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Motivations & Results
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Abstraction in Program Analysis &
Model Checking

Abstract interpretation has been successfully applied in:
• static program analysis (by approximation of the semantics);
• model checking (state explosion & infinite state models).
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Abstraction in Model Checking

Main abstractions in model checking:
• Implicit abstraction: to informally design the model of refer­

ence;
• Polyhedral abstraction (with widening): synchronous, real-time

& hybrid system verification;
• Finitary abstraction (without widening): hardware & proto­

cole verification 1;

1 Abstracting concrete transition systems to abstract transition systems so as to reuse existing model checkers in the
abstract.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 3 — [] � — ✄✄✄� © P. Cousot



On Completeness in Program
Analysis & Model Checking

• The abstraction must always be sound;
• For completeness:
-- in static program analysis: not required (possible uncer­
tainty);
-- in model checking: required 2 (formal verification method 3).

2 allowing only for yes/no answers, all uncertainty resulting only from getting out of computer resources.
3 otherwise model-checking would be a mere debugging method or equivalent to program/model analysis.
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Discovery of Abstractions

• In static program analysis:
-- task of the program analyzer designer ,
-- find a sound abstraction providing useful information for all programs,
-- essentially manual ,
-- partially automated e.g. by combination & refinement of abstract
domains;

• In model checking:
-- task of the user ,
-- find a sound & complete abstraction required to verify one model,
-- looking for automation (e.g. starting from a trivial or user provided
guess and refining by trial and error).
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Informal Objective of the Talk

• Understand the logical nature of the problem of finding an
appropriate abstraction (for proving safety properties).
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Formalization of the Problem
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Fixpoint Checking

• Model-checking safety properties of transition systems:

lfp
≤

λX . I ∨ F (X) ≤ S ?

• Program static analysis by abstract interpretation:

γ(lfp
≤

λX . α(I ∨ F (γ(X)))) ≤ S ?
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Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive con­
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be
found in the abstract;

Partial completeness: in case of termination of the ab­
stract fixpoint checking algorithm, no positive answer can
be missed.

Termination/resource limitation is therefore considered a sepa­
rate problem (widening/narrowing, etc.).
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Practical Question

Is it possible to automatize the discovery of complete
abstractions?
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Objective of the Talk (Formally)

Constructively characterize the abstractions 〈α, γ〉 for
which abstract fixpoint algorithms are partially com-
plete.
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Concrete Fixpoint Checking
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Concrete Fixpoint Checking Problem

• Complete lattice 〈L, ≤, 0, 1, ∨, ∧〉;
• Monotonic transformer F ∈ L

mon�−→ L;
• Specification 〈I, S〉 ∈ L2;

lfp
≤

λX . I ∨ F (X) ≤ S ?
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Example

• Set of states: 	;
• Initial states: I ⊆ 	;
• Transition relation: τ ⊆ 	× 	;
• Transition system: 〈	, τ, I〉;
• Complete lattice: 〈℘(	), ⊆, ∅, 	, ∪, ∩〉;
• Right-image of X ⊆ 	 by τ :

post[τ ](X) �= {s′ | ∃s ∈ X : 〈s, s′〉 ∈ τ};
• Reflexive transitive closure of τ : τ
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Example (contd.)

• Safety specification: S ⊆ 	

• Reachable states from I :

post[τ
](I) = lfp
⊆

λX . I ∪ post[τ ](X) ;

• Satisfaction of the safety specification (post[τ
](I) ⊆ S):

lfp
⊆

λX . I ∨ post[τ ](X) ⊆ S ?
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Concrete Fixpoint Checking
Algorithm 4

Algorithm 1

X := I ; Go := (X ≤ S);
while Go do

X ′ := I ∨ F (X);
Go := (X �= X ′) & (X ′ ≤ S);
X := X ′;

od;
return (X ≤ S);

4 P. Cousot & R. Cousot, POPL’77
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Partial correctness of Alg. 1

Alg. 1 is partially correct: if it ever terminates then it returns

lfp
≤

λX . I ∨ F (X) ≤ S.
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Concrete Invariants

A ∈ L is an invariant for 〈F, I, S〉 if and only if I ≤
A & F (A) ≤ A & A ≤ S;

Note 1 (Floyd’s proof method): lfp
≤

λX . I ∨ F (X) ≤ S if
and only if there exists an invariant A ∈ L for 〈F, I, S〉;

