
Contribution to the Panel on
Abstractions

in AI and Software Engineering

Patrick COUSOT
École Normale Supérieure

45 rue d’Ulm, 75230 Paris cedex 05, France
mailto:Patrick.Cousot@ens.fr , http://www.di.ens.fr/˜cousot

SARA’2000, Austin, TX July 27th , 2000

� � ✄

&#109;&#97;&#105;&#108;&#116;&#111;&#58;&#80;&#97;&#116;&#114;&#105;&#99;&#107;&#46;&#67;&#111;&#117;&#115;&#111;&#116;&#64;&#101;&#110;&#115;&#46;&#102;&#114;
http://www.di.ens.fr/~cousot


Abstractions in AI and Software Engineering
In the Software Engineering community, abstraction is an approach to managing complexity.

Examples of software abstractions procedural abstractions, data abstractions, inheritance, polymorphism
and many others. Programming languages provide such abstraction mechanisms in order to diminish the
cognitive demands faced by designers of complex systems.

In the Artificial Intelligence community, abstraction is typically viewed as a mechanism for attacking
intractable search problems. For example, the performance of a planning algorithm may be improved by
using a hierarchy of abstraction spaces. Search algorithms use such abstraction techniques in order to
make search control decisions.

Have the two communities missed an opportunity for cross fertilization? For example, do ab­
straction techniques developed in SE have any application to AI? Do AI techniques for automatically
generating abstractions have any application to SE?

Tom Ellman, Assistant Professor Voice: (845) 437-5991
Department of Computer Science FAX: (845) 437-7498
Vassar College Email: ellman@cs.vassar.edu
Poughkeepsie, NY 12601 Web: http://www.cs.vassar.edu/˜ellman

SARA’2000, Austin, TX , July 27th , 2000 �✁✁✁ — 2 — [] � — ✄✄✄� © P. Cousot

ellman@cs.vassar.edu
http://www.cs.vassar.edu/~ellman


Abstraction in …

• Generalizing the question, we look for criteria to
compare abstraction in:

-- Artificial Intelligence;

-- Software Engineering;

-- Model Checking;

-- Program Analysis;

SARA’2000, Austin, TX , July 27th , 2000 �✁✁✁ — 3 — [] � — ✄✄✄� © P. Cousot



Abstraction in Program Analysis
• Abstraction ≡ Approximation (for problem simplification);
• Mainly used for static safety analysis (more difficult for liveness);

• Property −−−−−−−−−−→←−−−−−−−−−−
Abstraction α

Concretization γ
Property;

• Abstraction & concretization not computable;
• Huge variety of abstractions (to finite or infinite domains);
• The abstraction must be effective for all programs, so one abstracts to

properties which are likely to appear in many programs;
• Program independent abstractions are manually designed;
• Compositional abstractions but successive weaker abstractions avoided

(widening proved more precise);
• Supporting theory: abstract interpretation;

SARA’2000, Austin, TX , July 27th , 2000 �✁✁✁ — 4 — [] � — ✄✄✄� © P. Cousot



Abstraction in Model Checking
• Abstraction ≡ Approximation (for simplification);
• Mainly used for safety checking (liveness if finite);

• Property −−−−−−−−−−→←−−−−−−−−−−
Abstraction α

Concretization γ
Property;

• Abstraction & concretization (often) computable;
• Abstractions mainly restricted to state to state, boolean or polyhedral

abstraction;
• The model-dependent abstraction is specialized for a given model;
• The abstraction is designed by the user;
• Trial and error successive weaker abstractions are common, usually no

compositionality;
• Supporting theory: (weak version of) abstract interpretation;

SARA’2000, Austin, TX , July 27th , 2000 �✁✁✁ — 5 — [] � — ✄✄✄� © P. Cousot



Abstraction in Artificial Intelligence
• Abstraction ≡ Approximation (for simplification);
• Mainly used for search algorithms/theorem proving;

• Object Abstraction h−−−−−−−−−→ Object
Concretization γ−−−−−−−−−−−→ Set of objects 1;

• Abstraction & concretization always computable;
• “Object to object” (“state to state”) abstractions;
• The abstraction is specialized for a search algorithm/theorem prover;
• The abstraction is designed by the algorithm/prover designer;
• Successive automatically generated weaker abstractions are common;
• Supporting theory: general program correctness/logical arguments;

1 The abstractionα ∈ ℘(Object) �→ ℘(Object)
def
= λP .{h(x) | x ∈ P} is left implicit.

SARA’2000, Austin, TX , July 27th , 2000 �✁✁✁ — 6 — [] � — ✄✄✄� © P. Cousot



Refinement in Software Engineering
• Refinement (concretization) ≡ delayed decisions and decomposition of

correctness proofs in structured program design;

• Program
Refinement ρ−−−−−−−−−−−→ Program (ρ often relation 2);

• The refinement is manual, not computable;
• The refinement makes one choice among a loosely defined set of com­

puter representable possibilities;
• The refinement is designed manually while refining;
• Goal directed refinement where goal is program efficiency and correct­

ness;
• Supporting theory: program semantics (predicate transformers);

2 The concretization γ ∈ ℘(Program) �→ ℘(Set of programs)
def
= λP .{Q | 〈Q, P 〉 ∈ ρ} is often left implicit.

SARA’2000, Austin, TX , July 27th , 2000 �✁✁✁ — 7 — [] � — ✄✄✄� © P. Cousot



Abstraction in Software Engineering
• Abstraction ≡ Parameterized program structuration (some part is left

partially specified, no approximation, it’s generalization);
• Mainly used for program and data parameterized generic program de­

sign;
• λ(program, data).procedural body (program, data)
• The abstraction is manual;
• The abstraction makes one choice among a loosely defined set of pos­

sible parameters;
• Composition of abstractions is common;
• Supporting theory: none (general program correctness arguments);

SARA’2000, Austin, TX , July 27th , 2000 �✁✁✁ — 8 — [] � — ✄✄✄� © P. Cousot



Answers to questions 3

• AI & Soft. Eng. cross-fertilization: abstraction in AI is approximation
(and sometime generalization) whereas abstraction in Soft. Eng. is
generalization only (beyond the scope of what is currently feasible in
AI);
• Has Soft. Eng. applications in AI: almost nothing is automated in Soft.

Eng., so the reciprocal is more probable;
• Do automatically generated abstractions apply to Soft. Eng.: at least

in program analysis, the design of a suitable abstraction is as difficult as
the design of a formal proof, which is beyond the scope of present-day
AI techniques, without human-interaction;
∫∫

3 Hopefully provocative enough to start up and stimulate the panel discussion.

SARA’2000, Austin, TX , July 27th , 2000 �✁✁✁ — 9 — [] � — ✄✄✄� © P. Cousot


	Abstractions in AI and Software Engineering
	Abstraction in …
	Abstraction in Program Analysis
	Abstraction in Model Checking
	Abstraction in Artificial Intelligence
	Refinement in Software Engineering
	Abstraction in Software Engineering
	Answers to questions

