
Applications of

Abstract Interpretation

Patrick Cousot
École Normale Supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot

ľ P. Cousot 1 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Content

--- A brief introduction to Abstract Interpretation (in pic-
tures 1);

--- A rapid survey of the main applications of Abstract
Interpretation;

--- A more detailled description of the Astrée 2 static ana-
lyzer.

1 For those attendees that missed the morning session!
2 www.astree.ens.fr

ľ P. Cousot 2 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

1. Principles of Abstract Interpre-
tation

ľ P. Cousot 3 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Operational semantics

x(t)

t

Possible
trajectories

ľ P. Cousot 4 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Safety property

x(t)

t

Forbidden zone

Possible
trajectories

ľ P. Cousot 5 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Test/debugging is unsafe

x(t)

t

Test of a few trajectories

Forbidden zone

Possible
trajectories

Error !!!

ľ P. Cousot 6 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Abstract interpretation is safe

x(t)

t

Abstraction of the trajectories

Forbidden zone

Possible
trajectories

ľ P. Cousot 7 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Soundness requirement: erroneous abstraction 3

x(t)

t

Erroneous trajectory abstraction

Forbidden zone

Possible
trajectories

Error !!!

3 This situation is always excluded in static analysis by abstract interrpetation.

ľ P. Cousot 8 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Soundness requirement: erroneous abstraction

x(t)

t

Erroneous trajectory abstraction

Forbidden zone

Possible
trajectories

Error !!!

ľ P. Cousot 9 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Imprecision) false alarms

x(t)

t

Imprecise trajectory abstraction

Forbidden zone

Possible
trajectories

False alarm

ľ P. Cousot 10 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Global interval abstraction ! false alarms

x(t)

t

Imprecise trajectory abstraction by intervals

Forbidden zone

Possible
trajectories

False alarms

ľ P. Cousot 11 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Local interval abstraction ! false alarms

x(t)

t

Imprecise trajectory abstraction by intervals

Forbidden zone

Possible
trajectories

False alarms

ľ P. Cousot 12 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Refinement by partitionning

x(t)

t

Partitionning

Forbidden zone

Possible
trajectories

ľ P. Cousot 13 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Intervals with partitionning

x(t)

t

Refinement of intervals

Forbidden zone

Possible
trajectories

ľ P. Cousot 14 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

2. Applications of Abstract Inter-
pretation

ľ P. Cousot 15 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Applications of Abstract Interpretation

--- Static Program Analysis [CC77], [CH78], [CC79] including

-- Dataflow Analysis [CC79], [CC00],

-- Set-based Analysis [CC95],

-- Predicate Abstraction [Cou03],

-- . . .

--- Grammar Analysis and Parsing [CC03], [CC06]

ľ P. Cousot 16 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Applications of Abstract Interpretation (Cont’d)

--- Hierarchies of Semantics (including Proofs) [CC92], [Cou02]

--- Typing & Type Inference [CC97]

--- (Abstract) Model Checking [CC00]

--- Bisimulations [RT04]

--- Non-interference [GM04]

--- Models of Security Protocols [Bla05]

ľ P. Cousot 17 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Applications of Abstract Interpretation (Cont’d)

--- Program Transformation [CC02] including

-- Software Watermarking [CC04]

-- (Semantic/Abstract) Slicing [Riv05]

-- Code Obfuscation [PG05a, PG05b]

--- Malware Detection [PCJD07]

--- Computational biology [Dan07]

--- Quantum computing [JP06, Per06]

--- . . .

All these techniques involve sound approximations that
can be formalized by abstract interpretation

ľ P. Cousot 18 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

3. The ASTRÉE static analyzer

ľ P. Cousot 19 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Project Members

Bruno Blanchet
1 Patrick Cousot Radhia Cousot Jérôme Feret

Laurent Mauborgne Antoine Miné David Monniaux Xavier Rival

1 Nov. 2001 — Nov. 2003.

20

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

How we got started

21

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

A dramatic realization

22

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Software safety is important

June 4, 1996: Ariane 5 explodes on its maiden flight due to a bug

Bug not detected by testing

Renewed interest in formal methods

PolySpace.com produces ADA verifier (now other tools available)

Other industries become interested in static analysis.

 TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Airbus and Astréeproject

Airbus has producted digital fly-by-wire controls since A320 (1988).

Avionics division interested in formal methods.

Uses Hoare logic theorem prover (Caveat, from CEA), and static analyzers:

timing validation + stack usage, by Absint GmbH

Astréeby ENS/CNRS (started in 2001)

24

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Introduction

25

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

The Astrée static analyzer

Astrée http://www.astree.ens.fr is a static analyzer based on abstract

interpretation.

• Analyzes a subset of the C language.
• Machine integers and floating-point numbers, not “mathematical”

integers and real numbers.
• Tuned for large-scale control/command codes, automatically

generated from high-level specifications.
• Precise domains for numerical computations.
• Detects runtime errors.

26

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.astree.ens.fr

Challenges

Has to analyze the original source code, not a derived “model”.

Has to be sound (i.e. not say “there is no runtime error possible” when

there are)

Has to be precise (i.e. not warn about many possible alarms that can’t

happen — false alarms)

Handle floating-point well, including digital filtering algorithms

27

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

The biggest challenge

Very large software (� 00,000 LOC) ⇒ efficiency questions !

Commodity PC hardware ⇒ keep memory requirements low

⇒ keep analysis times low

7

28

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Efficiency considerations

False “good idea” For final “certification” of the system, only need a

single pass of analysis, even if it is slow.

In reality... You want fast analysis

• for debugging the analyzer

• for using it while you develop the analyzed code

• for debugging input specifications (i.e. bounds on the inputs)

29

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Characteristics of the ASTRÉE Analyzer

Static: compile time analysis (6= run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs (6= PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (6= ESC Java,
ESC Java 2)

Sound: covers the whole state space (6= MAGIC, CBMC)
so never omit potential errors (6= UNO, CMC from
coverity.com) or sort most probable ones (6= Splint)

ľ P. Cousot

30

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www-106.ibm.com/developerworks/rational/library/811.html
http://www-106.ibm.com/developerworks/rational/library/811.html
http://www.parasoft.com/jsp/home.jsp
http://www.parasoft.com/jsp/products/quick_facts.jsp?product=Insure
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/whatispin.html
http://sdg.lcs.mit.edu/alloy/reference-manual.pdf
http://sdg.lcs.mit.edu/alloy/index.html
http://sdg.lcs.mit.edu/alloy/index.html
http://research.compaq.com/SRC/esc/
http://www.cs.kun.nl/sos/research/escjava/index.html
http://www.cs.kun.nl/sos/research/escjava/index.html
http://www.cs.kun.nl/sos/research/escjava/index.html
http://www-2.cs.cmu.edu/~chaki/magic/
http://www-2.cs.cmu.edu/~modelcheck/cbmc/
http://cm.bell-labs.com/cm/cs/what/uno/index.html
http://www.stanford.edu/~engler/
http://coverity.com/main.html
http://www.splint.org/
http://www.di.ens.fr/

Characteristics of the ASTRÉE Analyzer (Cont’d)

Multiabstraction: uses many numerical/symbolic abstract
domains (6= symbolic constraints in Bane or the
canonical abstraction of TVLA)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (6= model checking based
analyzers such as VeriSoft, Bandera, Java PathFinder)

Efficient: always terminate (6= counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

ľ P. Cousot

31

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.cs.berkeley.edu/Research/Aiken/bane.html
http://www.cs.tau.ac.il/~tvla/
http://cm.bell-labs.com/who/god/verisoft/
http://bandera.projects.cis.ksu.edu/
http://ase.arc.nasa.gov/visser/jpf/
http://ase.arc.nasa.gov/visser/jpf/
http://www-cad.eecs.berkeley.edu/~rupak/blast/
http://www.research.microsoft.com/slam/
http://www.di.ens.fr/

Characteristics of the ASTRÉE Analyzer (Cont’d)

Specializable: can easily incorporate new abstractions (and
reduction with already existing abstract domains)
(6= general-purpose analyzers PolySpace Verifier)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

ľ P. Cousot

32

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.polyspace.com/
http://www.polyspace.com/
http://ase.arc.nasa.gov/brat/cgs/
http://www.di.ens.fr/

Characteristics of the ASTRÉE Analyzer (Cont’d)

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: very few or no false alarm when adapted to an
application domain !̀ it is a VERIFIER!