Note 2: if Alg. 1 terminates successfully, then it has computed
an invariant (X = lfp

≤
λX ′. I ∨ F (X ′)).
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Dual and Adjoined
Concrete Fixpoint Checking
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Galois connection

A Galois connection , written

〈L, ≤〉 −−−→←−−−
f

g
〈M, �〉,

is such that:
• 〈L, ≤〉 and 〈M, �〉 are posets;
• the maps f ∈ L �→M and g ∈ M �→ L satisfy

∀x ∈ L : ∀y ∈ M :f(x) � y if and only if x ≤ g(y) .
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Concrete Adjoinedness

In general, F has an adjoint F̃ such that 〈L, ≤〉 −−−→←−−−
F

F̃ 〈L, ≤〉.
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Example of Concrete Adjoinedness

• τ−1 is the inverse of τ ;

• pre[τ ] �= post[τ−1];

• Set complement ¬X
�= 	 \X;

• p̃re[τ ](X) �= ¬pre[τ ](¬X);

〈℘(	), ⊆〉 −−−−−−→←−−−−−−
post [τ ]

p̃re[τ ]
〈℘(	), ⊆〉 .
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Fixpoint Concrete Adjoinedness

〈L, ≤〉 −−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
λI . lfp

≤
λX . I∨F (X)

λS . gfp
≤

λX . S∧F̃ (X)
〈L, ≤〉

Proof:

lfp
≤

λX . I ∨ F (X) ≤ S
⇐⇒ ∃A ∈ L : I ≤ A & F (A) ≤ A & A ≤ S (1)
⇐⇒ ∃A ∈ L : I ≤ A & A ≤ F̃ (A) & A ≤ S

⇐⇒ I ≤ gfp
≤

λX . S ∧ F̃ (X) .
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The Complete Lattice of Concrete
Invariants

• The set I of invariants for 〈F, I, S〉 is a complete lattice
〈I, ≤ , lfp

≤
λX . I ∨ F (X) , gfp

≤
λX . S ∧ F̃ (X) , ∨ , ∧〉.
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Dual Concrete Fixpoint Checking
Algorithm 5

Algorithm 2

Y := S; Go := (I ≤ Y );
while Go do

Y ′ := S ∧ F̃ (Y );
Go := (Y �= Y ′) & (I ≤ Y ′);
Y := Y ′;

od;
return (I ≤ Y );

5 P. Cousot, 1981; E.M. Clarke & E.A. Emerson, 1981; J.-P. Queille and J. Sifakis, 1982.

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 25 — [] � — ✄✄✄� © P. Cousot



Partial correctness of Alg. 2

Alg. 2 is partially correct: if it ever terminates then it returns

lfp
≤

λX . I ∨ F (X) ≤ S.
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On (Dual) Fixpoint Checking

lfp
≤

λX . I ∨ F (X) ≤ S

if and only if

I ≤ gfp
≤

λX . S ∧ F̃ (X).
if and only if

lfp
≤

λX . I ∨ F (X) ≤ gfp
≤

λX . S ∧ F̃ (X)
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The Adjoined Concrete Fixpoint
Checking Algorithm

Algorithm 3

X := I ; Y := S; Go := (X ≤ Y );
while Go do

X ′ := I ∨ F (X); Y ′ := S ∧ F̃ (Y );
Go := (X �= X ′) & (Y �= Y ′) & (X ′ ≤ Y ′);
X := X ′; Y := Y ′;

od;
return (X ≤ Y );
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Partial correctness of Alg. 3
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Abstract Fixpoint Checking
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Abstract Interpretation

• Concrete complete lattice: 〈L, ≤, 0, 1, ∨, ∧〉;
• Abstract complete lattice: 〈M, �, ⊥,  , !, "〉;
• Abstraction/concretization pair 〈α, γ〉;
• Galois connection:

〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉.
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Example: the Recurrent Abstraction
in Abstract Model-Checking

• State abstraction: h ∈ 	 �→ 	;

• Property abstraction: αh(X) �= {h(x) | x ∈ X}= post[h] 6;

• Property concretization: γh(Y ) �= {x | h(x) ∈ Y } = p̃re[h];
• Galois connection:

〈℘(	), ⊆〉 −−−→←−−−
αh

γh 〈℘(	), ⊆〉.

