On the Design of Abstractions for Software Checking

Patrick COUSOT
École Normale Supérieure, 45 rue d’Ulm
75230 Paris cedex 05, France

mailto:cousot@ens.fr
http://www.di.ens.fr/~cousot

Microsoft Research, Redmond, U.S.A., February 12th, 2001
Motivations & Results
Abstraction in Program Analysis & Model Checking

Abstract interpretation has been successfully applied in:

- static program analysis (by approximation of the semantics);
- model checking (state explosion & infinite state models).
Abstraction in Model Checking

Main abstractions in model checking:

- **Implicit abstraction**: to informally design the model of reference;

- **Polyhedral abstraction (with widening)**: synchronous, real-time & hybrid system verification;

- **Finitary abstraction (without widening)**: hardware & protocol verification \(^1\);

\(^1\) Abstracting concrete transition systems to abstract transition systems so as to reuse existing model checkers in the abstract.
On Completeness in Program Analysis & Model Checking

- The abstraction must always be sound;
- For completeness:
 - in static program analysis: not required (possible uncertainty);
 - in model checking: required\(^2\) (formal verification method\(^3\)).

\(^2\) allowing only for yes/no answers, all uncertainty resulting only from getting out of computer resources.

\(^3\) otherwise model-checking would be a mere debugging method or equivalent to program/model analysis.
Discovery of Abstractions

- In static program analysis:
 - task of the program analyzer designer,
 - find a sound abstraction providing useful information for all programs,
 - essentially manual,
 - partially automated e.g. by combination & refinement of abstract domains;

- In model checking:
 - task of the user,
 - find a sound & complete abstraction required to verify one model,
 - looking for automation (e.g. starting from a trivial or user provided guess and refining by trial and error).
Informal Objective of the Talk

- Understand the logical nature of the problem of finding an appropriate abstraction (for proving safety properties).
Formalization of the Problem
Fixpoint Checking

• Model-checking safety properties of transition systems:

\[\text{lfp} \leq \lambda X. I \lor F(X) \leq S \, ? \]

• Program static analysis by abstract interpretation:

\[\gamma(\text{lfp} \leq \lambda X. \alpha(I \lor F(\gamma(X)))) \leq S \, ? \]
Soundness

Soundness: a positive abstract answer implies a positive concrete answer. So no error is possible when reasoning in the abstract;

- **Soundness**
- **Completeness**: a positive concrete answer can always be found in the abstract;
- **Partial completeness**: in case of termination of the abstract fixpoint checking algorithm, no positive answer can be missed.

Termination/resource limitation is therefore considered a separate problem (widening/narrowing, etc.).
Soundness / Completeness

Soundness: a positive abstract answer implies a positive concrete answer. So no error is possible when reasoning in the abstract;

Completeness: a positive concrete answer can always be found in the abstract;
Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive concrete answer. So no error is possible when reasoning in the abstract;

Completeness: a positive concrete answer can always be found in the abstract;

Partial completeness: in case of termination of the abstract fixpoint checking algorithm, no positive answer can be missed.
Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive concrete answer. So no error is possible when reasoning in the abstract;

Completeness: a positive concrete answer can always be found in the abstract;

Partial completeness: in case of termination of the abstract fixpoint checking algorithm, no positive answer can be missed.

Termination/resource limitation is therefore considered a separate problem (widening/narrowing, etc.).
Practical Question

Is it possible to automatize the discovery of complete abstractions?
Objective of the Talk (Formally)

Constructively characterize the abstractions $\langle \alpha, \gamma \rangle$ for which abstract fixpoint algorithms are partially complete.
Concrete Fixpoint Checking
Concrete Fixpoint Checking Problem

- Complete lattice $\langle L, \leq, 0, 1, \lor, \land \rangle$;
- Monotonic transformer $F \in L \mon L$;
- Specification $\langle I, S \rangle \in L^2$;

$$\text{lfp} \leq \lambda X. I \lor F(X) \leq S ?$$
Example

- Set of states: Σ;
- Initial states: $I \subseteq \Sigma$;
- Transition relation: $\tau \subseteq \Sigma \times \Sigma$;
- Transition system: $\langle \Sigma, \tau, I \rangle$;
- Complete lattice: $\langle \wp(\Sigma), \subseteq, \emptyset, \Sigma, \cup, \cap \rangle$;
- Right-image of $X \subseteq \Sigma$ by τ:
 $$\text{post}[\tau](X) \triangleq \{ s' \mid \exists s \in X : \langle s, s' \rangle \in \tau \};$$
- Reflexive transitive closure of τ: τ^*
Example (contd.)