ľ P. Cousot

33

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.ocaml.org
http://www.ocaml.org
http://www.di.ens.fr/

Example of Analysis Session

ľ P. Cousot

34

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Initial domain of application of ASTRÉE

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

●
– Boeing 747
– Airbus A300/310

●

– Airbus A320 / A330 / A340
– Boeing 777
– Airbus A380

Electric Flight Control Command

Before: assistance to the pilot

Now: control of the plane (and the pilot :-))

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Boeing 747-400

Crédit photo : Adrian Pingstone (domaine public) / Wikimedia Commons

Manual (assisted) flight command

37

http://commons.wikimedia.org/wiki/Image:Boeing_747_London.jpg
http://commons.wikimedia.org/wiki/User:Arpingstone
http://commons.wikimedia.org/

Boeing 747

Crédit photo : Snowdog / domaine public / Wikimedia Commons

Manual (assisted) flight command

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://commons.wikimedia.org/wiki/Image:B747-cockpit.jpg
http://commons.wikimedia.org/

Airbus A300 / A310

Crédit photo : Airbus

Manual (assisted) flight command

End of the 70s – Beginng of the 80s

39

http://www.airbus.com/

Manual (assisted) flight command

The pilot directly
controls the active

surfaces via
mechanical links
(with computer

assistance)

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Airbus A330

Crédit photo : Airbus

Digital fly-by-wire avionics

41

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.airbus.com/

 sidestick

The pilot operates on
a command linked to

a computer which
activates the active
surfaces via electric

transmissions
No mechanical link

(even in case of
malfunctioning)

Digital fly-by-wire avionics
The

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Boeing 777

Crédit photo : Boeing [photograph used under the fair use doctrine of US law]

Digital fly-by-wire avionics
(Simulating manual commands)

43

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.boeing.com/

Digital fly-by-wire avionics

Pilot sends orders to computer via sidestick (Airbus) or “traditional

looking” control yoke (Boeing)

Computer sends order to surfaces, receives feedback from sensors

Allows simplified piloting (computer does all compensations internally)

Not a single computer (multiple redundant computers, cross-checking,

separate architectures, multi-level redundancy)

44

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Airbus A380

Crédit photo : David Monniaux (CC-BY-SA), Wikimedia Commons

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://commons.wikimedia.org/wiki/Image:A380_dsc04393.jpg
http://commons.wikimedia.org/wiki/User:David.Monniaux
http://commons.wikimedia.org/

Considered Programs and Semantics

46

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Which Programs are Considered ?

¨ Embedded avionic programs;

¨ Automatically generated from a proprietary graphical system control language
(à la Simulink);

¨ Synchronous real-time critical programs:

declare volatile input, state, and output variables;

initialize state variables;

loop forever

read volatile input variables,

compute output and state variables,

write to volatile output variables;

wait for next clock tick

end loop

47

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Programs analysed by ASTRÉE

--- Application Domain: large safety critical embedded real-
time synchronous software for non-linear control of very
complex control/command systems.
--- C programs:
-- with

- basic numeric datatypes, structures and arrays
- pointers (including on functions),
- floating point computations
- tests, loops and function calls
- limited branching (forward goto, break, continue)

ľ P. Cousot

48

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

--- with (cont’d)
-- union
-- pointer arithmetics

--- without
-- dynamic memory allocation
-- recursive function calls
-- backward branching
-- conflicting side effects
-- C libraries, system calls (parallelism)

ľ P. Cousot

49

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Main Characteristics of the Programs

Difficulties:

¨ Many global variables and arrays (> 0 000);

¨ A huge loop (> after simplification);

¨ Each iteration depends on the state of the previous iterations (state variables);

¨ Floating-point computations
(80% of the code implements non-linear control with feed-back);

¨ Everything is interdependent (live variables analysis, slicing ineffective);

¨ Abstraction by elimination of any variable is too imprecise.

Simplicities:

¨ All data is statically allocated;

¨ Pointers are restricted to call-by-reference, no pointer arithmetics;

¨ Structured, recursion-free control flow.

700 000 lines

ASTRÉE has been extended to cope with
union and pointer arithmetic to handle other
embedded programs, like hand written
communication programs.

5

50

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Semantics

¨ The standard ISO C99 semantics:
• arrays should not be accessed out of their bounds, . . .

restricted by:

¨ The machine semantics:
• integer arithmetics is 2’s complement,

• floating point arithmetics is IEEE 754-1985,

• int and float are 32-bit, short is 16-bit, . . .

restricted by:

¨ The user’s semantics:
• integer arithmetics should not wrap-around,

• some IEEE exceptions (invalid operation, overflow, division by zero)
should not occur, . . .

51

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Trace semantics

--- From this small-step semantics we deribe a discrete-
time complete trace semantics 4;

--- This trace semantics is abstracted into many different
abstract properties as implemented by various abstract
domains;

--- Astrée computes a weak reduced product for these
abstractions 5.

4 posibly limited, for synchronous control/command programs, to a maximum number of clock ticks
(__ASTREE_wait_for_clock(()), as specified by a configuration file.
5 for efficiency, only a number of useful reductions are performed amongst all possible ones, via communica-
tions between abstract domains.

ľ P. Cousot 51 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Examples of abstractions

--- Set of complete traces
¸
!̀ reachable states

¸
!̀

6 pos-
sible values of each variable at a given program point
¸
!̀

7 8 interval of possible values of each variable at a
given program point;

--- . . . idem . . .
¸
!̀ simple congruence

--- Set of complete traces
¸
!̀ reachable states

¸
!̀ set of

vectors of possible values of all variables at a given pro-
gram point

¸
!̀ octagonal relations between pairs of

variables at a given program point 9;
6 cartesian abstraction
7 interval abstraction
8 see page 66–67
9 see page 69–70

ľ P. Cousot 51 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Examples of abstractions(Cont’d)

--- Set of complete traces
¸
!̀ set of reachable partial traces

of a loop for 1, 2, . . . , n and > n iterations 10
¸
!̀ . . . 11

--- Set of complete traces
¸
!̀ for each trace, a map of

discrete time i in the trace to thevalue Xi of a variable X
at that time i along that trace

¸
!̀ a map of dicrete time

i in the traces to the maximum value —Xi of a variable X
at that time i in all traces 12

10 n is a parameter of Astrée
11 see pages 108–110
12 see slides 74 to 95

ľ P. Cousot 51 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

Goal of the Program Static Analyzer

¨ Correctness verification.

