〈α, γ〉;
• Galois connection:

〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 31 — [] � — ✄✄✄� © P. Cousot

Example: the Recurrent Abstraction
in Abstract Model-Checking

• State abstraction: h ∈ 	 �→ 	;

• Property abstraction: αh(X) �= {h(x) | x ∈ X}= post[h] 6;

• Property concretization: γh(Y) �= {x | h(x) ∈ Y } = p̃re[h];
• Galois connection:

〈℘(), ⊆〉 −−−→←−−−
αh

γh 〈℘(), ⊆〉.

• Example (rule of signs): 	 = Z so choose h(z) to be the
sign of z.
6 Considering the function h as a relation.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 32 — [] � — ✄✄✄� © P. Cousot

Example: the Sign Abstraction

⊥ (ø)

+ ({+1})- ({-1}) 0 ({0})

0 ({-1,+1}) + ({+1,0})
.

- ({-1,0})
.

 ({-1,0,+1})

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 33 — [] � — ✄✄✄� © P. Cousot

Abstract Fixpoint Checking
Algorithm 7

Algorithm 4

X := α(I); Go := (γ(X) ≤ S);
while Go do

X ′ := α(I ∨ F (γ(X)));
Go := (X �= X ′) & (γ(X ′) ≤ S);
X := X ′;

od;
return if (γ(X) ≤ S) then true else I don’t know;

7 In P. Cousot & R. Cousot, POPL’77, (γ(X) ≤ S) is X � S ′ where S ′ = α(S).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 34 — [] � — ✄✄✄� © P. Cousot

Partial correctness of Alg. 4

Alg. 4 is partially correct: if it terminates and returns “true ”
then lfp

≤
λX . I ∨ F (X) ≤ S.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 35 — [] � — ✄✄✄� © P. Cousot

Dual and Adjoined
Abstract Fixpoint Checking

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 36 — [] � — ✄✄✄� © P. Cousot

Dual Abstraction

〈L, ≥〉 −−−→←−−−
α̃

γ̃
〈M, $〉.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 37 — [] � — ✄✄✄� © P. Cousot

Example of Dual Abstraction (Contd.)

If

• 〈L, ≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;

• 〈M, �, ⊥, , !, ", �〉 is a complete boolean lattice;

• 〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉;

• α̃
�= � ◦ α ◦ ¬ and γ̃

�= ¬ ◦ γ ◦ �
then

〈L, ≥〉 −−−→←−−−
α̃

γ̃
〈M, $〉

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 38 — [] � — ✄✄✄� © P. Cousot

Example of Dual Abstraction (Contd.)

For the recurrent abstraction in abstract model-checking αh(X)
�= {h(x) | x ∈ X} = post[h] we have:

• 〈℘(), ⊆〉 −−−−−−→←−−−−−−
post[h]

p̃re[h]
〈℘(), ⊆〉;

• p̃re[h](X) = ¬pre[h](¬X) and p̃ost[h](X) = ¬post[h](¬X) ,
so:

• 〈℘(), ⊇〉 −−−−−−→←−−−−−−
p̃ost[h]

pre[h]
〈℘(), ⊇〉.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 39 — [] � — ✄✄✄� © P. Cousot

Abstract Adjoinedness

〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉 , 〈L, ≤〉 −−−→←−−−

F

F̃ 〈L, ≤〉 and 〈L, ≥〉 −−−→←−−−
α̃

γ̃

〈M, $〉 imply:

〈M, �〉 −−−−−−→←−−−−−−
α◦F ◦γ̃

α̃◦F̃ ◦γ
〈M, �〉.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 40 — [] � — ✄✄✄� © P. Cousot

The Dual Abstract Fixpoint
Checking Algorithm

Algorithm 5
Y := α̃(S); Go := (I ≤ γ̃(Y));
while Go do

Y ′ := α̃(S ∧ F̃ (γ̃(Y)));
Go := (Y �= Y ′) & (I ≤ γ̃(Y ′));
Y := Y ′;

od;
return if (I ≤ γ̃(Y)) then true else I don’t know;

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 41 — [] � — ✄✄✄� © P. Cousot

Partial correctness of Alg. 5

Alg. 5 is partially correct: if it terminates and returns “true ”

then lfp
≤

λX . I ∨ F (X) ≤ S.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 42 — [] � — ✄✄✄� © P. Cousot

The Particular Case of Complement
Abstraction

1. 〈L, ≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;
2. 〈M, �, ⊥, , ", !, �〉 is a complete boolean lattice;

3. 〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉;

4. 〈L, ≤〉 −−−→←−−−
F

F̃ 〈L, ≤〉;

5. F̃
�= ¬ ◦ F ◦ ¬ , α̃

�= � ◦ α ◦ ¬ and γ̃
�= ¬ ◦ γ ◦ �.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 43 — [] � — ✄✄✄� © P. Cousot