• Example (rule of signs): 	 = Z so choose h(z) to be the
sign of z.
6 Considering the function h as a relation.
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Example: the Sign Abstraction

⊥ (ø)

+ ({+1})- ({-1}) 0 ({0})

0  ({-1,+1}) + ({+1,0})
.

- ({-1,0})
.

  ({-1,0,+1})
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Abstract Fixpoint Checking
Algorithm 7

Algorithm 4

X := α(I); Go := (γ(X) ≤ S);
while Go do

X ′ := α(I ∨ F (γ(X)));
Go := (X �= X ′) & (γ(X ′) ≤ S);
X := X ′;

od;
return if (γ(X) ≤ S) then true else I don’t know;

7 In P. Cousot & R. Cousot, POPL’77, (γ(X) ≤ S) is X � S ′ where S ′ = α(S).
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Partial correctness of Alg. 4

Alg. 4 is partially correct: if it terminates and returns “true ”
then lfp

≤
λX . I ∨ F (X) ≤ S.
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Dual and Adjoined
Abstract Fixpoint Checking
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Dual Abstraction

〈L, ≥〉 −−−→←−−−
α̃

γ̃
〈M, $〉.
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Example of Dual Abstraction (Contd.)

If

• 〈L, ≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;

• 〈M, �, ⊥,  , !, ", �〉 is a complete boolean lattice;

• 〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉;

• α̃
�= � ◦ α ◦ ¬ and γ̃

�= ¬ ◦ γ ◦ �
then

〈L, ≥〉 −−−→←−−−
α̃

γ̃
〈M, $〉
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Example of Dual Abstraction (Contd.)

For the recurrent abstraction in abstract model-checking αh(X)
�= {h(x) | x ∈ X} = post[h] we have:

• 〈℘(	), ⊆〉 −−−−−−→←−−−−−−
post[h]

p̃re[h]
〈℘(	), ⊆〉;

• p̃re[h](X) = ¬pre[h](¬X) and p̃ost[h](X) = ¬post[h](¬X) ,
so:

• 〈℘(	), ⊇〉 −−−−−−→←−−−−−−
p̃ost[h]

pre[h]
〈℘(	), ⊇〉.
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Abstract Adjoinedness

〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉 , 〈L, ≤〉 −−−→←−−−

F

F̃ 〈L, ≤〉 and 〈L, ≥〉 −−−→←−−−
α̃

γ̃

〈M, $〉 imply:

〈M, �〉 −−−−−−→←−−−−−−
α◦F ◦γ̃

α̃◦F̃ ◦γ
〈M, �〉.
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The Dual Abstract Fixpoint
Checking Algorithm

Algorithm 5
Y := α̃(S); Go := (I ≤ γ̃(Y ));
while Go do

Y ′ := α̃(S ∧ F̃ (γ̃(Y )));
Go := (Y �= Y ′) & (I ≤ γ̃(Y ′));
Y := Y ′;

od;
return if (I ≤ γ̃(Y )) then true else I don’t know;
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Partial correctness of Alg. 5

Alg. 5 is partially correct: if it terminates and returns “true ”

then lfp
≤

λX . I ∨ F (X) ≤ S.
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The Particular Case of Complement
Abstraction

1. 〈L, ≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;
2. 〈M, �, ⊥,  , ", !, �〉 is a complete boolean lattice;

3. 〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉;

4. 〈L, ≤〉 −−−→←−−−
F

F̃ 〈L, ≤〉;

5. F̃
�= ¬ ◦ F ◦ ¬ , α̃

�= � ◦ α ◦ ¬ and γ̃
�= ¬ ◦ γ ◦ �.
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The Contrapositive Abstract
Fixpoint Checking AlgorithmAlg. 5 becomes:

Algorithm 6

Z := α(¬S); Go := (I ∧ γ(Z) = 0);
while Go do

Z ′ := α(¬S ∨ F (γ(Z)));
Go := (Z �= Z ′) & (I ∧ γ(Z ′) = 0);
Z := Z ′;

od;
return if (I ∧ γ(Z) = 0) then true else I don’t know;
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Partial correctness of Alg. 6

Alg. 6 is partially correct: if it terminates and returns “true ”

then lfp
≤

λX . I ∨ F (X) ≤ S.
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The Adjoined Abstract Fixpoint
Checking Algorithm