¨ Nothing can go wrong at execution:
• no integer overflow or division by zero,

• no exception, NaN, or ±∞ generated by IEEE floating-point arithmetics,

• no out of bounds array access,

• no erroneous type conversion.

¨ The execution semantics on the machine never reaches an indetermination
or an error case in the standard / machine / user semantics.

52

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Different Classes of Run-time Errors

1. Errors terminating the execution 6. Astrée warns and
continues by taking into account only the executions that
did not trigger the error.

2. Errors not terminating the execution with predictable outcome 7.
Astrée warns and continues with worst-case assumptions.

3. Errors not terminating the execution with unpredictable
outcome 8. Astrée warns and continues by taking into ac-
count only the executions that did not trigger the error.

3. is sound with respect to C standard, unsound with respect to
C implementation, unless no false alarm.

6 floating-point exceptions e.g. (invalid operations, overflows, etc.) when traps are activated
7 e.g. overflows over signed integers resulting in some signed integer.
8 e.g. memory corruptionss.

53

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Information about the Program Execution
Automatically Inferred by the Analyzer

¨ The analyzer effectively computes a finitely represented, compact over-
approximation of the immense reachable state space.

¨ The information is valid for any execution interacting with any possible
environment (through undetermined volatiles).

¨ It is inferred automatically by abstract interpretation of the collecting seman-
tics and convergence acceleration (∇, ∆).

54

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Automatic Program Verification
by Abstract Interpretation

Result:

¨ Can produce zero or very few false alarms
while checking non-trivial properties (absence of Run-Time Error);

¨ Does scale up.

How ?

¨ We specialize the abstract interpreter for a family of programs
(which correctness proofs would be similar).

¨ The abstract domains are generic invariants
automatically instantiated by the analyzer (to make these proofs).

55

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Example application
--- Primary flight control software of the Airbus A340 fam-
ily/A380 fly-by-wire system

--- C program, automatically generated from a proprietary
high-level specification (à la Simulink/Scade)
--- A340 family: 132,000 lines, 75,000 LOCs after preprocess-
ing, 10,000 global variables, over 21,000 after expansion
of small arrays
--- A380: ˆ

ľ P. Cousot

5/7

56

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Benchmarks (Airbus A340 Primary Flight Control Software)

--- 132,000 lines, 75,000 LOCs after preprocessing
--- Comparative results (commercial software):

4,200 (false?) alarms,
3.5 days;

--- Our results:
0 alarms,
40mn on 2.8 GHz PC,
300 Megabytes
!̀ A world première!

ľ P. Cousot

57

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

(Airbus A380 Primary Flight Control Software)

--- 350,000 lines
--- 0 alarms (Nov. 2004),
7h 6 on 2.8 GHz PC,
1 Gigabyte
!̀ A world grand première!

--- Now at 1,000,000 lines!

6 We are still in a phase where we favour precision rather than computation costs, and this should go down.
For example, the A340 analysis went up to 5 h, before being reduced by requiring less precision while still
getting no false alarm.

ľ P. Cousot

34h, 8 Gb, still 0 false alarm
(after some additional
parametrisation)

58

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

The abstract interpretor

59

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Architecture
Pipeline

↓

↓

↓

↓

↓

↓

Pre-processor (macro-expansion)

Parser (C99)

Link editor

Constant propagation and simplification

Iterator

Iterator

Abstract interpreter

60

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4 00 PM

Interpréteur abstrait
Modules communicants

l

l

l

l l l
...
. . .

l

Iterator

Trace partitionning

Memory model and aliases

(Reduced product) of numerical abstract domains

Intervals

Intervals

Octagons Decision
trees

61

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4 00 PM

Abstractions and Abstract Domains

• What ASTRÉE computes:
Invariant I ∈ D]: approximation for the set of traces JP K

• Structure of the abstraction I ∈ D]:

� For each control point l

� For each execution context κ (e.g. calling stack)

⇒ an approximation I(l, κ) ∈ D]
M

for a set of memory states

• Layout of D]
M
:

� Reduced product of a collection of abstract domains

� Each domain:
♦ Expresses a (generally infinite) family of predicates
♦ Transfer functions: assign , guard , ... operators
♦ Approximations for ∪: t and ∇ (convergence acceleration)

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

The Abstract Interpreter

Principle: play all executions in a single, abstract computation

• Analysis of a basic statement x = e:

� Transfer function assign (x = e) : D]
M
→ D]

M

� D]
M
: accounts for the new/removed constraints

• Analyzing compound programs, e.g. loops:

U U U

while (...) { ... }
memorized abstract invariants

propagated abstract invariants

Program Iterative invariant computation

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Abstract Domains

 © P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Choice of the Abstract Domains

Abstract Domain:

¨ Computer representation of a class of program properties;

¨ Transformers for propagation through expressions and commands;

¨ Primitives for convergence acceleration: ∇, ∆.

Composition of Abstract Domains:

¨ Essentially approximate reduced product (conjunction with simplification).

Design of Abstract Domains:

¨ Know-how;

¨ Experimentation.

65

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

General-Purpose Abstract Domains: Intervals and Octagons

X

Y

0

Intervals:
j

1 » x » 9
1 » y » 20

Octagons [10]:
8

>

>

<

>

>

:

1 » x » 9
x+ y » 77
1 » y » 20
x` y » 04

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [POPL ’77,
10, 11]

ľ P. Cousot

66

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Interval Abstract Domain

¨ Classical domain [Cousot Cousot 76];

¨ Minimum information needed to check the correctness conditions;

¨ Not precise enough to express a useful inductive invariant
(thousands of false alarms);

¨ =⇒ must be refined by:
• combining with existing domains through reduced product,

• designing new domains, until all false alarms are eliminated.

67

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Clock Abstract Domain

Code Sample:

R = 0;

while (1) {
if (I)

{ R = R+1; }
else

{ R = 0; }
T = (R>=n);

wait for clock ();

}

• Output T is true iff the volatile input I has been
true for the last n clock ticks.

• The clock ticks every s seconds for at most h

hours, thus R is bounded.

• To prove that R cannot overflow, we must
prove that R cannot exceed the elapsed clock
ticks (impossible using only intervals).

Solution:
¨ We add a phantom variable clock in the concrete user semantics to track

elapsed clock ticks.

¨ For each variable X, we abstract three intervals: X, X+clock, and X-clock.

¨ If X+clock or X-clock is bounded, so is X.

This abstract domain need no longer to be used since it is
subsumed by the arihmetric-geometric abstract domain
(introduced to cope with cumulation of rounding errors)

68

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Octagons

assume(x ∈ [−10, 10])

if(x < 0){y = −x; }

else{y = x; }

①if(y ≤ 5)

{②assert(−5 ≤ x ≤ 5); }

• Interval analysis:

� At ①, x ∈ [−10, 10]; y ∈ [0, 10]

� At ②, x ∈ [−10, 10]; y ∈ [0, 5]

� Alarm (assert not proved)

• A relation between x and y is required:
⇒ We need a relational abstraction

• Octagons:

� Express constraints of the form ±x ± y ≤ c.
Above example:
♦ At ①, 0 ≤ y− x ≤ 20; 0 ≤ y + x ≤ 20

♦ At ②, y ∈ [0, 5]; 0 ≤ y− x ≤ 20; 0 ≤ y + x ≤ 20,
so we derive x ∈ [−5, 5]

� Reasonable cost: O(n2) memory and O(n3) time
complexity

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Using Octagons

Several issues should be addressed:

• Scalability: O(n3) time, n ≡ 10 000 will not scale:
⇒ Use many small octagons instead of a big one

� Packs: small group of variables relations are required for

� Strategy: determines packs, required relations represented

� Complexity: linear in the number of packs
Size of packs: bounded by a constant
Number of packs: linear in the size of the code
⇒ Linear complexity

• Floating point rounding errors in the concrete computations
solved by linearization of expressions:

� Expressions approximated with real interval linear forms

� Relational domain: semantics in terms of real numbers

� Rounding errors in concrete computations accounted for at
linearization time

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Application-specific abstract
domains (for control-command)

71

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Ellipsoid Abstract Domain for Filters2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

--- Computes Xn =

j

¸Xn`1 + ˛Xn`2 + Yn
In

--- The concrete computation is bounded, which
must be proved in the abstract.

