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Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x and goes on at program point 2.
When at program point 2 the evaluation of the loop test yields the
value true so execution continues at program 3 where the value of
variable x is incremented by 1 before coming back to 2.
Since the loop condition is never false, program point 4 is unreach-
able so program execution never ends.

More formally, we write �� � �� for the state of program execution where execu-
tion is at program point � , � = 1� 2� 3� 4, and variable x has integer value � ∈ Z

(where Z is the set of all mathematical integers).
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A complete program execution can be described by the following execution

trace which is an infinite sequence of states

�1� ���2� 1��3� 1��2� 2��3� 2� � � � �2� ���3� ���2� � + 1� � � �
where � ∈ Z can be any initial integer value of x.

So the set of all such execution traces is

{�1� ���2� 1��3� 1��2� 2��3� 2� � � � �2� ���3� ���2� � + 1� � � � | � ∈ Z}
Let us now consider an abstraction of the set of all possible execution

traces, which consists in remembering for each program point � , � = 1� 2� 3� 4
the set I� of possible values that can be taken by variable x when execution

reaches program point � along any of these traces. This set I� is called a

program local invariant at program point � . We have

I1 = Z

I2 = {� ∈ Z | � > 0}
I3 = {� ∈ Z | � > 0}
I4 = ∅

3.2 Mathematical Invariants
Observe that the set I� of possible values of variable x at program point � =
1� 2� 3� 4

satisfies the following conditions.




X1 = Z

X2 = {1} ∪{ � + 1 | � ∈ X3}
X3 = X2 ∩ {� ∈ Z | true}
X4 = X2 ∩ {� ∈ Z | false}

(3.1)

• At program point
1

the variable x can be initialized by any integer value

� ∈ Z and so X1 = Z

• At program point
2
, either execution comes from program point

1
and so the

value of variable x is 1 or execution comes from program point
2

and so the

value of variable x is the value � that x had at this point
3

incremented by

1. So X2 = {1} ∪ ({� + 1 | � ∈ X3}.

• At program point
3
, the possible values of x are those at point

2
for which

the loop condition is true so X3 = X2 ∩ {� ∈ Z | true} = X2.
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C�. � — I����������� �� ������ �������� ��� ������������ 7

• At program point
4
, the possible values of x are those at point

2
for which

the loop condition is false so X4 = X2 ∩ {� ∈ Z | false} = ∅.

These conditions can be understood as a system of fixpoint equations X = �(X )
of the form� X� = ��(X1� � � � � X4)

� = 1� � � � � 4
with unknowns X = �X1� � � � � X4�. So solving this system of equations might

lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ∅ is another solution which is larger for

componentwise set inclusion ⊆. So we will prefer the smallest solution (called

the least fixpoint lfp �), which is included in all other solutions and turns out

to be I 1
.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X ) for ⊆ can be calculated iteratively,

essentially by enumeration of all possible states reachable from the initial

states.

X0 = �X01 � X02 � X03 � X04 � = �∅� ∅� ∅� ∅� Hstarting with the smallest

possible approximationI

X1 = �X11 � X12 � X13 � X14 � = �(X0) = �Z� {1} ∪ {� + 1 | � ∈ X03 }�
X02 ∩ {� ∈ Z | true}� X02 ∩ {� ∈ Z | false}� = �Z� {1}� ∅� ∅�
X2 = �X21 � X22 � X23 � X24 � = �(X1) = �Z� {1} ∪ {� + 1 | � ∈ X13 }�
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X22 ∩ {� ∈ Z | true}� X22 ∩ {� ∈ Z | false}� = �Z� {1� 2}� {1}� ∅�
This calculation can go on like this ad infinitum since each iteration X �+1 =
�(X �) of the equations corresponds to an iteration in the program loop

and so adds one more possible value of variable x at program point
2
.

The solution is to use mathematical induction which requires to invent the

following inductive hypothesis

1
by Tarski fixpoint theorem 14.7 explained in chapter 14.
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A complete program execution can be described by the following execution

trace which is an infinite sequence of states

�1� ���2� 1��3� 1��2� 2��3� 2� � � � �2� ���3� ���2� � + 1� � � �
where � ∈ Z can be any initial integer value of x.

So the set of all such execution traces is

{�1� ���2� 1��3� 1��2� 2��3� 2� � � � �2� ���3� ���2� � + 1� � � � | � ∈ Z}
Let us now consider an abstraction of the set of all possible execution

traces, which consists in remembering for each program point � , � = 1� 2� 3� 4
the set I� of possible values that can be taken by variable x when execution

reaches program point � along any of these traces.

This set I� is called a program local invariant at program point � . We have

I1 = Z

I2 = {� ∈ Z | � > 0}
I3 = {� ∈ Z | � > 0}
I4 = ∅

3.2 Mathematical Invariants
Observe that the set I� of possible values of variable x at program point � =
1� 2� 3� 4

satisfies the following conditions.




X1 = Z

X2 = {1} ∪{ � + 1 | � ∈ X3}
X3 = X2 ∩ {� ∈ Z | true}
X4 = X2 ∩ {� ∈ Z | false}

(3.1)

• At program point
1

the variable x can be initialized by any integer value

� ∈ Z and so X1 = Z

• At program point
2
, either execution comes from program point

1
and so the

value of variable x is 1 or execution comes from program point
2

and so the

value of variable x is the value � that x had at this point
3

incremented by

1. So X2 = {1} ∪ ({� + 1 | � ∈ X3}.

• At program point
3
, the possible values of x are those at point

2
for which

the loop condition is true so X3 = X2 ∩ {� ∈ Z | true} = X2.
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• At program point
4
, the possible values of x are those at point

2
for which

the loop condition is false so X4 = X2 ∩ {� ∈ Z | false} = ∅.

These conditions can be understood as a system of fixpoint equations X = �(X )
of the form� X� = ��(X1� � � � � X4)

� = 1� � � � � 4
with unknowns X = �X1� � � � � X4�.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ∅ is another solution which is larger for

componentwise set inclusion ⊆. So we will prefer the smallest solution (called

the least fixpoint lfp �), which is included in all other solutions and turns out

to be I 1
.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X ) for ⊆ can be calculated iteratively,

essentially by enumeration of all possible states reachable from the initial

states.

X0 = �X01 � X02 � X03 � X04 � = �∅� ∅� ∅� ∅� Hstarting with the smallest

possible approximationI

X1 = �X11 � X12 � X13 � X14 � = �(X0) = �Z� {1} ∪ {� + 1 | � ∈ X03 }�
X02 ∩ {� ∈ Z | true}� X02 ∩ {� ∈ Z | false}� = �Z� {1}� ∅� ∅�
X2 = �X21 � X22 � X23 � X24 � = �(X1) = �Z� {1} ∪ {� + 1 | � ∈ X13 }�
X12 ∩ {� ∈ Z | true}� X12 ∩ {� ∈ Z | false}� = �Z� {1}� {1}� ∅�
X3 = �X31 � X32 � X33 � X34 � = �(X2) = �Z� {1} ∪ {� + 1 | � ∈ X23 }�
X22 ∩ {� ∈ Z | true}� X22 ∩ {� ∈ Z | false}� = �Z� {1� 2}� {1}� ∅�
This calculation can go on like this ad infinitum since each iteration X �+1 =
�(X �) of the equations corresponds to an iteration in the program loop

and so adds one more possible value of variable x at program point
2
.

The solution is to use mathematical induction which requires to invent the

following inductive hypothesis

1
by Tarski fixpoint theorem 14.7 explained in chapter 14.
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This calculation can go on like this ad infinitum since each iteration X �+1 =
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and so adds one more possible value of variable x at program point
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.

The solution is to use mathematical induction which requires to invent the

following inductive hypothesis

1
by Tarski fixpoint theorem 14.7 explained in chapter 14.
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• At program point
4
, the possible values of x are those at point

2
for which

the loop condition is false so X4 = X2 ∩ {� ∈ Z | false} = ∅.

These conditions can be understood as a system of fixpoint equations X = �(X )
of the form� X� = ��(X1� � � � � X4)

� = 1� � � � � 4
with unknowns X = �X1� � � � � X4�.

So solving this system of equations might lead to the desired invariant I.
However these equations do not have a unique solution. For example

X1 = X2 = X3 = Z and X4 = ∅ is another solution which is larger for

componentwise set inclusion ⊆. So we will prefer the smallest solution (called

the least fixpoint lfp �), which is included in all other solutions and turns out

to be I 1
.

3.3 Exhaustive Enumeration
The least solution I = lfp � of X = �(X ) for ⊆ can be calculated iteratively,

essentially by enumeration of all possible states reachable from the initial

states.