The Contrapositive Abstract
Fixpoint Checking AlgorithmAlg. 5 becomes:

Algorithm 6

Z := α(¬S); Go := (I ∧ γ(Z) = 0);
while Go do

Z ′ := α(¬S ∨ F (γ(Z)));
Go := (Z �= Z ′) & (I ∧ γ(Z ′) = 0);
Z := Z ′;

od;
return if (I ∧ γ(Z) = 0) then true else I don’t know;

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 44 — [] � — ✄✄✄� © P. Cousot

Partial correctness of Alg. 6

Alg. 6 is partially correct: if it terminates and returns “true ”

then lfp
≤

λX . I ∨ F (X) ≤ S.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 45 — [] � — ✄✄✄� © P. Cousot

The Adjoined Abstract Fixpoint
Checking Algorithm

Algorithm 7

X := α(I); Y := α̃(S); Go := (γ(X) ≤ S) & (I ≤ γ̃(Y));
while Go do

X ′ := α(I ∨ F ◦ γ(X)); Y ′ := α̃(S ∧ F̃ ◦ γ̃(Y));
Go := (X �= X ′) & (Y �= Y ′) & (γ(X ′) ≤ S) & (I ≤ γ̃(Y ′));
X := X ′; Y := Y ′;

od;
return if (γ(X) ≤ S) | (I ≤ γ̃(Y)) then true

else I don’t know;

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 46 — [] � — ✄✄✄� © P. Cousot

Partial correctness of Alg. 7

Alg. 7 is partially correct: if it terminates and returns “true ”

then lfp
≤

λX . I ∨ F (X) ≤ S.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 47 — [] � — ✄✄✄� © P. Cousot

Program Static Analysis

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 48 — [] � — ✄✄✄� © P. Cousot

Further Requirements for
Program Static Analysis

• In program static analysis, one cannot compute γ , γ̃ and ≤
and sometimes neither I nor S may even be machine repre­
sentable;
• So Alg. 7 , which can be useful in model-checking, is of limited

interest in program static analysis;
• Such problems do no appear in abstract model checking since

the concrete model is almost always machine-representable
(although sometimes too large).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 49 — [] � — ✄✄✄� © P. Cousot

Additional Hypotheses

In order to be able to check termination in the abstract, we
assume:

1. ∀X ∈ L : γ ◦ α̃(X) ≤ X;
2. ∀X ∈ L : X ≤ γ̃ ◦ α(X).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 50 — [] � — ✄✄✄� © P. Cousot

Example: the Recurrent Abstraction
in Abstract Model-Checking

Continuing with the abstraction of p. 32 with

α
�= post[h] γ

�= p̃re[h]

and α̃
�= p̃ost[h] γ̃

�= pre[h],

we have:
1. ∀X ∈ L : γ ◦ α̃(X) ⊆ X;
2. ∀X ∈ L : X ⊆ γ̃ ◦ α(X).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 51 — [] � — ✄✄✄� © P. Cousot

The Adjoined Abstract Fixpoint
Abstract Checking Algorithm

Algorithm 8

X := α(I); Y := α̃(S); Go := (X � Y);
while Go do

X ′ := α(I) " α ◦ F ◦ γ(X); Y ′ := α̃(S) ! α̃ ◦ F̃ ◦ γ̃(Y);
Go := (X �= X ′) & (Y �= Y ′) & (X ′ � Y ′);
X := X ′; Y := Y ′;

od;
return if X � Y then true else I don’t know;

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 52 — [] � — ✄✄✄� © P. Cousot

Partial correctness of Alg. 8

Alg. 8 is partially correct: if it ever terminates and returns

“true ” then lfp
≤

λX . I ∨ F (X) ≤ S.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 53 — [] � — ✄✄✄� © P. Cousot

Partially Complete Abstraction

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 54 — [] � — ✄✄✄� © P. Cousot

Partially Complete Abstraction
(definition) 8

Definition 9 The abstraction 〈α, γ〉 is partially complete

if, whenever Alg. 4 terminates and lfp
≤

λX . I ∨ F (X) ≤ S

then the returned result is “true ”.

8 Observe that this notion of partial completeness is different from the notions of fixpoint completeness (α(lfp≤
G) =

lfp
�

α ◦ G ◦ γ) and the stronger one of local completeness (α ◦ G = α ◦ G ◦ γ ◦ α) considered in P. Cousot & R.
Cousot, POPL’79.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 55 — [] � — ✄✄✄� © P. Cousot

Characterization of Partially Com-
plete Abstractions for Algorithm 4

Theorem 10 The abstraction 〈α, γ〉 is partially complete
for Alg. 4 if and only if α(L) contains an abstract value A such
that γ(A) is an invariant for 〈F, I, S〉.