--- There is no stable interval or octagon.
--- The simplest stable surface is an ellipsoid.

X U F(X)

X
F(X)

F(X)
X

X U F(X)

execution trace unstable interval stable ellipsoid

ľ P. Cousot

72

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Filter Example [7]typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

ľ P. Cousot

73

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Arithmetic-geometric progressions 7 [8]

--- Abstract domain: (R+)5

--- Concretization:

‚ 2 (R+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“

–x . ax+ b ‹ (–x . a0x+ b0)k
”

(M)g

i.e. any function bounded by the arithmetic-geometric
progression.

7 here in R

ľ P. Cousot

74

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Applications

Arithmetic-geometric progressions provide bounds for :

1. division by α followed by a multiplication by α:
=⇒ our running example;

2. barycentric means:
=⇒ at each loop iteration, the value of a variable X is computed as a

barycentric mean of some previous values of X

(not necessarily the last values);

3. bounded incremented variables:
=⇒ it replaces the former domain that bounds the difference and the
sum between each variable and the loop counter.

75

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Running example (in R)

1 : X := 0; k := 0;

2 : while (k < 1000) {

3 : if (?) {X ∈ [−10; 10]};

4 : X := X/3;

5 : X := 3× X;

6 : k := k + 1;

7 : }

76

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Arithmetic-geometric progressions (Example 1)

Interval analysis: first loop iteration

1 : X := 0; k := 0;
X = 0

2 : while (k < 1000) {

X = 0

3 : if (?) {X ∈ [−10; 10]};
|X| ≤ 10

4 : X := X/3;
|X| ≤ 10

3

5 : X := 3× X;
|X| ≤ 10

6 : k := k + 1;

7 : }

77

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Interval analysis: Invariant

1 : X := 0; k := 0;
X = 0

2 : while (k < 1000) {

|X| ≤ 10

3 : if (?) {X ∈ [−10; 10]};
|X| ≤ 10

4 : X := X/3;
|X| ≤ 10

3

5 : X := 3× X;
|X| ≤ 10

6 : k := k + 1;

7 : }

|X| ≤ 10

78

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Including rounding errors [Miné–ESOP’04]

1 : X := 0; k := 0;

2 : while (k < 1000) {

3 : if (?) {X ∈ [−10; 10]};

4 : X := X/3 + [−ε1; ε1].X + [−ε2; ε2];

5 : X := 3× X + [−ε3; ε3].X + [−ε4; ε4];

6 : k := k + 1;

7 : }

The constants ε1, ε2, ε3, and ε4 (≥ 0) are computed by other domains.

79

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Interval analysis
Let M ≥ 0 be a bound:

1 : X := 0; k := 0;
X = 0

2 : while (k < 1000) {

|X| ≤M

3 : if (?) {X ∈ [−10; 10]};
|X| ≤ max(M,10)

4 : X := X/3 + [−ε1; ε1].X + [−ε2; ε2];
|X| ≤ (ε1 + 1

3
)×max(M, 10) + ε2

5 : X := 3× X + [−ε3; ε3].X + [−ε4; ε4];
|X| ≤ (1 + a)×max(M,10) + b

6 : k := k + 1;

7 : }

with a = 3× ε1 +
ε3
3

+ ε1 × ε3 and b = ε2 × (3 + ε3) + ε4.

80

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Ari.-geo. analysis: first iteration

1 : X := 0; k := 0;
X = 0, k = 0

2 : while (k < 1000) {

X = 0

3 : if (?) {X ∈ [−10; 10]};
|X| ≤ 10

4 : X := X/3 + [−ε1; ε1].X + [−ε2; ε2];
|X| ≤

[

v 7→
(

1
3
+ ε1

)

× v + ε2

]

(10)

5 : X := 3× X + [−ε3; ε3].X + [−ε4; ε4];
|X| ≤ f(1)(10)

6 : k := k + 1;
|X| ≤ f(k)(10), k = 1

7 : }

with f =
[

v 7→
(

1 + 3× ε1 +
ε3
3

+ ε1 × ε3

)

× v + ε2 × (3 + ε3) + ε4

]

.

81

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Ari.-geo. analysis: Invariant
1 : X := 0; k := 0;

X = 0, k = 0

2 : while (k < 1000) {

|X| ≤ f(k)(10)

3 : if (?) {X ∈ [−10; 10]};
|X| ≤ f(k)(10)

4 : X := X/3 + [−ε1; ε1].X + [−ε2; ε2];
|X| ≤ (1

3
+ ε1)×

(

f(k)(10)
)

+ ε2

5 : X := 3× X + [−ε3; ε3].X + [−ε4; ε4];
|X| ≤ f

(

f(k)(10)
)

6 : k := k + 1;
|X| ≤ f(k)(10)

7 : }

|X| ≤ f(1000)(10)

with f =
[

v 7→
(

1 + 3× ε1 +
ε3
3

+ ε1 × ε3

)

× v + ε2 × (3 + ε3) + ε4

]

.

82

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Analysis session

83

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Arithmetic-Geometric Progressions (Example)
% cat count.c

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

volatile BOOLEAN I; int R; BOOLEAN T;

void main() {

R = 0;

while (TRUE) {

__ASTREE_log_vars((R));

if (I) { R = R + 1; }

else { R = 0; }

T = (R >= 100);

__ASTREE_wait_for_clock(());

}}

% cat count.config

__ASTREE_volatile_input((I [0,1]));

__ASTREE_max_clock((3600000));

% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!

ľ P. Cousot

84

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

2

http://www.di.ens.fr/

Arithmetic-geometric progressions (Example)
% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;

BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev()

{ X=E;

if (FIRST) { P = X; }

else

{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };

B = A;

if (SWITCH) {A = P;}

else {A = X;}

}

void main()

{ FIRST = TRUE;

while (TRUE) {

dev();

FIRST = FALSE;

__ASTREE_wait_for_clock(());

}}

% cat retro.config

__ASTREE_volatile_input((E [-15.0, 15.0]));

__ASTREE_volatile_input((SWITCH [0,1]));

__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39

/ 1.19209290217e-07) * (1

+ 1.19209290217e-07)ˆclock

- 5.87747175411e-39 /

1.19209290217e-07 <=

23.0393526881

ľ P. Cousot

85

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

3

http://www.di.ens.fr/

Benchmarks

We analyze three programs in the same family on a AMD Opteron 248, 8 Gb
of RAM (analyses use only 2 Gb of RAM).

lines of C 70,000 216,000 379,000
global variables 13,400 7,500 9,000
iterations 80 63 37 229 223 53 253 286 74
time/iteration 1mn14s 1mn21s 1mn16s 4mn04s 5mn13s 4mn40s 7mn33s 9mn42s 8mn17
analysis time 2h18mn 2h05mn 47mn 15h34mn 19h24mn 4h08mn 31h53mn 43h51mn 10h14m
false alarms 625 24 0 769 64 0 1482 188 0

1. without using computation time;

2. with the former loop counter domain,
(without the arithmetic-geometric domain);

3. with the arithmetic-geometric domain,
(without the former loop counter domain).