X0 = �X01 � X02 � X03 � X04 � = �∅� ∅� ∅� ∅� Hstarting with the smallest

possible approximationI

X1 = �X11 � X12 � X13 � X14 � = �(X0) = �Z� {1} ∪ {� + 1 | � ∈ X03 }�
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X3 = �X31 � X32 � X33 � X34 � = �(X2) = �Z� {1} ∪ {� + 1 | � ∈ X23 }�
X22 ∩ {� ∈ Z | true}� X22 ∩ {� ∈ Z | false}� = �Z� {1� 2}� {1}� ∅�
This calculation can go on like this ad infinitum since each iteration X �+1 =
�(X �) of the equations corresponds to an iteration in the program loop

and so adds one more possible value of variable x at program point
2
.

The solution is to use mathematical induction which requires to invent the

following inductive hypothesis

1
by Tarski fixpoint theorem 14.7 explained in chapter 14.
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�(X �) of the equations corresponds to an iteration in the program loop

and so adds one more possible value of variable x at program point
2
.

The solution is to use mathematical induction which requires to invent the

following inductive hypothesis

1
by Tarski fixpoint theorem 14.7 explained in chapter 14.
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X2� = �X2�1 � X2�2 � X2�3 � X2�4 � = �Z� {1� � � � � �}� {1� � � � � �}� ∅�
Hinduction hypothesis which holds for the basis � = 1I
X2�+1 = �X2�+11 � X2�+12 � X2�+13 � X2�+14 � = �(X2�) = �Z� {1}∪{� +
1 | � ∈ X2�3 }� X2�2 ∩ {� ∈ Z | true}� X2�2 ∩ {� ∈ Z | false}� = �Z�
{1� � � � � � + 1}� {1� � � � � �}� ∅�
X2�+2 = �X2�+21 � X2�+22 � X2�+23 � X2�+24 � = �(X2�+1) = �Z� {1} ∪
{� + 1 | � ∈ X2�+13 }� X2�+12 ∩ {� ∈ Z | true}� X2�+12 ∩ {� ∈ Z |
false}� = �Z� {1� � � � � � + 1}� {1� � � � � � + 1}� ∅�
By recurrence on �, we have proved that
∀� : X2� = �X2�1 � X2�2 � X2�3 � X2�4 � = �Z� {1� � � � � �}� {1� � � � � �}� ∅�
Passing to the limit, we get the desired strongest invariant
I = �I1� I2� I3� I4� HinvariantI

= lim�→+∞ X2�

= �Z� {� ∈ Z | � > 0}� {� ∈ Z | � > 0}� ∅�
A fundamental property of the invariants equations X = �(X ) is that �

is increasing. This means that if X ⊆̇ Y then �(X ) ⊆̇ �(Y ) where �X1� � � � �
X�� ⊆̇ �Y1� � � � � Y�� if and only if ∀� ∈ [1� �] : X� ⊆ Y�. The intuition is that
is more states can be reached at some program point then more states will be
reachable at next program point.

It follows that the iterates form an ascending chain meaning X0 ⊆̇ X1 ⊆̇
� � � ⊆̇ X� ⊆̇ X�+1 ⊆̇ � � � ⊆̇ lim�→+∞ X� = lfp � .

3.4 Machine Invariants
No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int� max_int] where
min_int < 0 < max_int are machine dependant 2. It follows that we have to
decide what happens in case of overflow when evaluating expression (x + 1).
We will assume that execution immediately stops in case of integer overflow 3.

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
−2147483648 and max_int = 2147483647.

3Which is a rather simplifying hypothesis since most computers will go on providing a result
modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.
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This calculation can go on like this ad infinitum since each iteration X �+1 =
�(X �) of the equations corresponds to an iteration in the program loop
and so adds one more possible value of variable x at program point 2.
The solution is to use mathematical induction which requires to invent the
following inductive hypothesis
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Hinduction hypothesis which holds for the basis � = 1I
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By recurrence on �, we have proved that
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Passing to the limit, we get the desired strongest invariant
I = �I1� I2� I3� I4� HinvariantI

= lim�→+∞ X2�

= �Z� {� ∈ Z | � > 0}� {� ∈ Z | � > 0}� ∅�

A fundamental property of the invariants equations X = �(X ) is that � is
increasing.

This means that if X ⊆̇ Y then �(X ) ⊆̇ �(Y ) where �X1� � � � � X�� ⊆̇ �Y1�
� � � � Y�� if and only if ∀� ∈ [1� �] : X� ⊆ Y�.

The intuition is that if more states can be reached at some program point
then more states will be reachable at next program point.

It follows that the iterates form an ascending chain meaning X0 ⊆̇ X1 ⊆̇
� � � ⊆̇ X� ⊆̇ X�+1 ⊆̇ � � � ⊆̇ lim�→+∞ X� = lfp � .

3.5 Machine Invariants
No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int� max_int] where

Software Verification, ETH Zurich, Switzerland, 25 November 2009                                                                                                                                     © P. Cousot,,http://se.inf.ethz.ch/teaching/2009-H/tc-0239/index.html#slides

Machine Invariants

23

Software Verification, ETH Zurich, Switzerland, 25 November 2009                                                                                                                                     © P. Cousot,,http://se.inf.ethz.ch/teaching/2009-H/tc-0239/index.html#slides

Machine Integers

24

8 P. C�����
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false}� = �Z� {1� � � � � � + 1}� {1� � � � � � + 1}� ∅�
By recurrence on �, we have proved that
∀� : X2� = �X2�1 � X2�2 � X2�3 � X2�4 � = �Z� {1� � � � � �}� {1� � � � � �}� ∅�
Passing to the limit, we get the desired strongest invariant
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= lim�→+∞ X2�

= �Z� {� ∈ Z | � > 0}� {� ∈ Z | � > 0}� ∅�
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increasing.
This means that if X ⊆̇ Y then �(X ) ⊆̇ �(Y ) where �X1� � � � � X�� ⊆̇ �Y1�

� � � � Y�� if and only if ∀� ∈ [1� �] : X� ⊆ Y�.
The intuition is that is more states can be reached at some program point

then more states will be reachable at next program point.
It follows that the iterates form an ascending chain meaning X0 ⊆̇ X1 ⊆̇

� � � ⊆̇ X� ⊆̇ X�+1 ⊆̇ � � � ⊆̇ lim�→+∞ X� = lfp � .

3.4 Machine Invariants

No computer can represent any, arbitrary large, integer. In practice integer
variables like x take their values in an interval [min_int� max_int] where
min_int < 0 < max_int are machine dependant 2.

It follows that we have to decide what happens in case of overflow when
evaluating expression (x + 1).

2e.g. in two’s complement representation on 64 bits, we have generally have min_int =
−2147483648 and max_int = 2147483647.
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We will assume that execution immediately stops in case of integer overflow
3
.

Hence the set of program states � � {1� 2� 3� 4} × [min_int� max_int] is

now finite and the execution traces are now finite of the form

{�1� ���2� 1� � � � �2� ���3� ���2� �+1� � � � �3� max_int� | � ∈ [min_int�
max_int]} .

It follows that the machine invariant satisfies the following equations




X1 = [min_int� max_int]
X2 = {1} ∪{ � + 1 ∈ [min_int� max_int] | � ∈ X3}
X3 = X2 ∩ {� ∈ [min_int� max_int] | true}
X4 = X2 ∩ {� ∈ [min_int� max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-

not be of any practical use, but for programs with very few program variables.

Moreover, mathematical sets of integers can be arbitrarily complex hence very

expensive to represent in computer memory which is likely to produce memory

overflows after lengthy computations, a flaw of all program verification methods

based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction
A further abstraction must be used to solve the machine invariant computer

representation problem. We will use intervals [�� �] � {� ∈ Z | � � � � �}
with the convention that [�� �] = ∅ whenever � < �. In doing so we perform

an approximation of a non-empty set X ⊆ [min_int� max_int] by the interval

[min X � max X ]. This approximation is sound in that whenever the value of

variable x belongs to a set X� whenever execution reaches program point
�
, it

definitely also belongs to the set [min X�� max X�]. This information is certainly

correct but just less precise.

The interval invariance equations are now




X1 = [min_int� max_int]}
X2 = [1� 1] � L X3 = ∅ ? ∅ : let [�� �] = X3 in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 � [min_int� max_int]
X4 = X2 � ∅

3
Which is a rather simplifying hypothesis since most computers will go on providing a result

modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.
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•

•
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We will assume that execution immediately stops in case of integer overflow
3
.
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, it
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3
Which is a rather simplifying hypothesis since most computers will go on providing a result

modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.
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Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write �� � �� for the state of program execution where ex-
ecution is at program point � , � = 1� 2� 3� 4, and variable x has integer value
� ∈ Z (where Z is the set of all mathematical integers). A complete program

5
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We will assume that execution immediately stops in case of integer overflow
3
.

Hence the set of program states � � {1� 2� 3� 4} × [min_int� max_int] is

now finite and the execution traces are now finite of the form

{�1� ���2� 1� � � � �2� ���3� ���2� �+1� � � � �3� max_int� | � ∈ [min_int�
max_int]} .