• Safety specification: \(S \subseteq \Sigma \)

• Reachable states from \(I \):

\[
\text{post}[\tau^*](I) = \text{lfp} \subseteq \lambda X. I \cup \text{post}[\tau](X);
\]

• Satisfaction of the safety specification (\(\text{post}[\tau^*](I) \subseteq S \)):

\[
\text{lfp} \subseteq \lambda X. I \lor \text{post}[\tau](X) \subseteq S ?
\]
Concrete Fixpoint Checking
Algorithm

Algorithm 1

\[
X := I; \quad Go := (X \leq S);
\]

while \(Go \) do

\[
X' := I \lor F(X);
\]

\[
Go := (X \neq X') \land (X' \leq S');
\]

\[
X := X';
\]

od;

return \((X \leq S')\);
Partial correctness of Alg. 1

Alg. 1 is partially correct: if it ever terminates then it returns

\[\text{lfp} \leq \lambda X. I \lor F(X) \leq S. \]
Concrete Invariants

\[A \in L \text{ is an invariant for } \langle F, I, S \rangle \text{ if and only if } I \leq A \land F(A) \leq A \land A \leq S; \]

Note 1 (Floyd’s proof method): \(\text{lfp} \leq \lambda X. I \lor F(X) \leq S \) if and only if there exists an invariant \(A \in L \) for \(\langle F, I, S \rangle \);

Note 2: if Alg. 1 terminates successfully, then it has computed an invariant \((X = \text{lfp} \leq \lambda X'. I \lor F(X')) \).
Dual and Adjoined Concrete Fixpoint Checking
A **Galois connection**, written

\[\langle L, \leq \rangle \leftrightarrow \langle M, \sqsubseteq \rangle, \]

is such that:

- \(\langle L, \leq \rangle \) and \(\langle M, \sqsubseteq \rangle \) are posets;
- the maps \(f \in L \mapsto M \) and \(g \in M \mapsto L \) satisfy

\[\forall x \in L : \forall y \in M : f(x) \sqsubseteq y \text{ if and only if } x \leq g(y). \]
Concrete Adjoinedness

In general, F has an adjoint \tilde{F} such that $\langle L, \leq \rangle \xleftarrow{\tilde{F}} F \xrightarrow{F} \langle L, \leq \rangle$.
Example of Concrete Adjoinedness

- τ^{-1} is the inverse of τ;
- $pre[\tau] \triangleq post[\tau^{-1}]$;
- Set complement $\neg X \triangleq \Sigma \setminus X$;
- $\widetilde{pre}[\tau](X) \triangleq \neg pre[\tau](\neg X)$;

$$
\langle \wp(\Sigma), \subseteq \rangle \xleftrightarrow{\text{pre}[\tau]} \langle \wp(\Sigma), \subseteq \rangle \xleftrightarrow{\text{post}[\tau]} \langle \wp(\Sigma), \subseteq \rangle .
$$
Fixpoint Concrete Adjoinedness

\[
\langle L, \leq \rangle \overset{\lambda I. \text{lfp} \leq \lambda X. I \lor F(X)}{\leftarrow} \overset{\lambda S. \text{gfp} \leq \lambda X. S \land \tilde{F}(X)}{\rightarrow} \langle L, \leq \rangle
\]

Proof:

\[
lfp \leq \lambda X. I \lor F(X) \leq S
\]

\[
\iff \exists A \in L : I \leq A & F(A) \leq A & A \leq S \quad (1)
\]

\[
\iff \exists A \in L : I \leq A & A \leq \tilde{F}(A) & A \leq S
\]

\[
\iff I \leq \text{gfp} \leq \lambda X. S \land \tilde{F}(X).
\]
The Complete Lattice of Concrete Invariants