Algorithm 7

X := α(I); Y := α̃(S); Go := (γ(X) ≤ S) & (I ≤ γ̃(Y ));
while Go do

X ′ := α(I ∨ F ◦ γ(X)); Y ′ := α̃(S ∧ F̃ ◦ γ̃(Y ));
Go := (X �= X ′) & (Y �= Y ′) & (γ(X ′) ≤ S) & (I ≤ γ̃(Y ′));
X := X ′; Y := Y ′;

od;
return if (γ(X) ≤ S) | (I ≤ γ̃(Y )) then true

else I don’t know;
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Partial correctness of Alg. 7

Alg. 7 is partially correct: if it terminates and returns “true ”

then lfp
≤

λX . I ∨ F (X) ≤ S.
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Program Static Analysis
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Further Requirements for
Program Static Analysis

• In program static analysis, one cannot compute γ , γ̃ and ≤
and sometimes neither I nor S may even be machine repre­
sentable;
• So Alg. 7 , which can be useful in model-checking, is of limited

interest in program static analysis;
• Such problems do no appear in abstract model checking since

the concrete model is almost always machine-representable
(although sometimes too large).
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Additional Hypotheses

In order to be able to check termination in the abstract, we
assume:

1. ∀X ∈ L : γ ◦ α̃(X) ≤ X;
2. ∀X ∈ L : X ≤ γ̃ ◦ α(X).
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Example: the Recurrent Abstraction
in Abstract Model-Checking

Continuing with the abstraction of p. 32 with

α
�= post[h] γ

�= p̃re[h]

and α̃
�= p̃ost[h] γ̃

�= pre[h],

we have:
1. ∀X ∈ L : γ ◦ α̃(X) ⊆ X;
2. ∀X ∈ L : X ⊆ γ̃ ◦ α(X).
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The Adjoined Abstract Fixpoint
Abstract Checking Algorithm

Algorithm 8

X := α(I); Y := α̃(S); Go := (X � Y );
while Go do

X ′ := α(I) " α ◦ F ◦ γ(X); Y ′ := α̃(S) ! α̃ ◦ F̃ ◦ γ̃(Y );
Go := (X �= X ′) & (Y �= Y ′) & (X ′ � Y ′);
X := X ′; Y := Y ′;

od;
return if X � Y then true else I don’t know;
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Partial correctness of Alg. 8

Alg. 8 is partially correct: if it ever terminates and returns

“true ” then lfp
≤

λX . I ∨ F (X) ≤ S.
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Partially Complete Abstraction
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Partially Complete Abstraction
(definition) 8

Definition 9 The abstraction 〈α, γ〉 is partially complete

if, whenever Alg. 4 terminates and lfp
≤

λX . I ∨ F (X) ≤ S

then the returned result is “true ”.

8 Observe that this notion of partial completeness is different from the notions of fixpoint completeness (α(lfp≤
G) =

lfp
�

α ◦ G ◦ γ) and the stronger one of local completeness (α ◦ G = α ◦ G ◦ γ ◦ α) considered in P. Cousot & R.
Cousot, POPL’79.
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Characterization of Partially Com-
plete Abstractions for Algorithm 4

Theorem 10 The abstraction 〈α, γ〉 is partially complete
for Alg. 4 if and only if α(L) contains an abstract value A such
that γ(A) is an invariant for 〈F, I, S〉.

Intuition: finding a partially complete abstraction is logically
equivalent to making an invariance proof.
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The Most Abstract Partially
Complete Abstraction (Definition)

Definition 11 The most abstract partially complete abstrac­
tion 〈α, γ〉 , if it exists, is defined such that:
1. The abstract domain M = α(L) has the smallest possible

cardinality;
2. If another abstraction 〈α′, γ′〉 is a partially complete abstrac­

tion with the same cardinality, then there exists a bijection
β such that ∀x ∈ M : γ′(β(x)) ≤ γ(x) 9.