It follows that the machine invariant satisfies the following equations




X1 = [min_int� max_int]
X2 = {1} ∪{ � + 1 ∈ [min_int� max_int] | � ∈ X3}
X3 = X2 ∩ {� ∈ [min_int� max_int] | true}
X4 = X2 ∩ {� ∈ [min_int� max_int] | false}

(3.2)

Now the convergence of the iterations is guaranteed but is so slow that it can-

not be of any practical use, but for programs with very few program variables.

Moreover, mathematical sets of integers can be arbitrarily complex hence very

expensive to represent in computer memory which is likely to produce memory

overflows after lengthy computations, a flaw of all program verification methods

based upon the exhaustive enumeration of all possible cases.

3.5 Interval Abstraction
A further abstraction must be used to solve the machine invariant computer

representation problem. We will use intervals [�� �] � {� ∈ Z | � � � � �}
with the convention that [�� �] = ∅ whenever � < �. In doing so we perform

an approximation of a non-empty set X ⊆ [min_int� max_int] by the interval

[min X � max X ]. This approximation is sound in that whenever the value of

variable x belongs to a set X� whenever execution reaches program point
�
, it

definitely also belongs to the set [min X�� max X�]. This information is certainly

correct but just less precise.

The interval invariance equations are now




X1 = [min_int� max_int]}
X2 = [1� 1] � L X3 = ∅ ? ∅ : let [�� �] = X3 in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 � [min_int� max_int]
X4 = X2 � ∅

3
Which is a rather simplifying hypothesis since most computers will go on providing a result

modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.
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We will assume that execution immediately stops in case of integer overflow
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3.5 Interval Abstraction

A further abstraction must be used to solve the machine invariant computer

representation problem.

We will use intervals [�� �] � {� ∈ Z | � � � � �} with the convention that

[�� �] = ∅ whenever � <� .

In doing so we perform an approximation of a non-empty set X ⊆ [min_int�
max_int] by the interval [min X � max X ].

This approximation is sound in that whenever the value of variable x be-

longs to a set X� whenever execution reaches program point
�
, it definitely also

belongs to the set [min X�� max X�].
This information is certainly correct but just less precise.

The interval invariance equations are now

3
Which is a rather simplifying hypothesis since most computers will go on providing a result

modulo max_int so that e.g. max_int + 1 = min_int in two’s complement representation.

•

•

•

•

•
•
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
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


X1 = [min_int� max_int]}
X2 = [1� 1] � L X3 = ∅ ? ∅ : let [�� �] = X3 in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 � [min_int� max_int]
X4 = X2 � ∅

where the interval join is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � [�� �], and

[�� �] � [�� �] � [min(�� �)� max(�� �)]
and the interval meet is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � ∅, and

[�� �] � [�� �] � [min(�� �)� max(�� �)] when min(�� �) � max(�� �)
[�� �] � [�� �] � ∅ when min(�� �) > max(�� �)

The interval equations over-estimate the machine invariant in than they will

provide in general more states that possible in actual program executions. For

example the set {1� 2� 5} will be overapproximated by [1� 5] which introduces

the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the val-

ues of variable x are always greater than one at some program point then they

are certainly positive (although the value 0 is spurious). Underapproximations

(such as x are always greater than 10) would be incorrect. Similarly, incom-

parable approximations (such as x is negative) are also unsound. In particular

the interval join � overapproximates the interval union ∪ and the interval meet

� overapproximates the interval intersection ∩.

3.6 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC��� of the

interval abstract interpreter. Such an interval abstract interpreter reads any

program, builds the interval invariance equations, and then solve them. For

simplicity, we concentrate on the second part and will provide encodings of

the interval invariance equations manually.

We first encode the interval abstract domain, implementing a computer

representation of abstract interval propeties with a type interval (where EMPTY
encodes the empty set ∅). In OCaml, we have max_int = 1073741823 and

min_int = −1073741824 4
.

4
One of the 64 bits is used for garbage collection.

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write �� � �� for the state of program execution where ex-
ecution is at program point � , � = 1� 2� 3� 4, and variable x has integer value
� ∈ Z (where Z is the set of all mathematical integers). A complete program

5
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This information is certainly correct but just less precise.
The interval invariance equations are now



X1 = [min_int� max_int]}
X2 = [1� 1] � L X3 = ∅ ? ∅ : let [�� �] = X3 in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 � [min_int� max_int]
X4 = X2 � ∅

where the interval join is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � [�� �], and
[�� �] � [�� �] � [min(�� �)� max(�� �)]

and the interval meet is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � ∅, and
[�� �] � [�� �] � [max(�� �)� min(�� �)] when � � � ∧ � � �
[�� �] � [�� �] � ∅ when � <� ∨ � <�

The interval equations over-estimate the machine invariant in than they will
provide in general more states that possible in actual program executions. For
example the set {1� 2� 5} will be overapproximated by [1� 5] which introduces
the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join � overapproximates the interval union
∪ and the interval meet � overapproximates the interval intersection ∩.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC��� of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.

Interval Operations

32
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The interval equations over-estimate the machine invariant in than they
will provide in general more states that possible in actual program executions.

For example the set {1� 2� 5} will be overapproximated by [1� 5] which
introduces the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join � overapproximates the interval union
∪ and the interval meet � overapproximates the interval intersection ∩.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC��� of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.
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

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provide in general more states that possible in actual program executions. For

example the set {1� 2� 5} will be overapproximated by [1� 5] which introduces

the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the

values of variable x are always greater than one at some program point then

they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be

incorrect.

Similarly, incomparable approximations (such as x is negative) are also

unsound. In particular the interval join � overapproximates the interval union

∪ and the interval meet � overapproximates the interval intersection ∩.

3.6 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC��� of the

interval abstract interpreter. Such an interval abstract interpreter reads any

program, builds the interval invariance equations, and then solve them. For

simplicity, we concentrate on the second part and will provide encodings of

the interval invariance equations manually.

We first encode the interval abstract domain, implementing a computer

representation of abstract interval propeties with a type interval (where EMPTY
encodes the empty set ∅). In OCaml, we have max_int = 1073741823 and

min_int = −1073741824 4
.

4
One of the 64 bits is used for garbage collection.
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This information is certainly correct but just less precise.
The interval invariance equations are now



X1 = [min_int� max_int]}
X2 = [1� 1] � L X3 = ∅ ? ∅ : let [�� �] = X3 in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 � [min_int� max_int]
X4 = X2 � ∅

where the interval join is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � [�� �], and
[�� �] � [�� �] � [min(�� �)� max(�� �)]

and the interval meet is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � ∅, and
[�� �] � [�� �] � [max(�� �)� min(�� �)] when � � � ∧ � � �
[�� �] � [�� �] � ∅ when � <� ∨ � <�

The interval equations over-estimate the machine invariant in than they
will provide in general more states that possible in actual program executions.

For example the set {1� 2� 5} will be overapproximated by [1� 5] which
introduces the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join � overapproximates the interval union
∪ and the interval meet � overapproximates the interval intersection ∩.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC��� of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.
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∪ and the interval meet � overapproximates the interval intersection ∩.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC��� of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.
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


X1 = [min_int� max_int]}
X2 = [1� 1] � L X3 = ∅ ? ∅ : let [�� �] = X3 in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 � [min_int� max_int]
X4 = X2 � ∅

where the interval join is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � [�� �], and
[�� �] � [�� �] � [min(�� �)� max(�� �)]

and the interval meet is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � ∅, and
[�� �] � [�� �] � [min(�� �)� max(�� �)] when min(�� �) � max(�� �)
[�� �] � [�� �] � ∅ when min(�� �) > max(�� �)

The interval equations over-estimate the machine invariant in than they will
provide in general more states that possible in actual program executions. For
example the set {1� 2� 5} will be overapproximated by [1� 5] which introduces
the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound. In particular the interval join � overapproximates the interval union
∪ and the interval meet � overapproximates the interval intersection ∩.

3.6 An Interval Abstract Interpreter

We now briefly sketch the design and functional encoding in OC��� of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.
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We first encode the interval abstract domain, implementing a computer

representation of abstract interval propeties with a type interval (where EMPTY
encodes the empty set ∅). In OCaml, we have max_int = 1073741823 and

min_int = −1073741824 4
.

We also encode the basic interval operations � (less, interval inclusion),

� (interval join), � (interval meet), interval printing (print) and interval in-

crementation (add1). Of course many more interval operations are needed to

handle a full language, but we aim at extreme simplicity.