[no wait_for_clock(())]

86

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Arithmetic-geometric progressions (in R)
An arithmetic-geometric progression is a 5-tuple in (R+)

5.
An arithmetic-geometric progression denotes a function in N → R

+:

βR(M, a, b, a ′, b ′)(k)
∆
=

[

v 7→ a× v + b
]

(

[

v 7→ a ′ × v + b ′
](k)

(M)

)

Thus,
• k is the loop counter;

• M is an initial value;

•
[

v 7→ a× v + b
]

describes the current iteration;

•
[

v 7→ a ′ × v + b ′
](k)

describes the first k iterations.

A concretization γR maps each element d ∈ (R+)
5 to a set γR(d) ⊆ (N → R

+)

defined as:
{f | ∀k ∈ N, |f(k)| ≤ βR(d)(k)}

87

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Monotonicity

Let d = (M,a, b, a ′, b ′) and d = (M, a, b, a ′, b ′) be two arithmetic-geometric
progressions.

If:

• M ≤M,

• a ≤ a, a ′ ≤ a ′,

• b ≤ b, b ′ ≤ b ′.

Then:

∀k ∈ N, βR(d)(k) ≤ βR(d)(k).
0

20

40

60

80

100

200 400 600 800 1000

βR(d)(k)

k

88

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Disjunction

Let d = (M,a, b, a ′, b ′) and d = (M, a, b, a ′, b ′) be two arithmetic-geometric
progressions.

We define:

d tR d
∆
= (M,a, b, a ′, b ′)

where:

• M
∆
= max(M,M),

• a
∆
= max(a, a), a ′ ∆

= max(a ′, a ′),

• b
∆
= max(b, b), b ′ ∆

= max(b ′, b ′), 0

20

40

60

80

100

200 400 600 800 1000

βR(d)(k)

k

For any k ∈ N, βR(d tR d)(k) ≥ max(βR(d)(k), βR(d)(k)).

89

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Conjunction

Let d and d be two arithmetic-geometric progressions.

1. If d and d are comparable (component-wise), we take the smaller one:

d uR d
∆
= Inf .

≤
{d; d}.

2. Otherwise, we use a parametric strategy:

d uR d ∈ {d; d}.

For any k ∈ N, βR(d uR d)(k) ≥ min(βR(d)(k), βR(d)(k)).

90

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Assignment

We have:

βR(M,a, b, a ′, b ′)(k) = a× (M + b ′ × k) + b when a ′ = 1

βR(M,a, b, a ′, b ′)(k) = a×
(

(a ′)k ×
(

M − b ′

1−a ′

)

+ b ′

1−a ′

)

+ b when a ′ 6= 1.

Thus:

1. for any a, a ′, M, b, b ′, λ ∈ R
+,

λ×
(

βR

(

M, a, b, a ′, b ′
)

(k)
)

= βR

(

λ×M,a, λ× b, a ′, λ× b ′
)

(k);

2. for any a, a ′, M, b, b ′, M, b, b ′ ∈ R
+, for any k ∈ N,

βR

(

M, a, b, a ′, b ′
)

(k) + βR

(

M, a, b, a ′, b
)

(k) = βR

(

M + M, a, b + b, a ′, b ′ + b ′
)

91

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Projection I

βR(M,a, b, a ′, b ′)(k) = a× (M + b ′ × k) + b when a ′ = 1

βR(M,a, b, a ′, b ′)(k) = a×
(

(a ′)k ×
(

M − b ′

1−a ′

)

+ b ′

1−a ′

)

+ b when a ′ 6= 1.

Thus, for any d ∈ (R+)
5,

the function
[

k 7→ βR(d)(k)
]

is:

• either monotonic,

• or anti-monotonic.

a ′ > 1,

a ′ = 1,

a ′ < 1 and M < b ′

1−a ′,

a ′ < 1 and M > b ′

1−a ′.

0

20

40

60

80

100

200 400 600 800 1000

βR(d)(k)

k

92

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Projection II

Let d ∈ (R+)
5 and kmax ∈ N.

bound(d, kmax)
∆
= max(βR(d)(0), βR(d)(kmax))

For any k ∈ N such that 0 ≤ k ≤ kmax:

β(d)(k) ≤ bound(d, kmax).
0

20

40

60

80

100

200 400 600 800 1000

βR(d)(k)

k

0 kmax

93

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Incrementing the loop counter

We integrate the current iteration into the first k iterations:

• the first k + 1 iterations are chosen as the worst case among the first k

iterations and the current iteration;

• the current iteration is reset.

Thus:
next

R
(M,a, b, a ′, b ′)

∆
= (M,1, 0, max(a, a ′), max(b, b ′)).

For any k ∈ N, d ∈
(

R
+
)5

, βR(d)(k) ≤ βR(next
R
(d))(k + 1).

94

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

About floating point numbers

Floating point numbers occur:

1. in the concrete semantics:
Floating point expressions are translated into real expressions with in-
terval coefficients [Miné—ESOP’04].
In other abstract domains, we handle real numbers.

2. in the abstract domain implementation:
For efficiency purpose, we implement each primitive in floating point
arithmetics: each real is safely approximated by an interval with floating
point number bounds.

95

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Handling floating point
computations (in the program

semantics and in the analyzer)

96

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Floating-Point Computations

/* float-error.c */

int main () {

float x, y, z, r;

x = 1.000000019e+38;

y = x + 1.0e21;

z = x - 1.0e21;

r = y - z;

printf("%f\n", r);

}

% gcc float-error.c

% ./a.out

0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */

int main () {

double x; float y, z, r;

/* x = ldexp(1.,50)+ldexp(1.,26); */

x = 1125899973951488.0;

y = x + 1;

z = x - 1;

r = y - z;

printf("%f\n", r);

}

% gcc double-error.c

% ./a.out

134217728.000000

ľ P. Cousot

97

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Floating-Point Computations

/* float-error.c */

int main () {

float x, y, z, r;

x = 1.000000019e+38;

y = x + 1.0e21;

z = x - 1.0e21;

r = y - z;

printf("%f\n", r);

}

% gcc float-error.c

% ./a.out

0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */

int main () {

double x; float y, z, r;

/* x = ldexp(1.,50)+ldexp(1.,26); */

x = 1125899973951487.0;

y = x + 1;

z = x - 1;

r = y - z;

printf("%f\n", r);

}

% gcc double-error.c

% ./a.out

0.000000

ľ P. Cousot

98

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Explanation of the huge rounding error

(1)
x

�����

����	�
x
��

�
x���

� x

��������

(2)
x

�������

�����

����	�

x
�x��
x

��������

���������

ľ P. Cousot

99

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Relational Domains on Floating-Point

Problems:
¨ Relational numerical abstract domains rely on a perfect mathematical concrete

semantics (in R or Q).