Intuition: finding a partially complete abstraction is logically
equivalent to making an invariance proof.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 56 — [] � — ✄✄✄� © P. Cousot

Characterization of Partially Com-
plete Abstractions for Algorithm 4

Theorem 10 The abstraction 〈α, γ〉 is partially complete
for Alg. 4 if and only if α(L) contains an abstract value A such
that γ(A) is an invariant for 〈F, I, S〉.

Intuition: finding a partially complete abstraction is logically
equivalent to making an invariance proof.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 56 — [] � — ✄✄✄� © P. Cousot

The Most Abstract Partially
Complete Abstraction (Definition)

Definition 11 The most abstract partially complete abstrac­
tion 〈α, γ〉 , if it exists, is defined such that:
1. The abstract domain M = α(L) has the smallest possible

cardinality;
2. If another abstraction 〈α′, γ′〉 is a partially complete abstrac­

tion with the same cardinality, then there exists a bijection
β such that ∀x ∈ M : γ′(β(x)) ≤ γ(x) 9.

9 Otherwise stated, the abstract values in α(L) are more approximate than the corresponding elements in α′(L).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 57 — [] � — ✄✄✄� © P. Cousot

Characterization of the Most
Abstract Complete Abstraction

Theorem 12 The most abstract partially complete abstrac­
tion for Alg. 4 is such that:

• if S = 1 then M = { } where α
�= λX . and γ

�= λY . 1;
• if S �= 1 then M = {⊥, } where ⊥ � ⊥ � � with
〈α, γ〉 such that:

α(X) �= if X ≤ gfp
≤

λX . S ∧ F̃ (X) then ⊥ else
γ(⊥) �= gfp

≤
λX . S ∧ F̃ (X) (2)

γ() �= 1
Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 58 — [] � — ✄✄✄� © P. Cousot

The Least Abstract Partially
Complete Abstraction (Definition)

Definition 13 Dually, the least abstract partially complete
abstraction 〈α, γ〉 , if it exists, is defined such that:
1. The abstract domain M = α(L) has the smallest possible

cardinality;
2. If another abstraction 〈α′, γ′〉 is a partially complete abstrac­

tion with the same cardinality, then there exists a bijection
β such that ∀x ∈ M : γ(x) ≤ γ′(β(x)) 10.

10 Otherwise stated, the abstract values in α(L) are less approximate than the corresponding elements in α′(L).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 59 — [] � — ✄✄✄� © P. Cousot

Characterization of the Least
Abstract Complete Abstraction

Theorem 14 Dually, the least abstract partially complete
abstraction for Alg. 4 is such that:

• if I = 1 then M = { } where α
�= λX . and γ

�= λY . 1;
• if I �= 1 then M = {⊥, } where ⊥ � ⊥ � � with
〈α, γ〉 such that:

α(X) �= if X ≤ lfp
≤

λX . I ∨ F (X) then ⊥ else
γ(⊥) �= lfp

≤
λX . I ∨ F (X) (3)

γ() �= 1

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 60 — [] � — ✄✄✄� © P. Cousot

The Minimal Partially Complete
Abstractions for Algorithm 4

Theorem 15
• The set A of partially complete abstractions of minimal cardi­

nality for Alg. 4 is the set of all abstract domains 〈M, �, α, γ〉
such that M = {⊥, } with⊥ � ⊥ � � , 〈L, ≤〉 −−−→←−−−α

γ

〈M, �〉 , γ(⊥) ∈ I and ⊥ = if and only if γ() ∈ I.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 61 — [] � — ✄✄✄� © P. Cousot

The Complete Lattice of Minimal
Complete Abstractions for Alg. 4

Theorem 16
• The relation 〈{⊥, }, �, α, γ〉 (〈{⊥′, ′}, �′, α′, γ′〉

if and only if γ(⊥) ≤ γ′(⊥′) is a pre-ordering on A.
• Let 〈{⊥, }, �, α, γ〉 ∼= 〈{⊥′, ′}, �′, α′, γ′〉 if and only

if γ(⊥) = γ′(⊥′) be the corresponding equivalence.
• The quotient A/∼= is a complete lattice 11 for (with infimum

class representative 〈M, �, α, γ〉 and supremum 〈M, �, α, γ〉.

11 Observe however that it is not a sublattice of the lattice of abstract interpretations of P. Cousot & R. Cousot,
POPL’77, POPL’79 with reduced product as glb.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 62 — [] � — ✄✄✄� © P. Cousot

Intuition for Minimal Partially
Complete Abstractions

• There is a one to one correspondance between partially com­
plete abstractions of minimal cardinality for Alg. 4 and the
set of invariants for proving lfp

≤
λX . I ∨ F (X) ≤ S;

• Similar results hold for the other Algs. 6 , 7 & 8.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 63 — [] � — ✄✄✄� © P. Cousot

Conclusion

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 64 — [] � — ✄✄✄� © P. Cousot

On the Automatic Inference of
Partially Complete Abstractions (contd.)