(* interval .ml , interval abstract domain *)
type interval = EMPTY | INT of ( int * int );;
let less x y = match x,y with
| EMPTY , _ -> true
| _, EMPTY -> false
| INT (a,b), INT (c,d) -> (a <=c )&&(b <=d );;
let join x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) -> INT ( min a c, max b d );;
let meet x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

if (b<c) or (d<a) then EMPTY
else INT ( max a c, min b d );;

let add1 x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->

( INT (( if a< max_int then a+1 else max_int ),
(if b< max_int then b+1 else max_int )));;

let print x = match x with
| EMPTY -> print_string "_|_"
| INT (a,b) -> print_string "("; print_int a;

print_string " ,"; print_int b; print_string ")";;

For programs with more than one variable, we would have to encode an

abstract environment assigning intervals to program variables. Writing X =
{x1 ← �1� � � � � x� ← ��} for the function X mapping x� to �� such that X (x�) = ��,
� = 1� � � � � �, the interval invariance equations would be

4
One of the 64 bits is used for garbage collection.
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let add1 x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->

( INT (( if a< max_int then a+1 else max_int ),
(if b< max_int then b+1 else max_int )));;

let print x = match x with
| EMPTY -> print_string "_|_"
| INT (a,b) -> print_string "("; print_int a;

print_string " ,"; print_int b; print_string ")";;

For programs with more than one variable, we would have to encode an

abstract environment assigning intervals to program variables. Writing X =
{x1 ← �1� � � � � x� ← ��} for the function X mapping x� to �� such that X (x�) = ��,
� = 1� � � � � �, the interval invariance equations would be

4
One of the 64 bits is used for garbage collection.

•

•

•

or max_int = 4611686018427387903 depending on the machine/compiler
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(* interval .ml , interval abstract domain *)
type interval = EMPTY | INT of ( int * int );;
let less x y = match x,y with
| EMPTY , _ -> true
| _, EMPTY -> false
| INT (a,b), INT (c,d) -> (c <=a )&&(b <=d );;
let greater x y = less y x;;
let join x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) -> INT ( min a c, max b d );;
let meet x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

if (b<c) or (d<a) then EMPTY
else INT ( max a c, min b d );;

let add1 x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->

( INT (( if a< max_int then a+1 else max_int ),
(if b< max_int then b+1 else max_int )));;

let print x = match x with
| EMPTY -> print_string "_|_ "
| INT (a,b) -> print_string "("; print_int a;

print_string " ,"; print_int b; print_string ") ";;

For programs with more than one variable, we would have to encode an
abstract environment assigning intervals to program variables.

Writing X = {x1 ← �1� � � � � x� ← ��} for the function X mapping x� to ��
such that X (x�) = ��, � = 1� � � � � �, the interval invariance equations would be




X1 = {x ← [min_int� max_int]}
X2 = {x ← [1� 1] ∪ι L X3(x) = ∅ι ? ∅ι : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 ∩̇ι {x ← [min_int� max_int]}
X4 = X2 ∩̇ι {x ← ∅ι}

where the abstract operations are extended componentwise such as {x1 ← �1,
. . . , x� ← ��} ∩̇ι {x1 ← � �1, . . . , x� ← � ��} � {x1 ← �1 ∩ι � �1, . . . , x� ← �� ∩ι � ��}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Software Verification, ETH Zurich, Switzerland, 25 November 2009                                                                                                                                     © P. Cousot,,http://se.inf.ethz.ch/teaching/2009-H/tc-0239/index.html#slides

Abstract Environments

39

C�. � — I����������� �� ������ �������� ��� ������������ 11

encodes the empty set ∅). In OCaml, we have max_int = 1073741823 and

min_int = −1073741824 4
.

We also encode the basic interval operations � (less, interval inclusion),

� (interval join), � (interval meet), interval printing (print) and interval in-

crementation (add1).

Of course many more interval operations are needed to handle a full lan-

guage, but we aim at extreme simplicity.

(* interval .ml , interval abstract domain *)
type interval = EMPTY | INT of ( int * int );;
let less x y = match x,y with
| EMPTY , _ -> true
| _, EMPTY -> false
| INT (a,b), INT (c,d) -> (a <=c )&&(b <=d );;
let join x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) -> INT ( min a c, max b d );;
let meet x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

if (b<c) or (d<a) then EMPTY
else INT ( max a c, min b d );;

let add1 x = match x with
| EMPTY -> EMPTY
| INT (a,b) ->

( INT (( if a< max_int then a+1 else max_int ),
(if b< max_int then b+1 else max_int )));;

let print x = match x with
| EMPTY -> print_string "_|_"
| INT (a,b) -> print_string "("; print_int a;

print_string " ,"; print_int b; print_string ")";;

For programs with more than one variable, we would have to encode an

abstract environment assigning intervals to program variables.

Writing X = {x1 ← �1� � � � � x� ← ��} for the function X mapping x� to ��
such that X (x�) = ��, � = 1� � � � � �, the interval invariance equations would be

4
One of the 64 bits is used for garbage collection.

12 P. C�����




X1 = {x ← [min_int� max_int]}
X2 = {x ← [1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 �̇ {x ← [min_int� max_int]}
X4 = X2 �̇ {x ← ∅}

where the abstract operations are extended pointwise such as {x1 ← �1, . . . ,
x� ← ��} �̇ {x1 ← � �1, . . . , x� ← � ��} � {x1 ← �1 � � �1, . . . , x� ← �� � � ��}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants�X1� X2� X3� X4� which attach to each program point � an abstract lo-
cal invariant X � which holds whenever controls reaches program point �. Each
abstract local invariant X � is represented by an abstract environment (abstract
intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order �̇ (pless), encoding logical implication ⇒ in the abstract;
• �̇ (pgreater), the inverse implication (⇐);
• the pointwise infimum (∅)4 (pbot), encoding false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

( less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;
let pbot = ( EMPTY , EMPTY , EMPTY , EMPTY );;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

•

•

•
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


X1 = {x ← [min_int� max_int]}
X2 = {x ← [1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 �̇ {x ← [min_int� max_int]}
X4 = X2 �̇ {x ← ∅}

where the abstract operations are extended pointwise such as {x1 ← �1, . . . ,
x� ← ��} �̇ {x1 ← � �1, . . . , x� ← � ��} � {x1 ← �1 � � �1, . . . , x� ← �� � � ��}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants�X1� X2� X3� X4� which attach to each program point � an abstract
local invariant X � which holds whenever controls reaches program point �.

Each abstract local invariant X � is represented by an abstract environment
(abstract intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order �̇ (pless), encoding logical implication ⇒ in the abstract;
• �̇ (pgreater), the inverse implication (⇐);
• the pointwise infimum (∅)4 (pbot), encoding false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

( less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;
let pbot = ( EMPTY , EMPTY , EMPTY , EMPTY );;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

•

•

•
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
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X1 = {x ← [min_int� max_int]}
X2 = {x ← [1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 �̇ {x ← [min_int� max_int]}
X4 = X2 �̇ {x ← ∅}

where the abstract operations are extended pointwise such as {x1 ← �1, . . . ,
x� ← ��} �̇ {x1 ← � �1, . . . , x� ← � ��} � {x1 ← �1 � � �1, . . . , x� ← �� � � ��}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants�X1� X2� X3� X4� which attach to each program point � an abstract
local invariant X � which holds whenever controls reaches program point �.

Each abstract local invariant X � is represented by an abstract environment
(abstract intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order �̇ (pless), encoding abstract implication (⊆ in set theory

and ⇒ in logic);
• �̇ (pgreater), the abstract inverse implication (⊇ in set theory and ⇐ in

logic);
• the pointwise infimum (∅)4 (pbot), the abstract encoding of false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

( less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;

12 P. C�����




X1 = {x ← [min_int� max_int]}
X2 = {x ← [1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 �̇ {x ← [min_int� max_int]}
X4 = X2 �̇ {x ← ∅}

where the abstract operations are extended pointwise such as {x1 ← �1, . . . ,
x� ← ��} �̇ {x1 ← � �1, . . . , x� ← � ��} � {x1 ← �1 � � �1, . . . , x� ← �� � � ��}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants�X1� X2� X3� X4� which attach to each program point � an abstract
local invariant X � which holds whenever controls reaches program point �.

Each abstract local invariant X � is represented by an abstract environment
(abstract intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order �̇ (pless), encoding abstract implication (⊆ in set theory

and ⇒ in logic);
• �̇ (pgreater), the abstract inverse implication (⊇ in set theory and ⇐ in

logic);
• the pointwise infimum (∅)4 (pbot), the abstract encoding of false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

( less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;

Software Verification, ETH Zurich, Switzerland, 25 November 2009                                                                                                                                     © P. Cousot,,http://se.inf.ethz.ch/teaching/2009-H/tc-0239/index.html#slides
42

12 P. C�����




X1 = {x ← [min_int� max_int]}
X2 = {x ← [1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 �̇ {x ← [min_int� max_int]}
X4 = X2 �̇ {x ← ∅}

where the abstract operations are extended pointwise such as {x1 ← �1, . . . ,
x� ← ��} �̇ {x1 ← � �1, . . . , x� ← � ��} � {x1 ← �1 � � �1, . . . , x� ← �� � � ��}.

Since our example has only one variable, this boils down to using the
interval abstract domain (and leaving implicit the variable name x).

Then we have to encode an abstract domain for representing abstract
invariants�X1� X2� X3� X4� which attach to each program point � an abstract
local invariant X � which holds whenever controls reaches program point �.

Each abstract local invariant X � is represented by an abstract environment
(abstract intervals in our simplified case).

The encoding is very simple as a 4-tuple specifying the value of program
variable x at each program point (1, 2, 3, 4).