- The set I of invariants for $\langle F, I, S \rangle$ is a complete lattice $\langle I, \leq, \text{lfp} \leq \lambda X. I \lor F(X), \text{gfp} \leq \lambda X. S \land \tilde{F}(X), \lor, \land \rangle$.
Dual Concrete Fixpoint Checking
Algorithm

Algorithm 2

\[Y := S; \quad Go := (I \leq Y); \]
\[\text{while } Go \text{ do} \]
\[Y' := S \land \tilde{F}(Y); \]
\[Go := (Y \neq Y') \& (I \leq Y'); \]
\[Y := Y'; \]
\[\text{od}; \]
\[\text{return } (I \leq Y); \]

Partial correctness of Alg. 2

Alg. 2 is partially correct: if it ever terminates then it returns
\[\text{lfp} \leq \lambda X. I \lor F(X) \leq S. \]
On (Dual) Fixpoint Checking

\[\text{lfp} \subseteq \lambda X. I \lor F(X) \leq S \]

if and only if

\[I \leq \text{gfp} \subseteq \lambda X. S \land \tilde{F}(X). \]

if and only if

\[\text{lfp} \subseteq \lambda X. I \lor F(X) \leq \text{gfp} \subseteq \lambda X. S \land \tilde{F}(X) \]
The Adjoined Concrete Fixpoint Checking Algorithm

Algorithm 3

\[
X := I; \quad Y := S; \quad Go := (X \leq Y);
\]

while Go do

\[
X' := I \lor F(X); \quad Y' := S \land \tilde{F}(Y);
\]

Go := \((X \neq X') \land (Y \neq Y') \land (X' \leq Y')\);

X := X'; \quad Y := Y';

od;

return \((X \leq Y)\);
Partial correctness of Alg. 3

Alg. 3 is partially correct: if it ever terminates then it returns $lfp \leq \lambda X. I \lor F(X) \leq S$.
Abstract Fixpoint Checking
Abstract Interpretation

- Concrete complete lattice: $\langle L, \leq, 0, 1, \lor, \land \rangle$;
- Abstract complete lattice: $\langle M, \sqsubseteq, \bot, \top, \sqcap, \sqcup \rangle$;
- Abstraction/concretization pair $\langle \alpha, \gamma \rangle$;
- Galois connection:
 $\langle L, \leq \rangle \xleftarrow{\gamma} \xrightarrow{\alpha} \langle M, \sqsubseteq \rangle$.
Example: the Recurrent Abstraction in Abstract Model-Checking

- State abstraction: \(h \in \Sigma \mapsto \overline{\Sigma} \);
- Property abstraction: \(\alpha_h(X) \triangleq \{ h(x) \mid x \in X \} = \text{post}[h] \);
- Property concretization: \(\gamma_h(Y) \triangleq \{ x \mid h(x) \in Y \} = \overline{\text{pre}}[h] \);
- Galois connection:
 \[\langle \wp(\Sigma), \subseteq \rangle \leftrightarrow_{\alpha_h} \langle \wp(\overline{\Sigma}), \subseteq \rangle. \]

- Example (rule of signs): \(\Sigma = \mathbb{Z} \) so choose \(h(z) \) to be the sign of \(z \).

\(^6\) Considering the function \(h \) as a relation.
Example: the Sign Abstraction

\[\begin{align*}
\top & \quad (\{-1,0,+1\}) \\
\not\equiv & \quad (\{-1,+1\}) \\
\cdot & \quad (\{-1,0\}) \\
\cdot & \quad (\{-1\}) \\
\cdot & \quad (\{0\}) \\
\cdot & \quad (\{+1\}) \\
\cdot & \quad (\{+1,0\}) \\
\cdot & \quad (\{-1,0,+1\}) \\
\bot & \quad (\emptyset)
\end{align*} \]
Abstract Fixpoint Checking

Algorithm 4

\[
X := \alpha(I); \quad Go := (\gamma(X) \leq S'); \\
\text{while} \ Go \ \text{do} \\
\quad X' := \alpha(I \lor F(\gamma(X))); \\
\quad Go := (X \neq X') \& (\gamma(X') \leq S'); \\
\quad X := X'; \\
\text{od;} \\
\text{return if} \ (\gamma(X) \leq S') \ \text{then} \ true \ \text{else} \ I \ don't \ know;
\]