¨ Perfect arithmetics in R or Q is costly.

¨ IEEE 754-1985 floating-point concrete semantics incurs rounding.

Solution:

¨ Build an abstract mathematical semantics in R that over-approximates the
concrete floating-point semantics, including rounding.

¨ Implement the abstract domains on R using floating-point numbers rounded
in a sound way.

100

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Floating-point linearization [11, 12]

--- Approximate arbitrary expressions in the form
[a0; b0] +

P

k([ak; bk]ˆ Vk)
--- Example:

Z = X - (0.25 * X) is linearized as
Z = ([0:749 ´ ´ ´ ; 0:750 ´ ´ ´]ˆX)+(2:35 ´ ´ ´ 10`38ˆ[`1; 1])

--- Allows simplification even in the interval domain
if X 2 [-1,1], we get jZj » 0:750 ´ ´ ´ instead of jZj » 1:25 ´ ´ ´

--- Allows using a relational abstract domain (octagons)
--- Example of good compromize between cost and preci-
sion

ľ P. Cousot

101

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Symbolic abstract domain [11, 12]

--- Interval analysis: if x 2 [a; b] and y 2 [c; d] then x`y 2
[a` d; b` c] so if x 2 [0; 100] then x`x 2 [`100; 100]!!!
--- The symbolic abstract domain propagates the symbolic
values of variables and performs simplifications;
--- Must maintain the maximal possible rounding error for
float computations (overestimated with intervals);

% cat -n x-x.c

1 void main () { int X, Y;

2 __ASTREE_known_fact(((0 <= X) && (X <= 100)));

3 Y = (X - X);

4 __ASTREE_log_vars((Y));

5 }

astree –exec-fn main –no-relational x-x.c

Call main@x-x.c:1:5-x-x.c:1:9:

<interval: Y in [-100, 100]>

astree –exec-fn main x-x.c

Call main@x-x.c:1:5-x-x.c:1:9:

<interval: Y in {0}> <symbolic: Y = (X -i X)>

ľ P. Cousot

102

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Constructors of
Abstract Domains

103

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Abstract domain constructors

--- Non-relational lifting: non-relational abstract domain D on val-
ues ‹7 !̀ abstract domain

Q

X2VarD on all variables (using bal-
anced binary trees)
--- Relational lifting: relational abstract domain D(P) on packs
P „ Var of variables ‹7 !̀ abstract domain D(Var) on all variables

--- Trace partitionning: past history abstraction domain 9 ˆ current
memory state abstraction domain ‹7 !̀ prefix traces abstraction
domain (using maps implemented as trees) [11]
--- Boolean partitionning: prefix traces abstraction domainˆ boolean
variables ‹7 !̀ prefix traces abstraction domain (using decision
trees)

9 (e.g. a sub-sequence of branches taken

104

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Decision Tree Abstract Domain

Synchronous reactive programs encode control flow in boolean variables.

Code Sample:

bool B1,B2,B3;

float N,X,Y;

N = f(B1);

if (B1)

{ X = g(N); }
else

{ Y = h(N); }

Decision Tree:

� � �� � �� � �� � �

� �� �� �
� �� �� �

� �� �� �� � � � � �� � � �

Numerical abstract domains

X
Y

X
Y

X
Y

X
Y

B3

B1

B2

BDD

There are too many booleans (4 000) to build one big tree so we:

¨ limit the BDD height to 3 (analysis parameter);

¨ use a syntactic criterion to select variables in the BDD and the numerical parts.

105

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Boolean Relations for Boolean Control
--- Code Sample:

/* boolean.c */

typedef enum {F=0,T=1} BOOL;

BOOL B;

void main () {

unsigned int X, Y;

while (1) {

...

B = (X == 0);

...

if (!B) {

Y = 1 / X;

}

...

}

}

�

�

�

��

�

�

�
� �

�

�

�

�

�

�

�

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

ľ P. Cousot

106

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Iteration Strategies

for Fixpoint Approximation

107

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Iteration Refinement: Loop Unrolling

Principle:

¨ Semantically equivalent to:

while (B) { C } =⇒ if (B) { C }; while (B) { C }

¨ More precise in the abstract:
• less concrete execution paths are merged in the abstract.

Application:

¨ Isolate the initialization phase in a loop (e.g. first iteration).

108

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Iteration Refinement: Trace Partitioning

Principle:

¨ Semantically equivalent to:
if (B) { C1 } else { C2 }; C3

⇓
if (B) { C1; C3 } else { C2; C3 };

¨ More precise in the abstract:
• concrete execution paths are merged later.

Application:

if (B)

{ X=0; Y=1; }
else

{ X=1; Y=0; }
R = 1 / (X-Y);

/ cannot result in a division by zero

109

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Control Partitionning for Case Analysis
--- Code Sample:
/* trace_partitionning.c */

void main() {

float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};

float c[4] = {0.0, 2.0, 2.0, 0.0};

float d[4] = {-20.0, -20.0, 0.0, 20.0};

float x, r;

int i = 0;

... found invariant `100 » x » 100 ...

while ((i < 3) && (x >= t[i+1])) {

i = i + 1;

}

r = (x - t[i]) * c[i] + d[i];

}

Control point partitionning:

Trace partitionning:

Fork Join

Delaying abstract unions in tests and loops is more precise for non-distributive

abstract domains (and much less expensive than disjunctive completion).

ľ P. Cousot

110

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Convergence Accelerator: Widening

Principle:

¨ Brute-force widening:

¨ Widening with thresholds:

Thresholds

Examples:

¨ 1., 10., 100., 1000., etc. for floating-point variables;

¨ maximal values of data types;

¨ syntactic program constants, etc.

111

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Fixpoint Stabilization for Floating-point

Problem:

¨ Mathematically, we look for an abstract invariant inv such that F(inv) ⊆ inv.

¨ Unfortunately, abstract computation uses floating-point and incurs rounding:
maybe Fε(inv) * inv!

Solution:

� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �

attractiveness

rounding
error

� � � � � � � �

� � � � � � � �

Inv

F εF

ε ’

Inv

• Widen inv to inv
ε
′ with the hope to

jump into a stable zone of Fε.

• Works if F has some attractiveness
property that fights against rounding
errors (otherwise iteration goes on).

• ε′ is an analysis parameter.

112

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Experience with the use of ASTRÉE

 © P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Use ofASTRÉE

• The analyzer:

� Full automatic mode:
Should do well for the families of programs ASTRÉE is
designed for

� ' 150 options, so as to set
♦ The input (one or many files...)
♦ The iteration strategy, the packing strategy
♦ The domains to enable or disable, domain parameters
♦ The export of invariants to disk

� Standard output: alarms, invariants

� Can be run in parallel mode

• A graphical interface:
Navigation through invariants (saved invariants)

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Main Practical Results

• Used on 2 families of synchronous embedded programs

• Results: 3 development versions in the second family

• 2.2 GHz bi-opteron, 1 processor used, 64-bit architecture

Nb of lines 70 000 226 000 400 000

Number of iterations 32 51 88

Memory (Gb) 0.6 1.3 2.2

Time 46mn 3h57mn 11h48mn

False alarms 0 0 0

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Conclusion

116

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Conclusion

--- Most applications of abstract interpretation tolerate a small rate
(typically 5 to 15%) of false alarms:

-- Program transformation ! do not optimize,
-- Typing ! reject some correct programs, etc,
-- WCET analysis ! overestimate;

--- Some applications require no false alarm at all:
-- Program verification.