We essentially have to represent the logical structure, which boils down to
• the partial order �̇ (pless), encoding abstract implication (⊆ in set theory

and ⇒ in logic);
• �̇ (pgreater), the abstract inverse implication (⊇ in set theory and ⇐ in

logic);
• the pointwise infimum (∅)4 (pbot), the abstract encoding of false,
• the pointwise meet (for later use in section 3.9), and
• the printing of local abstract invariants attached to program points (pprint).

(* invariant .ml , interval invariant abstract domain *)
open Interval
type invariant = interval * interval * interval * interval ;;
let cless (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

( less x1 x ’1 , less x2 x ’2 , less x3 x ’3 , less x4 x ’4);;
let pless x x’ =

let (b1 , b2 , b3 , b4) = cless x x’ in
b1 && b2 && b3 && b4 ;;

let pgreater x x’ = pless x’ x;;
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let pbot = ( EMPTY , EMPTY , EMPTY , EMPTY );;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

( meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least

solution of the invariance equations (lfp 5
). It is parameterized by the order

(leq), the starting point (a) and the abstract transformer (f) so as to compute a,

f(a), f2(a), . . . , f�(a), . . . , until reaching the limit f� (a) such that f(f� (a)) � f� (a).
Of course, convergence may not be guaranteed in which case lfp does not

terminate (or terminates with a runtime error, e.g. out of memory).

(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy

� X�+1� = ��(X�1 � � � � � X�4 ) � = 1� 2� 3� � � �
� = 1� � � � � 4

is simplistic, more elaborate ones would use e.g. a working list (see algo-

rithm 23.9).

Then we encode the abstract reachable state transformer �(X ) = �(�X1�
� � � � X4�) using the environment abstract domain (the intervals in our simplified

case).

(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

( INT ( min_int , max_int ),
join ( INT (1 ,1)) ( add1 x3),
meet x2 ( INT ( min_int , max_int )) ,
meet x2 EMPTY );;

5
least fixpoint.
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let pbot = ( EMPTY , EMPTY , EMPTY , EMPTY );;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

( meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least

solution of the invariance equations (lfp 5
).

It is parameterized by the order (leq), the starting point (a) and the abstract

transformer (f) so as to compute a, f(a), f2(a), . . . , f�(a), . . . , until reaching the

limit f� (a) such that f(f� (a)) � f� (a).
Of course, convergence may not be guaranteed in which case lfp does not

terminate (or terminates with a runtime error, e.g. out of memory).

(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy

� X�+1� = ��(X�1 � � � � � X�4 ) � = 1� 2� 3� � � �
� = 1� � � � � 4

is simplistic, more elaborate ones would use e.g. a working list (see algo-

rithm 23.9).

Then we encode the abstract reachable state transformer �(X ) = �(�X1�
� � � � X4�) using the environment abstract domain (the intervals in our simplified

case).

(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

( INT ( min_int , max_int ),
join ( INT (1 ,1)) ( add1 x3),
meet x2 ( INT ( min_int , max_int )) ,
meet x2 EMPTY );;

5
least fixpoint.

•

•

•
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let pbot = ( EMPTY , EMPTY , EMPTY , EMPTY );;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

( meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least

solution of the invariance equations (lfp 5
).

It is parameterized by the order (leq), the starting point (a) and the abstract

transformer (f) so as to compute a, f(a), f2(a), . . . , f�(a), . . . , until reaching the

limit f� (a) such that f(f� (a)) � f� (a).
Of course, convergence may not be guaranteed in which case lfp does not

terminate (or terminates with a runtime error, e.g. out of memory).

(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy

� X�+1� = ��(X�1 � � � � � X�4 ) � = 1� 2� 3� � � �
� = 1� � � � � 4

is simplistic, more elaborate ones would use e.g. a working list (see algo-

rithm 23.9).

Then we encode the abstract reachable state transformer �(X ) = �(�X1�
� � � � X4�) using the environment abstract domain (the intervals in our simplified

case).

(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

( INT ( min_int , max_int ),
join ( INT (1 ,1)) ( add1 x3),
meet x2 ( INT ( min_int , max_int )) ,
meet x2 EMPTY );;

5
least fixpoint.
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let pbot = ( EMPTY , EMPTY , EMPTY , EMPTY );;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

( meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least

solution of the invariance equations (lfp 5
).

It is parameterized by the order (leq), the starting point (a) and the abstract

transformer (f) so as to compute a, f(a), f2(a), . . . , f�(a), . . . , until reaching the

limit f� (a) such that f(f� (a)) � f� (a).
Of course, convergence may not be guaranteed in which case lfp does not

terminate (or terminates with a runtime error, e.g. out of memory).

(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy

� X�+1� = ��(X�1 � � � � � X�4 ) � = 1� 2� 3� � � �
� = 1� � � � � 4

is simplistic, more elaborate ones would use e.g. a working list (see algo-

rithm 23.9).

Then we encode the abstract reachable state transformer �(X ) = �(�X1�
� � � � X4�) using the environment abstract domain (the intervals in our simplified

case).

(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

( INT ( min_int , max_int ),
join ( INT (1 ,1)) ( add1 x3),
meet x2 ( INT ( min_int , max_int )) ,
meet x2 EMPTY );;

5
least fixpoint.
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let pbot = ( EMPTY , EMPTY , EMPTY , EMPTY );;
let pmeet (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

( meet x1 x ’1 , meet x2 x ’2 , meet x3 x ’3 , meet x4 x ’4);;
let pprint (x1 ,x2 ,x3 ,x4) =

print_string " 1:"; print x1; print_string " 2:";
print x2; print_string " 3:"; print x3;
print_string " 4:"; print x4; print_newline ();;

Next the iterator module implements the iterative computation of the least

solution of the invariance equations (lfp 5
).

It is parameterized by the order (leq), the starting point (a) and the abstract

transformer (f) so as to compute a, f(a), f2(a), . . . , f�(a), . . . , until reaching the

limit f� (a) such that f(f� (a)) � f� (a).
Of course, convergence may not be guaranteed in which case lfp does not

terminate (or terminates with a runtime error, e.g. out of memory).

(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy

� X�+1� = ��(X�1 � � � � � X�4 ) � = 1� 2� 3� � � �
� = 1� � � � � 4

is simplistic, more elaborate ones would use e.g. a working list (see algo-

rithm 23.9).

Then we encode the abstract reachable state transformer �(X ) = �(�X1�
� � � � X4�) using the environment abstract domain (the intervals in our simplified

case).

(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

( INT ( min_int , max_int ),
join ( INT (1 ,1)) ( add1 x3),
meet x2 ( INT ( min_int , max_int )) ,
meet x2 EMPTY );;

5
least fixpoint.
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Of course, convergence may not be guaranteed in which case lfp does not

terminate (or terminates with a runtime error, e.g. out of memory).

(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy

� X�+1� = ��(X�1 � � � � � X�4 ) � = 1� 2� 3� � � �
� = 1� � � � � 4

is simplistic, more elaborate ones would use e.g. a working list (see algo-

rithm 25.21) or structural iteration (see chapter 13).

Then we encode the abstract reachable state transformer �(X ) = �(�X1�
� � � � X4�) using the environment abstract domain (the intervals in our simplified

case).

(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f1 () = INT ( min_int , max_int );;
let f2 x1 x3 = join ( INT (1 ,1)) ( add1 x3 );;
let f3 x2 = meet x2 ( INT ( min_int , max_int ));;
let f4 x2 = meet x2 EMPTY ;;
let f (x1 ,x2 ,x3 ,x4) = (f1 () , f2 x1 x3 , f3 x2 , f4 x2 );;

The abstract interpreter performs the iterative abstract reachability fixpoint

computation and prints the least fixpoint result.

(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;
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This information is certainly correct but just less precise.
The interval invariance equations are now



X1 = [min_int� max_int]}
X2 = [1� 1] � L X3 = ∅ ? ∅ : let [�� �] = X3 in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 � [min_int� max_int]
X4 = X2 � ∅

where the interval join is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � [�� �], and
[�� �] � [�� �] � [min(�� �)� max(�� �)]

and the interval meet is ∅ � ∅ � ∅, ∅ � [�� �] � [�� �] � ∅ � ∅, and
[�� �] � [�� �] � [max(�� �)� min(�� �)] when � � � ∧ � � �
[�� �] � [�� �] � ∅ when � <� ∨ � <�

The interval equations over-estimate the machine invariant in than they
will provide in general more states that possible in actual program executions.

For example the set {1� 2� 5} will be overapproximated by [1� 5] which
introduces the spurious values 3 and 4.

Notice that overapproximation preserve invariance. For example if the
values of variable x are always greater than one at some program point then
they are certainly positive (although the value 0 is spurious).

Underapproximations (such as x are always greater than 10) would be
incorrect.

Similarly, incomparable approximations (such as x is negative) are also
unsound.

In particular the interval join � overapproximates the interval union ∪ and
the interval meet � overapproximates the interval intersection ∩.