7 In P. Cousot & R. Cousot, POPL'77, \((\gamma(X) \leq S)\) is \(X \subseteq S'\) where \(S' = \alpha(S)\).
Partial correctness of Alg. 4

Alg. 4 is partially correct: if it terminates and returns “true” then \(\text{lfp} \leq \lambda X. I \lor F(X) \leq S \).
Dual and Adjoined Abstract Fixpoint Checking
Dual Abstraction

\[\langle L, \geq \rangle \xleftrightarrow{\tilde{\alpha}} \langle M, \sqsubseteq \rangle. \]
Example of Dual Abstraction

If

• \(\langle L, \leq, 0, 1, \lor, \land, \lnot \rangle \) is a complete boolean lattice;
• \(\langle M, \sqsubseteq, \bot, \top, \sqcap, \sqcup, \sim \rangle \) is a complete boolean lattice;
• \(\langle L, \leq \rangle \xrightarrow{\alpha} \langle M, \sqsubseteq \rangle \);
• \(\tilde{\alpha} \triangleright \sim \circ \alpha \circ \lnot \) and \(\tilde{\gamma} \triangleright \lnot \circ \gamma \circ \sim \)

then

\[\langle L, \geq \rangle \xrightarrow{\tilde{\gamma}} \langle M, \sqsupseteq \rangle \]
Example of Dual Abstraction (Contd.)

For the recurrent abstraction in abstract model-checking $\alpha_h(X)$

$$\triangleq \{ h(x) \mid x \in X \} = \text{post}[h]$$

we have:

- $\langle \wp(\Sigma), \subseteq \rangle \overset{\text{pre}[h]}{\leftrightarrow} \langle \wp(\Sigma), \subseteq \rangle$;

- $\overline{\text{pre}}[h](X) = \neg \text{pre}[h](\neg X)$ and $\overline{\text{post}}[h](X) = \neg \text{post}[h](\neg X)$,

so:

- $\langle \wp(\Sigma), \supseteq \rangle \overset{\text{pre}[h]}{\leftrightarrow} \langle \wp(\Sigma), \supseteq \rangle$.
Abstract Adjoinedness

\[\langle L, \leq \rangle \xleftarrow{\alpha} \xrightarrow{\gamma} \langle M, \sqsubseteq \rangle \] and \[\langle L, \leq \rangle \xleftarrow{\tilde{F}} \xrightarrow{\tilde{\alpha}} \langle L, \leq \rangle \] imply:

\[\langle M, \sqsubseteq \rangle \xleftarrow{\tilde{\alpha} \circ \tilde{F} \circ \gamma} \xrightarrow{\tilde{\gamma}} \langle M, \sqsubseteq \rangle. \]
The Dual Abstract Fixpoint Checking Algorithm

Algorithm 5

\[Y := \tilde{\alpha}(S); \quad Go := (I \leq \tilde{\gamma}(Y)); \]

while \(Go \) do

\[Y' := \tilde{\alpha}(S \land \tilde{F}(\tilde{\gamma}(Y))); \]
\[Go := (Y \neq Y') \land (I \leq \tilde{\gamma}(Y')); \]
\[Y := Y'; \]

od;

return if \((I \leq \tilde{\gamma}(Y)) \) then true else I don’t know;
Partial correctness of Alg. 5

Alg. 5 is partially correct: if it terminates and returns “true” then $\text{lfp} \leq \lambda X. I \lor F(X) \leq S$.
The Particular Case of Complement Abstraction

1. \(\langle L, \leq, 0, 1, \lor, \land, \neg \rangle \) is a complete boolean lattice;
2. \(\langle M, \sqsubseteq, \bot, \top, \sqcup, \sqcap, \sim \rangle \) is a complete boolean lattice;
3. \(\langle L, \leq \rangle \xrightarrow{\alpha} \langle M, \sqsubseteq \rangle \);
4. \(\langle L, \leq \rangle \xrightarrow{F} \langle L, \leq \rangle \);
5. \(\tilde{F} \triangleq \neg \circ F \circ \neg \), \(\tilde{\alpha} \triangleq \sim \circ \alpha \circ \neg \) and \(\tilde{\gamma} \triangleq \neg \circ \gamma \circ \sim \).
The Contrapositive Abstract