--- Theoretically possible [SARA ’00], practically feasible [PLDI ’03]
Reference

[SARA ’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4th Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1–25, 2000.

[PLDI ’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, June 7–14, ACM Press, 2003.

ľ P. Cousot

117

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Recent progress

--- More gereral memory model (union, pointer arithmetics)
[LETCS ’03]

Reference

[LETCS ’03] A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer
arithmetics. ACM SIGPLAN/SIGBED Conf. on LCTES, Ottawa, Ontario, Canada, June 14-16, 2006. ACM
Press, pp. 54-63.

ľ P. Cousot

118

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Conclusion

¨ Success story:
• we succeed where a commercial abstract interpretation-based static

analysis tool failed
(because of prohibitive time and memory consumption and very large number
of false alarms);

¨ Usable in practice for verification:
• directly applicable to other similar programs

by changing some analyzer parameters,

• approach generalizable to other program families
by including new abstract domains and specializing the iteration
strategy.
(: power-on self-test for a family of embedded systems.)e.g.

119

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Main Project Results

• The proof of strong safety properties is amenable to static
analysis methods:

� Very few or no false alarms

� Reasonable resource usage

� Thanks to a specialized abstract interpreter

• Many practical and theoretical advances:

� Relational numerical domains and floating point

� Packing, linearization and relational domains

� Development of new, specialized domains

� Implementation of symbolic domains, e.g. partitioning,
symbolic...

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Crystal ball

121

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Future & Grand Challenges
Future (2/5 years):
--- Asynchronous concurrency (for less critical software)

--- Functional properties (reactivity)

--- Industrialization
Grand challenge:
--- Verification from specifications to machine code (verify-
ing compiler)

--- Verification of systems (quasi-synchrony, distribution)

ľ P. Cousot

122

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/

Moving to product-based q.a.

Currently: DO178B is all about process

Static analysis is not about process but about the product (program).

Process does not prove anything on the result, sound static analysis does.

Increased use of sound static analysis for safety-critical systems.

123

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Outside critical systems

Sound static analysis tools have limitations

• false alarms

• cost of analysis (CPU, memory, time)

• limitations on accepted programs (ugly pointer arithmetics etc.)

Unsound bug finders may be more suitable for now for less critical

applications.

124

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Integrating verification into the process

Our experience: hard to verify = complex invariants = design not

understood too well

If analysis hard, maybe fix the design / program and not the analyzer.

Needs analysis to be early in the process not as last-step q.a.

Need for feedback to designers to make analysis easier.

Designers should avoid unsafe or complicated constructs

125

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Future integrated verification

Verification useful if integrated in development cycle.

To begin at Simulink / Scade / other high-level spec (work in progress)

Not as a final step (too late to fix “bizarre” things, often no “smoking

gun” justifying redesign)

Needs efficient verification (run during the night)

126

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

Perspectives

• Allow for the parallelization of the analysis:
It works, allows cutting down the analysis time

• Extension of the memory model (work in progress):
Unions, pointer arithmetic

• Analyze asynchronous programs

• Certify the assembly code
Validation of the translation (successful prototype)

• Prove formally some ASTRÉE components

• Tracking semi-automatically the source of alarms:

� Either prove an alarm false

� Or restrict the alarm context
(help to find a scenario or the imprecision)

Encouraging early results: alarms successfully diagnosed

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

THE END, THANK YOU

More references at URL www.di.ens.fr/~cousot

www.astree.ens.fr.

ľ P. Cousot

128

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot/COUSOTpapers.html
www.astree.ens.fr
http://www.astree.ens.fr/
http://www.di.ens.fr/

Bibliography

129

© P. Cousot TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

References
[2] www.astree.ens.fr [4, 5, 6, 7, 8, 9, 10, 11, 12]

[3] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathéma-
tiques, Université scientifique et médicale de Grenoble, Grenoble, France, 21 March 1978.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. Design and implementation of a special-purpose static program analyzer for safety-critical real-time
embedded software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedi-
cated to Neil D. Jones, LNCS 2566, pp. 85–108. Springer, 2002.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, pp. 196–207, ACM Press, 2003.

[POPL ’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY, USA.

[PACJM ’79] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal
of Mathematics 82(1):43–57 (1979).

[POPL ’78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York, NY, U.S.A.

ľ P. Cousot

130

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

www.astree.ens.fr
http://www.astree.ens.fr/
http://www.di.ens.fr/~cousot/COUSOTpapers/Jones-Festschrift-02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Jones-Festschrift-02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Jones-Festschrift-02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Jones-Festschrift-02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/PLDI03.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Tarski-79.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL78.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL78.shtml
http://www.di.ens.fr/

[POPL ’79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record
of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
269–282, San Antonio, Texas, 1979. ACM Press, New York, NY, U.S.A.

[POPL ’92] P. Cousot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Con-
ference Record of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Programming
Languages, pages 83–94, Albuquerque, New Mexico, 1992. ACM Press, New York, U.S.A.

[FPCA ’95] P. Cousot and R. Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis
by Abstract Interpretation. In SIGPLAN/SIGARCH/WG2.8 7th Conference on Functional Programming
and Computer Architecture, FPCA’95. La Jolla, California, U.S.A., pages 170–181. ACM Press, New York,
U.S.A., 25-28 June 1995.

[POPL ’97] P. Cousot. Types as Abstract Interpretations. In Conference Record of the 24th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Programming Languages, pages 316–331, Paris, France,
1997. ACM Press, New York, U.S.A.

[POPL ’00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twen-
tyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
12–25, Boston, Mass., January 2000. ACM Press, New York, NY.

[POPL ’02] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks by Abstract
Interpretation. In Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 178–190, Portland, Oregon, January 2002. ACM Press, New
York, NY.

[TCS 277(1–2) 2002] P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. Theoretical Computer Science 277(1–2):47–103, 2002.

ľ P. Cousot

131

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/~cousot/COUSOTpapers/POPL79.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Tarski-79.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/FPCA95.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/FPCA95.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL97.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL00.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/TCS02-1.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/TCS02-1.shtml
http://www.di.ens.fr/

[TCS 290(1) 2002] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theo-
ret. Comput. Sci., 290:531–544, 2003.

[Manna’s festschrift ’03] P. Cousot. Verification by Abstract Interpretation. Proc. Int. Symp. on Verification –
Theory & Practice – Honoring Zohar Manna’s 64th Birthday, N. Dershowitz (Ed.), Taormina, Italy, June
29 – July 4, 2003. Lecture Notes in Computer Science, vol. 2772, pp. 243–268. ľ Springer-Verlag, Berlin,
Germany, 2003.

[6] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE analyser.
ESOP 2005, Edinburgh, LNCS 3444, pp. 21–30, Springer, 2005.

[7] J. Feret. Static analysis of digital filters. ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.

[8] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–
58, Springer, 2005.

[9] Laurent Mauborgne & Xavier Rival. Trace Partitioning in Abstract Interpretation Based Static Analyzers.
ESOP’05, Edinburgh, LNCS 3444, pp. 5–20, Springer, 2005.

[10] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO’2001, LNCS
2053, Springer, 2001, pp. 155–172.

[11] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. ESOP’04,
Barcelona, LNCS 2986, pp. 3—17, Springer, 2004.

[12] A. Miné. Weakly Relational Numerical Abstract Domains. PhD Thesis, École Polytechnique, 6 december
2004.