3.7 An Interval Abstract Interpreter
We now briefly sketch the design and functional encoding in OC��� of the
interval abstract interpreter.

Such an interval abstract interpreter reads any program, builds the interval
invariance equations, and then solve them.

For simplicity, we concentrate on the second part and will provide encod-
ings of the interval invariance equations manually.

encoding:
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Of course, convergence may not be guaranteed in which case lfp does not

terminate (or terminates with a runtime error, e.g. out of memory).

(* iterator .ml , iteration of f from a to x >= f(x) *)
let lfp leq a f =

let rec iterate x =
let y = f x in

if leq y x then x
else iterate y

in iterate a;;

Of course the Jacobi iteration strategy

� X�+1� = ��(X�1 � � � � � X�4 ) � = 1� 2� 3� � � �
� = 1� � � � � 4

is simplistic, more elaborate ones would use e.g. a working list (see algo-

rithm 25.21) or structural iteration (see chapter 13).

Then we encode the abstract reachable state transformer �(X ) = �(�X1�
� � � � X4�) using the environment abstract domain (the intervals in our simplified

case).

(* transformerUnbounded .ml , abstract transformer *)
open Interval
open Invariant
let f1 () = INT ( min_int , max_int );;
let f2 x1 x3 = join ( INT (1 ,1)) ( add1 x3 );;
let f3 x2 = meet x2 ( INT ( min_int , max_int ));;
let f4 x2 = meet x2 EMPTY ;;
let f (x1 ,x2 ,x3 ,x4) = (f1 () , f2 x1 x3 , f3 x2 , f4 x2 );;

The abstract interpreter performs the iterative abstract reachability fixpoint

computation and prints the least fixpoint result.

(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;
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The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.
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The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.
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The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.
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The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.
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Notice that the abstract invariance equations X = �(X ) are increasing, if
X �̇ Y then �(X ) �̇ �(Y ).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 �̇ � � � �̇ X� �̇ � � � �̇ lim�→+∞ X� are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim�→+∞ X�) �̇ lim�→+∞ X�, the limit satisfies �(lim�→+∞ X�) = lim�→+∞ X�
by antisymmetry.

3.8 Convergence Acceleration
When convergence requires infinitely many steps or is very slow, it may not
be possible, due to undecidability or high complexity, to exactly calculate the
least solution to the abstract system of equations. The only sound solution is
then to have overapproximations of the desired result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations. The possibility of computing sound
but approximate solutions to the invariant equations leads to powerful sound
and fast static program analysis methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⊥, . . . , X�+1 = �(X�), . . . , lim�→+∞ X� so as to reach an overapprox-
imation Â of the least solution lim�→+∞ X� of the fixpoint equation X = �(X ) 7.

Convergence acceleration means that X�+1 will be a function of X� and
�(X�) 8 and so X�+1 = X� � �(X�) where � is called a widening 9.

• For soundness, the widening must perform over-approximations, that is � �
� � � and � � � � �.
7Then justification is again by Tarski theorem 14.7 since �(Â) � Â implies lfp � � Â.
8and more generally X�+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X�, �(X�), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ∨, �, etc, see chapter 30.

•

•

•

•
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The abstract interpreter performs the iterative abstract reachability fixpoint
computation and prints the least fixpoint result.
(* reachability interval analysis *)
open Invariant
open TransformerUnbounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;

3.7 Infinitary Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 6, we get
% ocamlc interval .ml invariant .ml transformeUnbounded .ml iterator .ml \
? reachability_unbounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2977.460 u 9.632 s 50:43.46 98.1% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_
...
...
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741820) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741821) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741821) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741822) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741822) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

3115.012 u 7.706 s 52:49.34 98.5% 0+0 k 0+0 io 0pf +0w
%

Of course the convergence is extremely slow and in practice must be acceler-
ated.

6On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.
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2.9 Finite but Slow Iteration
Because the abstract domains are finite, the static analysis will always termi-
nate. In our case, after more that 40mn of computation 10, we get
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iterator .ml reachability_unbounded .ml
% time ./a. out
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
4041.683 u 5.949 s 1:07:46.02 99.5% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates are as follows
% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iteratorPartialUnboundedTrace .ml reachability_unbounded_trace .ml
% time ./a. out
1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,3) 4:_|_

...

...

Of course the convergence is extremely slow and in practice must be acceler-
ated.

Notice that the abstract invariance equations X = �(X ) are increasing, if
X ⊆̇ι Y then �(X ) ⊆̇ι �(Y ).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 ⊆̇ι � � � ⊆̇ι X� ⊆̇ι � � � ⊆̇ι lim�→+∞ X� form an
ascending chain.

Since the abstract interpreter stops iterating when reaching of postfix-
point �(lim�→+∞ X�) ⊆̇ι lim�→+∞ X�, the limit satisfies �(lim�→+∞ X�) =
lim�→+∞ X� by antisymmetry.

2.10 Convergence Speed Up
Instead of iterating a function � , one can iterate its powers like �2 or �64. If the
compiler can generate code for computing ��(�) which is faster that applying
� times � to �, one can hope for a convergence speed up. This would be the
case for compilers able to implement �� by expanding � times the code of �

10On a MacBook Pro with Intel Core 2 Duo at 2.6 GHz.
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thus saving the intrinsic cost of � − 1 function calls. The following experiment

in OC���
(* reachability interval analysis with speed up *)
open Invariant
open TransformerUnbounded
open Iterator
let o f g x = f (g x );;
let i x = x;;
let even n = n / 2 * 2 = n;;
let rec fn n = if n = 1 then f

else if ( even n) then o (fn (n / 2)) (fn (n / 2))
else o (fn (n / 2)) (fn ((n + 1) / 2));;

let analyzer () = pprint ( lfp pless pbot (fn 64));;
analyzer ();;

is inconclusive.

% ocamlc interval .ml invariant .ml transformerUnbounded .ml \
? iterator .ml reachability_unboundedx2 .ml
% time ./a. out
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
2429.727 u 5.740 s 40:59.82 99.0% 0+0 k 0+0 io 0pf +0w
%

However the correctness (if not the implementation-dependent better effi-

ciency) of this approach is proved in section ??.

2.11 Convergence Acceleration
When convergence requires infinitely many steps or is very slow, it may not

be possible, due to undecidability or high complexity, to exactly calculate the

least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired

result.

We have already exploited the overapproximation idea when replacing sets

of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing

the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-

variant equations leads to powerful sound and fast static program analysis

methods.

2.11.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing iter-

ation X0 = ⊥, . . . , X�+1 = �(X�), . . . , lim�→+∞ X�
so as to reach an over-
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Notice that the abstract invariance equations X = �(X ) are increasing, if
X �̇ Y then �(X ) �̇ �(Y ).

The intuition is that the interval of possible value of a variable is larger at
a program point, it should be also larger at the next program point.

It follows that the iterates X0 �̇ � � � �̇ X� �̇ � � � �̇ lim�→+∞ X� are
increasing.

Since the abstract interpreter stops iterating when reaching of postfixpoint
�(lim�→+∞ X�) �̇ lim�→+∞ X�, the limit satisfies �(lim�→+∞ X�) = lim�→+∞ X�
by antisymmetry.

3.8 Convergence Acceleration

When convergence requires infinitely many steps or is very slow, it may
not be possible, due to undecidability or high complexity, to exactly calculate
the least solution to the abstract system of equations.

The only sound solution is then to have overapproximations of the desired
result.

We have already exploited the overapproximation idea when replacing sets
of integer values in the invariant equations by interval of values.

We now exploit the approximation idea a second time now while computing
the solution of the invariance equations.

The possibility of computing sound but approximate solutions to the in-
variant equations leads to powerful sound and fast static program analysis
methods.

3.8.1 Convergence Acceleration with Widening
The intuition for convergence acceleration is to speed up the increasing itera-
tion X0 = ⊥, . . . , X�+1 = �(X�), . . . , lim�→+∞ X� so as to reach an overapprox-
imation Â of the least solution lim�→+∞ X� of the fixpoint equation X = �(X ) 7.

Convergence acceleration means that X�+1 will be a function of X� and
�(X�) 8 and so X�+1 = X� � �(X�) where � is called a widening 9.

7Then justification is again by Tarski theorem 14.7 since �(Â) � Â implies lfp � � Â.
8and more generally X�+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X�, �(X�), but we can use a reencoding as we did in exercice ?? to prove that a proof by strong
induction in section ?? can always be done by a weak recurrence of section ?? , and inversely.

9We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ∨, �, etc, see chapter 30.

•

•

•

•

•

(*)

(*) Of course direct solutions do sometimes exist e.g. linear equations on regular languages
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•

•
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• For soundness, the widening must perform over-approximations, that is � �
� � � and � � � � �.

• For convergence, the widening must ensure termination with an overapprox-

imation of the desired solution.

For example, a widening for intervals could be

∅ � � � �
� � ∅ � �

[�� �] � [�� �] � [L � < � ? −∞ : � M� L � >� ? +∞ : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So in

[�� �] � [�� �] if � < � the next iterate decreases the lower limit of the interval

so widening to −∞ ensures this cannot happen infinitely often.