Fixpoint Checking Algorithm

Alg. 5 becomes:

Algorithm 6

\[Z := \alpha(\neg S); \quad Go := (I \land \gamma(Z) = 0); \]

while \(Go \) do

\[Z' := \alpha(\neg S \lor F(\gamma(Z))); \]

\[Go := (Z \neq Z') \& (I \land \gamma(Z') = 0); \]

\[Z := Z'; \]

od;

return if \((I \land \gamma(Z) = 0)\) then true else I don’t know;
Partial correctness of Alg. 6

Alg. 6 is partially correct: if it terminates and returns “true” then $lfp \leq \lambda X. I \lor F(X) \leq S$.
The Adjoined Abstract Fixpoint Checking Algorithm

Algorithm 7

\[X := \alpha(I); \quad Y := \tilde{\alpha}(S); \quad Go := (\gamma(X) \leq S) \& (I \leq \tilde{\gamma}(Y)); \]

while Go do

\[X' := \alpha(I \lor F \circ \gamma(X)); \quad Y' := \tilde{\alpha}(S \land \tilde{F} \circ \tilde{\gamma}(Y)); \]

\[Go := (X \neq X') \& (Y \neq Y') \& (\gamma(X') \leq S) \& (I \leq \tilde{\gamma}(Y')); \]

\[X := X'; \quad Y := Y'; \]

od;

return if \((\gamma(X) \leq S) \lor (I \leq \tilde{\gamma}(Y))\) then true

else I don’t know;
Partial correctness of Alg. 7

Alg. 7 is partially correct: if it terminates and returns "true" then $\text{lfp} \leq \lambda X. I \lor F(X) \leq S$.
Program Static Analysis
Further Requirements for Program Static Analysis

• In program static analysis, one cannot compute γ, $\tilde{\gamma}$ and \leq and sometimes neither I nor S may even be machine representable;

• So Alg. 7, which can be useful in model-checking, is of limited interest in program static analysis;

• Such problems do not appear in abstract model checking since the concrete model is almost always machine-representable (although sometimes too large).
Additional Hypotheses

In order to be able to check termination in the abstract, we assume:

1. $\forall X \in L : \gamma \circ \tilde{\alpha}(X) \leq X$;
2. $\forall X \in L : X \leq \tilde{\gamma} \circ \alpha(X)$.
Example: the Recurrent Abstraction in Abstract Model-Checking

Continuing with the abstraction of p. 32 with

\[\alpha \triangleq \text{post}[h] \quad \gamma \triangleq \text{pre}[h] \]

and

\[\tilde{\alpha} \triangleq \text{post}[h] \quad \tilde{\gamma} \triangleq \text{pre}[h], \]

we have:

1. \(\forall X \in L : \gamma \circ \tilde{\alpha}(X) \subseteq X \);
2. \(\forall X \in L : X \subseteq \tilde{\gamma} \circ \alpha(X) \).
The Adjoined Abstract Fixpoint Abstract Checking Algorithm

Algorithm 8

\[X := \alpha(I); \quad Y := \tilde{\alpha}(S); \quad Go := (X \sqsubseteq Y); \]

while \(Go\) do
\[X' := \alpha(I) \sqcup \alpha \circ F \circ \gamma(X); \quad Y' := \tilde{\alpha}(S) \sqcap \tilde{\alpha} \circ \tilde{F} \circ \tilde{\gamma}(Y); \]
\[Go := (X \neq X') \& (Y \neq Y') \& (X' \sqsubseteq Y'); \]
\[X := X'; \quad Y := Y'; \]
\[\text{od}; \]
return if \(X \sqsubseteq Y\) then \text{true} else \text{I don't know};
Partial correctness of Alg. 8

Alg. 8 is partially correct: if it ever terminates and returns “true” then $lfp \leq \lambda X. I \lor F(X) \leq S$.
Partially Complete Abstraction
Partially Complete Abstraction (definition)

Definition 9 The abstraction \(\langle \alpha, \gamma \rangle \) is *partially complete* if, whenever Alg. 4 terminates and \(\text{lfp} \leq \lambda X. I \lor F(X) \leq S \) then the returned result is “true”.

