
Introduction to a Discussion
on Mechanical Formal Methods

for Software Verification

Patrick COUSOT
École Normale Supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

mailto:cousot@ens.fr http://www.di.ens.fr/˜cousot

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 1 — [] " — """# © P. Cousot

IFIP WG2.3 Santa Cruz Meeting, January 7–12, 2001

Find the last error in a software system 1;
Can mechanical formal methods solve the ultimate verifi­
cation problem?

1 Obviously the ultimate verification problem is restricted to the unhappy many who are completely unable to derive
their programs correctly from sound and complete formal specifications.

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 2 — [] " — """# © P. Cousot

Mechanical Formal Methods

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 3 — [] " — """# © P. Cousot

Considered mechanical formal methods for software verifica­
tion:
• Program typing;
• Static program analysis;
• Abstract model checking;
• Deductive methods;
• Combinations of mechanical formal methods.

Consider decidable analyses only, by restricting both on specifi­
cations (allowed types) and on programs;
Clean presentation of the type analysis (inference algorithm)
through an equivalent logical formal system (type verification);
Extended to complex data structures, polymorphism, excep­
tions and separate modules in a way that scales up for large
IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 4 — [] " — """# © P. Cousot



Can a single mechanical formal method ul­
timately solve the verification problem?

NO!

User designed abstraction: derive a program finite abstract
model by abstract interpretation , prove the correctness of the
abstraction by deductive methods , later verify the abstract
model by model-checking;

3 even 1 400 000 lines for control-independent very weak properties.

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 5 — [] " — """# © P. Cousot

Fundamental limitation [1]: 1◦) abstraction discovery and
2◦) abstract semantics derivation is as difficult as doing the
proof! (resp. 1◦) invariant discovery & 2◦) invariant verification).

Reference

[1] P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In B.Y. Choueiry and T.
Walsh, eds, Proc. 4th Int. Symp. on Abstraction, Reformulations and Approximation, SARA ’ 2000 ,
Horseshoe Bay, TX, USA, LNAI 1864, pp. 1–25. Springer-Verlag, 26–29 July 2000.

Can some combination of formal methods
ultimately solve the verification problem?

NO!

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 6 — [] " — """# © P. Cousot

Possible Alternative: Combine
Empirical and Formal Methods

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 7 — [] " — """# © P. Cousot

Example: Abstract Program Testing
Debugging Abstract testing
Run the program Compute the abstract semantics
On test data Choosing a predefined abstraction
Checking if all right Checking user-provided abstract

assertions
Providing more tests With more refined abstractions
Until coverage Until enough assertions proved or

no predefined abstraction can do.

More details needed? Yes No

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 8 — [] " — """# © P. Cousot



Example: Abstract Program Testing
Debugging Abstract testing
Run the program Compute the abstract semantics
On test data Choosing a predefined abstraction
Checking if all right Checking user-provided abstract

assertions
Providing more tests With more refined abstractions
Until coverage Until enough assertions proved or

no predefined abstraction can do.

More details needed? Yes No

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 8 — [] " — """# © P. Cousot

Example: Abstract Program Testing

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 8 — [] " — """# © P. Cousot

Debugging Abstract testing
Run the program Compute the abstract semantics
On test data Choosing a predefined abstraction
Checking if all right Checking user-provided abstract

assertions
Providing more tests With more refined abstractions
Until coverage Until enough assertions proved or

no predefined abstraction can do.

More details needed? Yes No

The user provides the program specifications using predefined
abstractions 4;
The program is evaluated by abstract interpretation of the for­
mal semantics of the program 5;

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 9 — [] " — """# © P. Cousot

A Tiny Example
4 thus replacing infinitely many test data.
5 thus replacing program execution on the test data.
6 similarly to different test data.

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 10 — [] " — """# © P. Cousot



0: { n:[−∞ ,+∞]?; f:[−∞ ,+∞]? } static analyzer inference
read(n); definite error

1: { n:[0,+∞]; f:[−∞ ,+∞]? }
f := 1;

2: { n:[0,+∞]; f:[1,+∞] }
while (n <> 0) do no error

3: { n:[1,+∞]; f:[1,+∞] }
f := (f * n); potential error

4: { n:[1,+∞]; f:[1,+∞] }
n := (n - 1)

5: { n:[0,+∞]; f:[1,+∞] }
od;

6: { n:[0,0]; f:[1,+∞] } user program
sometime true;; user specification

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 11 — [] " — """# © P. Cousot

A Tiny Example
0: { n:[−∞ ,+∞]?; f:[−∞ ,+∞]? } static analyzer inference
read(n); definite error

1: { n:[0,+∞]; f:[−∞ ,+∞]? }
f := 1;