Similarly, if � > � then the next iterate increases the upper limit of the

interval so widening to +∞ ensures this cannot happen infinitely often. More-

over the widened interval is larger which ensures that we perform an overap-

proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-

ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] �
[0� 2] but [0� 1] � [0� 2] = [0� +∞] �� [0� 2] = [0� 2] � [0� 2], a point discussed

at length in chapter 30.

A functional encoding in of the widening in OC��� could be

(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;
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• For soundness, the widening must perform over-approximations, that is � �
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• For soundness, the widening must perform over-approximations, that is � �
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imation of the desired solution.
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at length in chapter 30.
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| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

•

•

Software Verification, ETH Zurich, Switzerland, 25 November 2009                                                                                                                                     © P. Cousot,,http://se.inf.ethz.ch/teaching/2009-H/tc-0239/index.html#slides

Example: Interval Widening (Cont’d)

63

16 P. C�����

• For soundness, the widening must perform over-approximations, that is � �
� � � and � � � � �.

• For convergence, the widening must ensure termination with an overapprox-

imation of the desired solution.

For example, a widening for intervals could be

∅ � � � �
� � ∅ � �

[�� �] � [�� �] � [L � < � ? −∞ : � M� L � >� ? +∞ : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So in

[�� �] � [�� �] if � < � the next iterate decreases the lower limit of the interval

so widening to −∞ ensures this cannot happen infinitely often.

Similarly, if � > � then the next iterate increases the upper limit of the

interval so widening to +∞ ensures this cannot happen infinitely often. More-

over the widened interval is larger which ensures that we perform an overap-

proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-

ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] �
[0� 2] but [0� 1] � [0� 2] = [0� +∞] �� [0� 2] = [0� 2] � [0� 2], a point discussed

at length in chapter 30.

A functional encoding in of the widening in OC��� could be

(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

C�. � — I����������� �� ������ �������� ��� ������������ 17

approximation Â of the least solution lim�→+∞ X� of the fixpoint equation
X = �(X ) 11.

Convergence acceleration means that X�+1 will be a function of X� and
�(X�) 12 and so X�+1 = X� � �(X�) where � is called a widening 13.
• For soundness, the widening must perform over-approximations, that is � ⊆ι

� � � and � ⊆ι � � �.
• For convergence, the widening must ensure termination with an overapprox-

imation of the desired solution.
For example, a widening for intervals could be 14

∅ι � � � �
� � ∅ι � �

[�� �] � [�� �] � [L � < � ? −∞ : � M� L � >� ? +∞ : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So in

[�� �] � [�� �] if � < � the next iterate decreases the lower limit of the interval
so widening to −∞ ensures this cannot happen infinitely often.

Similarly, if � > � then the next iterate increases the upper limit of the
interval so widening to +∞ ensures this cannot happen infinitely often. More-
over the widened interval is larger which ensures that we perform an overap-
proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-
ation (for two variables).

11The justification is again by Tarski theorem 5.7 since �(Â) ⊆ι Â implies lfp � ⊆ι Â.
12and more generally X�+1 could depend on the sequence of previous iterates X 0, �(X 0), . . . ,

X�, �(X�), but we can use a reencoding as we did in exercice 8-2 to prove that a proof by
strong induction in section 8.1.9 can always be done by a weak recurrence of section 8.1.6,
and inversely.

13We use a binary operator notation rather than a functional notation because of the analogy
between widenings � and joins ∨, ∪ι, etc, see chapter 7.

14−∞ �∈ Z is smaller than any integer.
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16 P. C�����

• For soundness, the widening must perform over-approximations, that is � �
� � � and � � � � �.

• For convergence, the widening must ensure termination with an overapprox-

imation of the desired solution.

For example, a widening for intervals could be

∅ � � � �
� � ∅ � �

[�� �] � [�� �] � [L � < � ? −∞ : � M� L � >� ? +∞ : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So in

[�� �] � [�� �] if � < � the next iterate decreases the lower limit of the interval

so widening to −∞ ensures this cannot happen infinitely often.

Similarly, if � > � then the next iterate increases the upper limit of the

interval so widening to +∞ ensures this cannot happen infinitely often. More-

over the widened interval is larger which ensures that we perform an overap-

proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-

ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] �
[0� 2] but [0� 1] � [0� 2] = [0� +∞] �� [0� 2] = [0� 2] � [0� 2], a point discussed

at length in chapter 30.

A functional encoding in of the widening in OC��� could be

(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;

It can be shown that if the widening stops loosing information 
when a solution is found and is increasing then it cannot 
enforce termination

•

•
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16 P. C�����

• For soundness, the widening must perform over-approximations, that is � �
� � � and � � � � �.

• For convergence, the widening must ensure termination with an overapprox-

imation of the desired solution.

For example, a widening for intervals could be

∅ � � � �
� � ∅ � �

[�� �] � [�� �] � [L � < � ? −∞ : � M� L � >� ? +∞ : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So in

[�� �] � [�� �] if � < � the next iterate decreases the lower limit of the interval

so widening to −∞ ensures this cannot happen infinitely often.

Similarly, if � > � then the next iterate increases the upper limit of the

interval so widening to +∞ ensures this cannot happen infinitely often. More-

over the widened interval is larger which ensures that we perform an overap-

proximation.

The extrapolation of bounds to infinity is illustrated on the following iter-

ation (for two variables).

Observe than the interval widening is not increasing. For example [0� 1] �
[0� 2] but [0� 1] � [0� 2] = [0� +∞] �� [0� 2] = [0� 2] � [0� 2], a point discussed

at length in chapter 30.

A functional encoding in of the widening in OC��� could be

(* intervalWidening .ml , interval widening *)
open Interval
let widen x y = match x,y with
| EMPTY , _ -> y
| _, EMPTY -> x
| INT (a,b), INT (c,d) ->

let a’ = if c<a then min_int else a in
let b’ = if d>b then max_int else b in

INT (a’,b ’);;
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If we had abstract environments to handle several variables, the widening

would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-

gram points. In our example, the widening is applied once around the loop at

program point
2

as follows.

(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint ( lfp pless pbot fw );;

analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To

see that, consider the bounded iteration
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If we had abstract environments to handle several variables, the widening

would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-

gram points. In our example, the widening is applied once around the loop at

program point
2

as follows.

(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint ( lfp pless pbot fw );;

analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To

see that, consider the bounded iteration

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write �� � �� for the state of program execution where ex-
ecution is at program point � , � = 1� 2� 3� 4, and variable x has integer value
� ∈ Z (where Z is the set of all mathematical integers). A complete program

5
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If we had abstract environments to handle several variables, the widening

would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-

gram points. In our example, the widening is applied once around the loop at

program point
2

as follows.

(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint ( lfp pless pbot fw );;

analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To

see that, consider the bounded iteration
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If we had abstract environments to handle several variables, the widening

would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-

gram points. In our example, the widening is applied once around the loop at

program point
2

as follows.

(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint ( lfp pless pbot fw );;

analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To

see that, consider the bounded iteration
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If we had abstract environments to handle several variables, the widening

would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-

gram points. In our example, the widening is applied once around the loop at

program point
2

as follows.

(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint ( lfp pless pbot fw );;

analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To

see that, consider the bounded iteration
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If we had abstract environments to handle several variables, the widening

would have to be applied individually for each of these variables.

We must also extend the widening to local invariants attached to pro-

gram points. In our example, the widening is applied once around the loop at

program point
2

as follows.

(* invariantWidening .ml , invariant widening *)
open IntervalWidening
let pwiden (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2,x ’3 ,x ’4) =

(x ’1 , widen x2 x ’2,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening.