• The automatic inference/refinement of abstractions is an ac­
tive subject of research 12;
• Automating the abstraction is logically equivalent to discov­

ering an invariant and checking a proof obligation (Th. ;
• After immoderate hopes in the seventies, there was no break­

through for the last 20 years in automatic program proving;

12 Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saïdi, CAV’97;
Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl
& Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saïdi & Shankar, CAV’99; Saïdi, SAS’00; Baumgartner, Tripp,
Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 65 — [] � — ✄✄✄� © P. Cousot

On the Automatic Inference of
Partially Complete Abstractions (contd.)

• The automatic inference/refinement of abstractions is an ac­
tive subject of research 12;
• Automating the abstraction is logically equivalent to discov­

ering an invariant and checking a proof obligation (Th. 10);
• After immoderate hopes in the seventies, there was no break­

through for the last 20 years in automatic program proving;

12 Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saïdi, CAV’97;
Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl
& Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saïdi & Shankar, CAV’99; Saïdi, SAS’00; Baumgartner, Tripp,
Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 65 — [] � — ✄✄✄� © P. Cousot

On the Automatic Inference of
Partially Complete Abstractions (contd.)

• The automatic inference/refinement of abstractions is an ac­
tive subject of research 12;
• Automating the abstraction is logically equivalent to discov­

ering an invariant and checking a proof obligation (Th. 10);
• After immoderate hopes in the seventies, there was no break­

through for the last 20 years in automatic program proving;

12 Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saïdi, CAV’97;
Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl
& Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saïdi & Shankar, CAV’99; Saïdi, SAS’00; Baumgartner, Tripp,
Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 65 — [] � — ✄✄✄� © P. Cousot

On the Automatic Inference of
Partially Complete Abstractions (contd.)

Will the empirical methods (presently) used in ab­
stract model-checking be able to automatize the dis­
covery of partially complete abstractions? 13

13
May be not so abstract model-checking will eventually boils down to incomplete abstract interpretations as used in program analysis or program debugging using a simultaneous simulation
of program executions (although the current per-example reasoning can go on for ever).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 66 — [] � — ✄✄✄� © P. Cousot

THE END, THANK YOU.

Reference: P. Cousot. Partial Completeness of Abstract Fixpoint Check­
ing. Proc. 4th Int. Symp. SARA’2000, LNAI 1864, pp. 1–25, Springer-
Verlag, Jul. 2000.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 67 — [] � — ✄✄✄� © P. Cousot

THE END, THANK YOU.

Reference: P. Cousot. Partial Completeness of Abstract Fixpoint Check­
ing. Proc. 4th Int. Symp. SARA’2000, LNAI 1864, pp. 1–25, Springer-
Verlag, Jul. 2000.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 66 — [] � — ✄✄✄� © P. Cousot

	Abstraction in program analysis & model checking
	Abstraction in model checking
	On completeness in program analysis & model checking
	Discovery of abstractions
	Informal objective of the talk
	Fixpoint checking
	Soundness / (Partial) completeness
	Practical question
	Objective of the talk (formally)
	Concrete fixpoint checking problem
	Example
	Concrete fixpoint checking algorithm
	Partial correctness
	Concrete invariants
	Galois connection
	Concrete adjoinedness
	Example of concrete adjoinedness
	Fixpoint concrete adjoinedness
	The complete lattice of concrete invariants
	Dual concrete fixpoint checking algorithm
	Partial correctness
	On (dual) fixpoint checking
	Adjoined concrete fixpoint checking algorithm
	Partial correctness
	Abstract interpretation
	Example: the recurrent abstraction in abstract model-checking
	Example: the sign abstraction
	Abstract fixpoint checking algorithm
	Partial correctness
	Dual abstraction
	Example of dual abstraction
	Example of dual abstraction
	Abstract adjoinedness
	The dual abstract fixpoint checking algorithm
	Partial correctness
	The particular case of complement abstraction
	The contrapositive fixpoint checking algorithm
	Partial correctness
	The adjoined abstract fixpoint checking algorithm
	Partial correctness
	Further requirements for program static analysis
	Additional hypotheses
	Example: the recurrent abstraction in abstract model-checking
	The adjoined abstract fixpoint abstract checking algorithm
	Partial correctness
	Partially complete abstraction (definition)
	Characterization of partially complete abstractions
	Characterization of partially complete abstractions
	The most abstract partially complete abstraction (definition)
	Characterization of the most abstract complete abstraction
	The least abstract partially complete abstraction (definition)
	Characterization of the least abstract complete abstraction
	The minimal partially complete abstractions
	The complete lattice of minimal partially complete abstractions
	Intuition for minimal partially complete abstractions
	On the automatic inference of partially complete abstractions