2: { n:[0,+∞]; f:[1,+∞] }
while (n <> 0) do no error

3: { n:[1,+∞]; f:[1,+∞] }
f := (f * n); potential error

4: { n:[1,+∞]; f:[1,+∞] }
n := (n - 1)

5: { n:[0,+∞]; f:[1,+∞] }
od;

6: { n:[0,0]; f:[1,+∞] } user program
sometime true;; user specification

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 11 — [] " — """# © P. Cousot

A Tiny Example
0: { n:[−∞ ,+∞]?; f:[−∞ ,+∞]? } static analyzer inference
read(n); definite error

1: { n:[0,+∞]; f:[−∞ ,+∞]? }
f := 1;

2: { n:[0,+∞]; f:[1,+∞] }
while (n <> 0) do no error

3: { n:[1,+∞]; f:[1,+∞] }
f := (f * n); potential error

4: { n:[1,+∞]; f:[1,+∞] }
n := (n - 1)

5: { n:[0,+∞]; f:[1,+∞] }
od;

6: { n:[0,0]; f:[1,+∞] } user program
sometime true;; user specification

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 11 — [] " — """# © P. Cousot

A Tiny Example
0: { n:[−∞ ,+∞]?; f:[−∞ ,+∞]? } static analyzer inference
read(n); definite error

1: { n:[0,+∞]; f:[−∞ ,+∞]? }
f := 1;

2: { n:[0,+∞]; f:[1,+∞] }
while (n <> 0) do no error

3: { n:[1,+∞]; f:[1,+∞] }
f := (f * n); potential error

4: { n:[1,+∞]; f:[1,+∞] }
n := (n - 1)

5: { n:[0,+∞]; f:[1,+∞] }
od;

6: { n:[0,0]; f:[1,+∞] } user program
sometime true;; user specification

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 11 — [] " — """# © P. Cousot



A Tiny Example (Cont’d)
0: { n:⊥; f:⊥ } static analyzer inference
initial (n < 0); user specification

1: { n:[−∞ ,-1]; f:[−∞ ,+∞]? }
f := 1; user program

2: { n:[−∞ ,-1]; f:[−∞ ,1] }
while (n <> 0) do no error

3: { n:[−∞ ,-1]; f:[−∞ ,1] }
f := (f * n); potential error

4: { n:[−∞ ,-1]; f:[−∞ ,0] }
n := (n - 1)

5: { n:[−∞ ,-2]; f:[−∞ ,0] }
od

6: { n:⊥; f:⊥ } ⊥ unreachable code

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 12 — [] " — """# © P. Cousot

A Tiny Example (Cont’d)
0: { n:⊥; f:⊥ } static analyzer inference
initial (n < 0); user specification

1: { n:[−∞ ,-1]; f:[−∞ ,+∞]? }
f := 1; user program

2: { n:[−∞ ,-1]; f:[−∞ ,1] }
while (n <> 0) do no error

3: { n:[−∞ ,-1]; f:[−∞ ,1] }
f := (f * n); potential error

4: { n:[−∞ ,-1]; f:[−∞ ,0] }
n := (n - 1)

5: { n:[−∞ ,-2]; f:[−∞ ,0] }
od

6: { n:⊥; f:⊥ } ⊥ unreachable code

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 12 — [] " — """# © P. Cousot

Comparing with Program Debugging

• Similarity: user interaction;

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 13 — [] " — """# © P. Cousot

Comparing with Program Debugging

• Similarity: user interaction;
• Essential differences:

-- user provided test data are replaced by abstract specifica­
tions;

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 13 — [] " — """# © P. Cousot



Comparing with Program Debugging

• Similarity: user interaction;
• Essential differences:

-- user provided test data are replaced by abstract specifica­
tions;

-- evaluation of an abstract semantics instead of program
execution/simulation;

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 13 — [] " — """# © P. Cousot

Comparing with Program Debugging

• Similarity: user interaction;
• Essential differences:

-- user provided test data are replaced by abstract specifica­
tions;

-- evaluation of an abstract semantics instead of program
execution/simulation;

-- one can prove the absence of (some categories of) bugs ,
not only their presence;

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 13 — [] " — """# © P. Cousot

Comparing with Program Debugging

• Similarity: user interaction;
• Essential differences:

-- user provided test data are replaced by abstract specifica­
tions;

-- evaluation of an abstract semantics instead of program
execution/simulation;i

-- one can prove the absence of (some categories of) bugs ,
not only their presence;

-- abstract evaluation can be forward and/or backward (re­
verse execution).

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 13 — [] " — """# © P. Cousot

Comparing with Abstract Model Checking

• Similarities:
-- use of specifications instead of test data sets;

7 or specifications of infinitely many such counter-examples in the case of abstract program testing.