9 Otherwise stated, the abstract values in α(L) are more approximate than the corresponding elements in α′(L).
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Characterization of the Most
Abstract Complete Abstraction

Theorem 12 The most abstract partially complete abstrac­
tion for Alg. 4 is such that:

• if S = 1 then M = { } where α
�= λX . and γ

�= λY . 1;
• if S �= 1 then M = {⊥, } where ⊥ � ⊥ �  �  with
〈α, γ〉 such that:

α(X) �= if X ≤ gfp
≤

λX . S ∧ F̃ (X) then ⊥ else  
γ(⊥) �= gfp

≤
λX . S ∧ F̃ (X) (2)

γ( ) �= 1
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The Least Abstract Partially
Complete Abstraction (Definition)

Definition 13 Dually, the least abstract partially complete
abstraction 〈α, γ〉 , if it exists, is defined such that:
1. The abstract domain M = α(L) has the smallest possible

cardinality;
2. If another abstraction 〈α′, γ′〉 is a partially complete abstrac­

tion with the same cardinality, then there exists a bijection
β such that ∀x ∈ M : γ(x) ≤ γ′(β(x)) 10.

10 Otherwise stated, the abstract values in α(L) are less approximate than the corresponding elements in α′(L).
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Characterization of the Least
Abstract Complete Abstraction

Theorem 14 Dually, the least abstract partially complete
abstraction for Alg. 4 is such that:

• if I = 1 then M = { } where α
�= λX . and γ

�= λY . 1;
• if I �= 1 then M = {⊥, } where ⊥ � ⊥ �  �  with
〈α, γ〉 such that:

α(X) �= if X ≤ lfp
≤

λX . I ∨ F (X) then ⊥ else  
γ(⊥) �= lfp

≤
λX . I ∨ F (X) (3)

γ( ) �= 1
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The Minimal Partially Complete
Abstractions for Algorithm 4

Theorem 15
• The set A of partially complete abstractions of minimal cardi­

nality for Alg. 4 is the set of all abstract domains 〈M, �, α, γ〉
such that M = {⊥, } with⊥ � ⊥ �  �  , 〈L, ≤〉 −−−→←−−−α

γ

〈M, �〉 , γ(⊥) ∈ I and ⊥ =  if and only if γ( ) ∈ I.
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The Complete Lattice of Minimal
Complete Abstractions for Alg. 4

Theorem 16
• The relation 〈{⊥, }, �, α, γ〉 ( 〈{⊥′, ′}, �′, α′, γ′〉

if and only if γ(⊥) ≤ γ′(⊥′) is a pre-ordering on A.
• Let 〈{⊥, }, �, α, γ〉 ∼= 〈{⊥′, ′}, �′, α′, γ′〉 if and only

if γ(⊥) = γ′(⊥′) be the corresponding equivalence.
• The quotient A/∼= is a complete lattice 11 for ( with infimum

class representative 〈M, �, α, γ〉 and supremum 〈M, �, α, γ〉.

11 Observe however that it is not a sublattice of the lattice of abstract interpretations of P. Cousot & R. Cousot,
POPL’77, POPL’79 with reduced product as glb.
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Intuition for Minimal Partially
Complete Abstractions

• There is a one to one correspondance between partially com­
plete abstractions of minimal cardinality for Alg. 4 and the
set of invariants for proving lfp

≤
λX . I ∨ F (X) ≤ S;

• Similar results hold for the other Algs. 6 , 7 & 8.
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Conclusion
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On the Automatic Inference of
Partially Complete Abstractions (contd.)

• The automatic inference/refinement of abstractions is an ac­
tive subject of research 12;
• Automating the abstraction is logically equivalent to discov­

ering an invariant and checking a proof obligation (Th. ;
• After immoderate hopes in the seventies, there was no break­

through for the last 20 years in automatic program proving;

12 Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saïdi, CAV’97;
Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl
& Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saïdi & Shankar, CAV’99; Saïdi, SAS’00; Baumgartner, Tripp,
Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.
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On the Automatic Inference of
Partially Complete Abstractions (contd.)
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On the Automatic Inference of
Partially Complete Abstractions (contd.)

Will the empirical methods (presently) used in ab­
stract model-checking be able to automatize the dis­
covery of partially complete abstractions? 13

13
May be not so abstract model-checking will eventually boils down to incomplete abstract interpretations as used in program analysis or program debugging using a simultaneous simulation
of program executions (although the current per-example reasoning can go on for ever).

Microsoft Research, Redmond, U.S.A. , February 12th , 2001 �✁✁✁ — 66 — [] � — ✄✄✄� © P. Cousot



THE END, THANK YOU.

Reference: P. Cousot. Partial Completeness of Abstract Fixpoint Check­
ing. Proc. 4th Int. Symp. SARA’2000, LNAI 1864, pp. 1–25, Springer-
Verlag, Jul. 2000.
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