8 Observe that this notion of *partial completeness* is different from the notions of *fixpoint completeness* \(\alpha(\text{lfp} \leq G) = \text{lfp} \leq \alpha \circ G \circ \gamma \) and the stronger one of *local completeness* \(\alpha \circ G = \alpha \circ G \circ \gamma \circ \alpha \) considered in P. Cousot & R. Cousot, POPL’79.
Characterization of Partially Complete Abstractions for Algorithm 4

Theorem 10 The abstraction $\langle \alpha, \gamma \rangle$ is partially complete for Alg. 4 if and only if $\alpha(L)$ contains an abstract value A such that $\gamma(A)$ is an invariant for $\langle F, I, S \rangle$.
Characterization of Partially Complete Abstractions for Algorithm 4

Theorem 10 The abstraction $\langle \alpha, \gamma \rangle$ is partially complete for Alg. 4 if and only if $\alpha(L)$ contains an abstract value A such that $\gamma(A)$ is an invariant for $\langle F, I, S \rangle$.

Intuition: finding a partially complete abstraction is logically equivalent to making an invariance proof.
The Most Abstract Partially Complete Abstraction (Definition)

Definition 11 The *most abstract partially complete abstraction* \(\langle \overline{\alpha}, \overline{\gamma} \rangle\), if it exists, is defined such that:

1. The *abstract domain* \(\overline{M} = \overline{\alpha}(L)\) has the smallest possible cardinality;

2. If another abstraction \(\langle \alpha', \gamma' \rangle\) is a partially complete abstraction with the same cardinality, then there exists a bijection \(\beta\) such that \(\forall x \in \overline{M} : \gamma'(\beta(x)) \leq \overline{\gamma}(x)\) \(^9\).

\(^9\) Otherwise stated, the abstract values in \(\overline{\alpha}(L)\) are more approximate than the corresponding elements in \(\alpha'(L)\).
Characterization of the Most Abstract Complete Abstraction

Theorem 12 The most abstract partially complete abstraction for Alg. 4 is such that:

- if $S = 1$ then $\overline{M} = \{\top\}$ where $\overline{\alpha} \triangleq \lambda X. \top$ and $\overline{\gamma} \triangleq \lambda Y. 1$;
- if $S \neq 1$ then $\overline{M} = \{\bot, \top\}$ where $\bot \subseteq \bot \subseteq \top \subseteq \top$ such that:

$$
\overline{\alpha}(X) \triangleq \begin{cases} \top & \text{if } X \leq \text{gfp} \leq \lambda X. S \land \tilde{F}(X) \land \bot \text{ else } \top \\
\gamma(\bot) \triangleq \text{gfp} \leq \lambda X. S \land \tilde{F}(X) \\
\overline{\gamma}(\top) \triangleq 1
\end{cases}
$$

(2)
The **Least Abstract Partially Complete Abstraction** (Definition)

Definition 13 Dually, the *least abstract partially complete abstraction* \(\langle \overline{\alpha}, \overline{\gamma} \rangle \), if it exists, is defined such that:

1. The *abstract domain* \(\overline{M} = \overline{\alpha}(L) \) has the smallest possible cardinality;

2. If another abstraction \(\langle \alpha', \gamma' \rangle \) is a partially complete abstraction with the same cardinality, then there exists a bijection \(\beta \) such that \(\forall x \in \overline{M} : \overline{\gamma}(x) \leq \gamma'(\beta(x)) \) \(^{10}\).