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 14 — [] " — """# © P. Cousot



Comparing with Abstract Model Checking

• Similarities:
-- use of specifications instead of test data sets;
-- ability to automatically produce counter-examples 7;

7 or specifications of infinitely many such counter-examples in the case of abstract program testing.

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 14 — [] " — """# © P. Cousot

Comparing with Abstract Model Checking
(Cont’d)• Essential differences:

-- reasoning on the concrete program (not on a program
model);

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 15 — [] " — """# © P. Cousot

Comparing with Abstract Model Checking
(Cont’d)• Essential differences:

-- reasoning on the concrete program (not on a program
model);

-- no attempt to make a one-shot complete formal proof of
the specification;

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 15 — [] " — """# © P. Cousot

Comparing with Abstract Model Checking
(Cont’d)• Essential differences:

-- reasoning on the concrete program (not on a program
model);

-- no attempt to make a one-shot complete formal proof of
the specification;

-- interaction with user repeatedly providing partial specifi­
cations in a form close to conventional debugging;

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 15 — [] " — """# © P. Cousot



Comparing with Abstract Model Checking
(Cont’d)• Essential differences:

-- reasoning on the concrete program (not on a program
model);

-- no attempt to make a one-shot complete formal proof of
the specification;

-- interaction with user repeatedly providing partial specifi­
cations in a form close to conventional debugging;

-- predefined abstractions (not user defined);

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 15 — [] " — """# © P. Cousot

Comparing with Abstract Model Checking
(Cont’d)• Essential differences:

-- reasoning on the concrete program (not on a program
model);

-- no attempt to make a one-shot complete formal proof of
the specification;

-- interaction with user repeatedly providing partial specifi­
cations in a form close to conventional debugging;

-- predefined abstractions (not user defined);
-- finite and infinite abstract domains are allowed.

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 15 — [] " — """# © P. Cousot

Points of Discussion

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 16 — [] " — """# © P. Cousot

Questions

• Program debugging is still the prominent industrial program
“verification” method, why?

• Full program verification by formal methods is either impos­
sible (e.g. typing/program analysis) or costly since it ulti­
mately requires user interaction (e.g. abstract model check­
ing/deductive methods) so are mechanized formal methods
widely applicable?

• For program verification, semantic abstraction is mandatory
but difficult whence hardly automatizable so can abstractions
be designed by programmers?

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 17 — [] " — """# © P. Cousot



Questions

• Program debugging is still the prominent industrial program
“verification” method, why?

• Full program verification by formal methods is either impos­
sible (e.g. typing/program analysis) or costly since it ulti­
mately requires user interaction (e.g. abstract model check­
ing/deductive methods) so are mechanized formal methods
widely applicable?

• For program verification, semantic abstraction is mandatory
but difficult whence hardly automatizable so can abstractions
be designed by programmers?

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 17 — [] " — """# © P. Cousot

Questions

• Program debugging is still the prominent industrial program
“verification” method, why?

• Full program verification by formal methods is either impos­
sible (e.g. typing/program analysis) or costly since it ulti­
mately requires user interaction (e.g. abstract model check­
ing/deductive methods) so are mechanized formal methods
widely applicable?

• For program verification, semantic abstraction is mandatory
but difficult whence hardly automatizable so can abstractions
be designed by programmers?

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 17 — [] " — """# © P. Cousot

Questions (Cont’d)
If for large and complex programs, low cost complete verifica­
tion by mechanized formal methods is not viable then:
• Universal and reusable hence commercializable abstractions

lead to cost-effective 8 and automatic program analyzers so
can approximate program analysis be enhanced to partial pro­
gram verification?

• Otherwise, if user interaction is definitely needed, can ab­
stract program testing be viable alternative to both the ex­
haustive search of model-checking and the partial exploration
methods of classical debugging?

8 Less than 0.25$ per program line costing 50 to 80$.

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 18 — [] " — """# © P. Cousot

Questions (Cont’d)
If for large and complex programs, low cost complete verifica­
tion by mechanized formal methods is not viable then:
• Universal and reusable hence commercializable abstractions

lead to cost-effective 8 and automatic program analyzers so
can approximate program analysis be enhanced to partial pro­
gram verification?

• Otherwise, if user interaction is definitely needed, can ab­
stract program testing be viable alternative to both the ex­
haustive search of model-checking and the partial exploration
methods of classical debugging?

8 Less than 0.25$ per program line costing 50 to 80$.

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 18 — [] " — """# © P. Cousot



FURTHER CONTROVERSIAL
POINTS TO DISCUSS?

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 19 — [] " — """# © P. Cousot

THE END

IFIP WG2.3 Santa Cruz Meeting , January 7–12, 2001 !!!! — 20 — [] " — """# © P. Cousot