ľ P. Cousot

132

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/~cousot/COUSOTpapers/TCS03-parsing.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Zohar03.shtml
http://www.astree.ens.fr/
http://www.di.ens.fr/~feret/publication/esop2004.html
http://www.di.ens.fr/~feret/publication/vmcai2005.ps.gz
http://www.di.ens.fr/~mauborgn/publi/esop05.html
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf
http://www.di.ens.fr/~mine/publi/article-mine-esop04.pdf
http://www.di.ens.fr/~mine/these/these-color.pdf
http://www.di.ens.fr/

[POPL ’04] P. Cousot and R. Cousot. An Abstract Interpretation-Based Framework for Software Watermarking.
In Conference Record of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 173–185, Venice, Italy, January 14-16, 2004. ACM Press, New York, NY.

[DPG-ICALP ’05] M. Dalla Preda and R. Giacobazzi. Semantic-based Code Obfuscation
by Abstract Interpretation. In Proc. 32nd Int. Colloquium on Automata, Languages and Pro-
gramming (ICALP’05 – Track B). LNCS, 2005 Springer-Verlag. July 11-15, 2005, Lisboa, Portugal. To
appear.

[EMSOFT ’01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing,
and R. Wilhelm. Reliable and precise WCET determination for a real-life processor. EMSOFT (2001),
LNCS 2211, 469–485.

[RT-ESOP ’04] F. Ranzato and F. Tapparo. Strong Preservation as Completeness in Abstract Interpretation.
ESOP 2004, Barcelona, Spain, March 29 - April 2, 2004, D.A. Schmidt (Ed), LNCS 2986, Springer, 2004,
pp. 18–32.

ľ P. Cousot

133

TASE 2007 Tutorial June 5th, 2007 – 2:00-4:00 PM

http://www.di.ens.fr/~cousot/COUSOTpapers/POPL04.shtml
http://profs.sci.univr.it/~giaco/papers.html
http://profs.sci.univr.it/~giaco/papers.html
http://profs.sci.univr.it/~giaco/papers.html
http://rw4.cs.uni-sb.de/projects/tfb/tahoe.ps.gz
http://www.math.unipd.it/~franz/papers/esop04.pdf
http://www.di.ens.fr/

Bibliography

[Bla05] B. Blanchet. Security protocols: From linear to classical logic by
abstract interpretation. Inf. Process. Lett., 95(5):473–479, Sep.
2005.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approx-
imation of fixpoints. In 4th POPL, pages 238–252, Los Angeles,
CA, 1977. ACM Press.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In 6th POPL, pages 269–282, San Antonio, TX, 1979.
ACM Press.

[CC92] P. Cousot and R. Cousot. Inductive definitions, semantics and
abstract interpretation. In 19th POPL, pages 83–94, Albuquerque,
NM, US, 1992. ACM Press.

ľ P. Cousot 134 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

[CC95] P. Cousot and R. Cousot. Formal language, grammar and set-
constraint-based program analysis by abstract interpretation. In
Proc. 7th FPCA, pages 170–181, La Jolla, CA, US, 25–28 June
1995. ACM Press.

[CC97] P. Cousot and R. Cousot. Grammar analysis by abstract interpre-
tation. Res. rep., LIENS, École Normale Supérieure, Paris, FR,
June 1997.

[CC00] P. Cousot and R. Cousot. Temporal abstract interpretation. In 27th

POPL, pages 12–25, Boston, MA, US, Jan. 2000. ACM Press.

[CC02] P. Cousot and R. Cousot. Systematic design of program trans-
formation frameworks by abstract interrpetation. In 29th POPL,
pages 178–190, Portland, OR, US, Jan. 2002. ACM Press.

[CC03] P. Cousot and R. Cousot. Parsing as abstract interpretation of
grammar semantics. Theoret. Comput. Sci., 290(1):531–544, Jan.
2003.

ľ P. Cousot 135 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

[CC04] P. Cousot and R. Cousot. An abstract interpretation-based frame-
work for software watermarking. In 31st POPL, pages 173–185,
Venice, IT, 14–16 Jan. 2004. ACM Press.

[CC06] P. Cousot and R. Cousot. Grammar analysis and parsing by ab-
stract interpretation, invited chapter. In T. Reps, M. Sagiv, and J.
Bauer, editors, Program Analysis and Compilation, Theory and
Practice: Essays dedicated to Reinhard Wilhelm, LNCS 4444,
pages 178–203. Springer, 2006.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In 5th POPL, pages 84–97,
Tucson, AZ, 1978. ACM Press.

[Cou02] P. Cousot. Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation. Theoret. Comput.
Sci., 277(1—2):47–103, 2002.

ľ P. Cousot 136 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

[Cou03] P. Cousot. Verification by abstract interpretation, invited chap-
ter. In N. Dershowitz, editor, Proc. Int. Symp. on Verification –
Theory & Practice – Honoring Zohar Manna’s 64th Birthday,
pages 243–268. LNCS 2772, Springer, Taormina, IT, 29 June – 4
Jul. 2003.

[Dan07] V. Danos. Abstract views on biological signalling. InMathematical
Foundations of Programming Semantics, 23rd Annual Conf.
(MFPS XXIII), 2007.

[GM04] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Pa-
rameterizing non-interference by abstract interpretation. In 31st

POPL, pages 186–197, Venice, IT, 2004. ACM Press.

[JP06] Ph. Jorrand and S. Perdrix. Towards a quantum calculus. In Proc.
4th Int. Work. on Quantum Programming Languages, ENTCS,
2006.

ľ P. Cousot 137 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

[PCJD07] M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray.
Semantics-based approach to malware detection. In 34th POPL,
pages 238–252, Nice, France, 17–19 Jan. 2007. ACM Press.

[Per06] S. Perdrix. Modèles formels du calcul quantique : ressources,
machines abstraites et calcul par mesure. PhD thesis, Institut
National Polytechnique de Grenoble, Laboratoire Leibniz, 2006.

[PG05a] M. Dalla Preda and R. Giacobazzi. Control code obfuscation by
abstract interpretation. In Proc. 3rd IEEEInt. Conf. SEFM’05,
Koblenz, DE, 2005. IEEE Comp. Soc. Press.

[PG05b] M. Dalla Preda and R. Giacobazzi. Semantic-based code obfusca-
tion by abstract interpretation. In L. Caires, G.F. Italiano, L. Mon-
teiro, C. Palamidessi, and M. Yung, editors, Proc. 32nd Int. Coll.
ICALP ’05, volume 3580 of Lisbon, PT, LNCS, pages 1325–1336.
Springer, 11–15 Jul. 2005.

ľ P. Cousot 138 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

[Riv05] X. Rival. Understanding the origin of alarms in Astrée. In C.
Hankin and I. Siveroni, editors, Proc. 12th Int. Symp. SAS ’05,
pages 303–319, London, UK, LNCS 3672, 7–9 Sep. 2005.

[RT04] F. Ranzato and F. Tapparo. Strong preservation as complete-
ness in abstract interpretation. In D. Schmidt, editor, Proc. 30th

ESOP ’04, volume 2986 of LNCS, pages 18–32, Barcelona, ES,
Mar. 29 – Apr. 2 2004. Springer.

Papers available on http://www.di.ens.fr/~cousot/COUSOTpapers.shtml.

ľ P. Cousot 138 TASE 2007 Tutorial June 5th, 2007 — 2:00-4:00 PM