\(^{10}\) Otherwise stated, the abstract values in \(\overline{\alpha}(L) \) are less approximate than the corresponding elements in \(\alpha'(L) \).
Characterization of the **Least Abstract Complete Abstraction**

Theorem 14 Dually, the least abstract partially complete abstraction for Alg. 4 is such that:

- if $I = 1$ then $M = \{\top\}$ where $\alpha \triangleq \lambda X. \top$ and $\gamma \triangleq \lambda Y. 1$;
- if $I \neq 1$ then $M = \{\bot, \top\}$ where $\bot \subseteq \bot \subseteq \top \subseteq \top$ with $\langle \alpha, \gamma \rangle$ such that:

 $\alpha(X) \triangleq \begin{cases} \text{if } X \leq \text{lfp} \leq \lambda X. I \lor F(X) \text{ then } \bot \text{ else } \top \\ \end{cases}$

 $\gamma(\bot) \triangleq \text{lfp} \leq \lambda X. I \lor F(X)$

 $\gamma(\top) \triangleq 1$
The Minimal Partially Complete Abstractions for Algorithm 4

Theorem 15

• The set \mathcal{A} of partially complete abstractions of minimal cardinality for Alg. 4 is the set of all abstract domains $\langle M, \sqsubseteq, \alpha, \gamma \rangle$ such that $M = \{\bot, \top\}$ with $\bot \sqsubseteq \bot \sqsubseteq \top \sqsubseteq \top$, $\langle L, \leq \rangle \xrightarrow{\alpha} \langle M, \sqsubseteq \rangle$, $\gamma(\bot) \in I$ and $\bot = \top$ if and only if $\gamma(\top) \in I$.
The Complete Lattice of Minimal Complete Abstractions for Alg. 4

Theorem 16

• The relation $\langle \{\bot, T\}, \sqsubseteq, \alpha, \gamma \rangle \preceq \langle \{\bot', T'\}, \sqsubseteq', \alpha', \gamma' \rangle$ if and only if $\gamma(\bot) \leq \gamma'(\bot')$ is a pre-ordering on A.

• Let $\langle \{\bot, T\}, \sqsubseteq, \alpha, \gamma \rangle \cong \langle \{\bot', T'\}, \sqsubseteq', \alpha', \gamma' \rangle$ if and only if $\gamma(\bot) = \gamma'(\bot')$ be the corresponding equivalence.

• The quotient $A/_\cong$ is a complete lattice \(^{11}\) for \preceq with infimum class representative $\langle M, \sqsubseteq, \alpha, \gamma \rangle$ and supremum $\langle \overline{M}, \sqsubseteq, \overline{\alpha}, \overline{\gamma} \rangle$.

\(^{11}\) Observe however that it is not a sublattice of the lattice of abstract interpretations of P. Cousot & R. Cousot, POPL’77, POPL’79 with reduced product as glb.
Intuition for Minimal Partially Complete Abstractions

• There is a one to one correspondance between partially complete abstractions of minimal cardinality for Alg. 4 and the set of invariants for proving $\text{lfp} \leq \lambda X. I \lor F(X) \leq S$;

• Similar results hold for the other Algs. 6, 7 & 8.
Conclusion
On the Automatic Inference of Partially Complete Abstractions

- The automatic inference/refinement of abstractions is an active subject of research 12.

12 Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saïdi, CAV’97; Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl & Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saïdi & Shankar, CAV’99; Saïdi, SAS’00; Baumgartner, Tripp, Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.
On the Automatic Inference of Partially Complete Abstractions

- The automatic inference/refinement of abstractions is an active subject of research \(^{12}\);
- Automating the abstraction is logically equivalent to discovering an invariant and checking a proof obligation (Th. 10);

\(^{12}\) Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saidi, CAV’97; Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl & Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saidi & Shankar, CAV’99; Saidi, SAS’00; Baumgartner, Tripp, Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.
On the Automatic Inference of Partially Complete Abstractions

- The automatic inference/refinement of abstractions is an active subject of research \(^\text{12}\);
- Automating the abstraction is logically equivalent to discovering an invariant and checking a proof obligation (Th. 10);
- After immoderate hopes in the seventies, there was no breakthrough for the last 20 years in automatic program proving;

\(^{12}\) Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saidi, CAV’97; Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl & Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saidi & Shankar, CAV’99; Saidi, SAS’00; Baumgartner, Tripp, Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.
On the Automatic Inference of Partially Complete Abstractions (contd.)

Will the empirical methods (presently) used in abstract model-checking be able to automatize the discovery of partially complete abstractions?

13 May be not so abstract model-checking will eventually boil down to incomplete abstract interpretations as used in program analysis or program debugging using a simultaneous simulation of program executions (although the current per-example reasoning can go on for ever).
THE END
THE END, THANK YOU.