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerUnbounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint ( lfp pless pbot fw );;

analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml iterator .ml \
? reachability_widening .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

The Jacobi iterates with widening are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerUnbounded .ml \
? iteratorTrace .ml reachability_widening_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1073741823) 4:_|_

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course, the widening cannot, in general, provide the exact result! To

see that, consider the bounded iteration

18 P. C�����

P � 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

so that the abstract interval equations become



X1 = {x ← [min_int� max_int]}
X2 = {x ← [1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 �̇ {x ← [min_int� 100]}
X4 = X2 �̇ {x ← [101� max_int]}

This transformer is encoded in OC��� as follows.
(* transformerBounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

( INT ( min_int , max_int ),
join ( INT (1 ,1)) ( add1 x3),
meet x2 ( INT ( min_int ,100)) ,
meet x2 ( INT (101 , max_int )));;

A direct iteration
(* reachability interval analysis *)
open Invariant
open TransformerBounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;

yields
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iterator .ml reachability_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.001 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

in more details
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iteratorPartialBoundedTrace .ml reachability_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
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P � 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

so that the abstract interval equations become



X1 = {x ← [min_int� max_int]}
X2 = {x ← [1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 �̇ {x ← [min_int� 100]}
X4 = X2 �̇ {x ← [101� max_int]}

This transformer is encoded in OC��� as follows.
(* transformerBounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

( INT ( min_int , max_int ),
join ( INT (1 ,1)) ( add1 x3),
meet x2 ( INT ( min_int ,100)) ,
meet x2 ( INT (101 , max_int )));;

A direct iteration
(* reachability interval analysis *)
open Invariant
open TransformerBounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;

yields
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iterator .ml reachability_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.001 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

in more details
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iteratorPartialBoundedTrace .ml reachability_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_

1) Direct iteration (without widening)
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18 P. C�����

P � 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

so that the abstract interval equations become



X1 = {x ← [min_int� max_int]}
X2 = {x ← [1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M}
X3 = X2 �̇ {x ← [min_int� 100]}
X4 = X2 �̇ {x ← [101� max_int]}

This transformer is encoded in OC��� as follows.
(* transformerBounded .ml , abstract transformer *)
open Interval
open Invariant
let f (x1 ,x2 ,x3 ,x4) =

( INT ( min_int , max_int ),
join ( INT (1 ,1)) ( add1 x3),
meet x2 ( INT ( min_int ,100)) ,
meet x2 ( INT (101 , max_int )));;

A direct iteration
(* reachability interval analysis *)
open Invariant
open TransformerBounded
open Iterator
let analyzer () = pprint ( lfp pless pbot f );;
analyzer ();;

yields
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iterator .ml reachability_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.001 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

in more details
% ocamlc interval .ml invariant .ml transformerBounded .ml \
? iteratorPartialBoundedTrace .ml reachability_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_

C�. � — I����������� �� ������ �������� ��� ������������ 19

1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
...
1:( -1073741824 ,1073741823) 2:(1 ,99) 3:(1 ,99) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,99) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.001 u 0.001 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Again convergence is guaranteed but slow.
Using the iteration with widening,

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerBounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint ( lfp pless pbot fw );;

analyzer ();;

we rapidly get a strictly less precise result.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iterator .ml \
? reachability_widening_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iteratorTrace .ml \

In more details the widening effect is not compensated by the test on loop exit.
? reachability_widening_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
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C�. � — I����������� �� ������ �������� ��� ������������ 19

1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
...
1:( -1073741824 ,1073741823) 2:(1 ,99) 3:(1 ,99) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,99) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.001 u 0.001 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Again convergence is guaranteed but slow.
Using the iteration with widening,

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerBounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint ( lfp pless pbot fw );;

analyzer ();;

we rapidly get a strictly less precise result.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iterator .ml \
? reachability_widening_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iteratorTrace .ml \

In more details the widening effect is not compensated by the test on loop exit.
? reachability_widening_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
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C�. � — I����������� �� ������ �������� ��� ������������ 19

1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,2) 3:(1 ,2) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,3) 3:(1 ,2) 4:_|_
...
1:( -1073741824 ,1073741823) 2:(1 ,99) 3:(1 ,99) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,99) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.001 u 0.001 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Again convergence is guaranteed but slow.
Using the iteration with widening,

(* reachability analysis with widening *)
open Invariant
open InvariantWidening
open TransformerBounded
open Iterator
let analyzer () =

let fw x = pwiden x (f x) in
pprint ( lfp pless pbot fw );;

analyzer ();;

we rapidly get a strictly less precise result.
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iterator .ml \
? reachability_widening_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%
% ocamlc interval .ml intervalWidening .ml invariant .ml \
? invariantWidening .ml transformerBounded .ml iteratorTrace .ml \

In more details the widening effect is not compensated by the test on loop exit.
? reachability_widening_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .

20 P. C�����

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing
Because the upward iteration sequence with widening concerges to a postfix-

point Â of � such that lfp � � Â ∧ �(Â) � Â, we have, by recurrence and since

� is increasing, that lfp � � ��(Â) � Â.

When Â is not a fixpoint of � , any iterate in the sequence Y 0 = Â, . . . ,

Y �+1 = �(Y �) = ��(Â) is an overapproximation of the unknown lfp � more

precise than Â.

However, this downward iteration �Y �� � ∈ N� might be infinite or con-

verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence

acceleration means that Y �+1
will be a function of Y �

and �(Y �) 10
and so

Y �+1 = Y � � �(Y �) where
�

is called a narrowing 11
.

• For convergence, the narrowing must ensure termination with a fixpoint.

• For soundness, the narrowing must perform over-approximations, that is

� � � � �, so as to stay above the unknown least fixpoint, which requires

remaining above any fixpoint (which we have no way to distinguish from the

least one)
12

.

For example, a narrowing for intervals could be

∅ � � � ∅
� � ∅ � ∅

[�� �] � [�� �] � [L � = −∞ ? � : � M� L � = +∞ ? � : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So [��
�] � [�� �] will just eliminate the infinite bounds in [�� �] and replace them by

the bounds of the next iterate [�� �].
10

and more generally Y �+1
could depend on the sequence of previous iterates Y 0

, �(Y 0), . . . ,

Y �
, �(Y �), as was also the case for widening.
11

We use a binary operator notation rather than a functional notation because of the analogy

between narrowing

�
and meets ∧, �, etc, see chapter 30.

12
By recurrence, if X = �(X ) is any fixpoint of � such that X � Y �

then X = �(X ) � �(Y �)
since � is increasing so X � Y � � Y � � �(Y �) = Y �+1

by the overapproximation hypothesis.
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1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-

fixpoint Â of � such that lfp � � Â∧�(Â) � Â, we have, by recurrence and since

� is increasing, that lfp � � ��(Â) � Â.

When Â is not a fixpoint of � , any iterate in the sequence Y 0 = Â, . . . ,

Y �+1 = �(Y �) = ��(Â) is an overapproximation of the unknown lfp � more

precise than Â.

However, this downward iteration �Y �� � ∈ N� might be infinite or con-

verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence

acceleration means that Y �+1
will be a function of Y �

and �(Y �) 10
and so

Y �+1 = Y � � �(Y �) where
�

is called a narrowing 11
.

• For convergence, the narrowing must ensure termination with a fixpoint.

• For soundness, the narrowing must perform over-approximations, that is

� � � � �, so as to stay above the unknown least fixpoint, which requires

remaining above any fixpoint (which we have no way to distinguish from the

least one)
12

.

For example, a narrowing for intervals could be

∅ � � � ∅
� � ∅ � ∅

[�� �] � [�� �] � [L � = −∞ ? � : � M� L � = +∞ ? � : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So [��
�] � [�� �] will just eliminate the infinite bounds in [�� �] and replace them by

the bounds of the next iterate [�� �].
10

and more generally Y �+1
could depend on the sequence of previous iterates Y 0

, �(Y 0), . . . ,

Y �
, �(Y �), as was also the case for widening.
11

We use a binary operator notation rather than a functional notation because of the analogy

between narrowing

�
and meets ∧, �, etc, see chapter 30.

12
By recurrence, if X = �(X ) is any fixpoint of � such that X � Y �

then X = �(X ) � �(Y �)
since � is increasing so X � Y � � Y � � �(Y �) = Y �+1

by the overapproximation hypothesis.

•

•

•

•
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3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-

fixpoint Â of � such that lfp � � Â∧�(Â) � Â, we have, by recurrence and since

� is increasing, that lfp � � ��(Â) � Â.

When Â is not a fixpoint of � , any iterate in the sequence Y 0 = Â, . . . ,

Y �+1 = �(Y �) = ��(Â) is an overapproximation of the unknown lfp � more

precise than Â.

However, this downward iteration �Y �� � ∈ N� might be infinite or con-

verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence

acceleration means that Y �+1
will be a function of Y �

and �(Y �) 10
and so

Y �+1 = Y � � �(Y �) where
�

is called a narrowing 11
.

• For convergence, the narrowing must ensure termination with a fixpoint.

• For soundness, the narrowing must perform over-approximations, that is

� � � � �, so as to stay above the unknown least fixpoint, which requires

remaining above any fixpoint (which we have no way to distinguish from the

least one)
12

.

For example, a narrowing for intervals could be

∅ � � � ∅
� � ∅ � ∅

[�� �] � [�� �] � [L � = −∞ ? � : � M� L � = +∞ ? � : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So [��
�] � [�� �] will just eliminate the infinite bounds in [�� �] and replace them by

the bounds of the next iterate [�� �].
10

and more generally Y �+1
could depend on the sequence of previous iterates Y 0

, �(Y 0), . . . ,

Y �
, �(Y �), as was also the case for widening.
11

We use a binary operator notation rather than a functional notation because of the analogy

between narrowing

�
and meets ∧, �, etc, see chapter 30.

12
By recurrence, if X = �(X ) is any fixpoint of � such that X � Y �

then X = �(X ) � �(Y �)
since � is increasing so X � Y � � Y � � �(Y �) = Y �+1

by the overapproximation hypothesis.

Software Verification, ETH Zurich, Switzerland, 25 November 2009                                                                                                                                     © P. Cousot,,http://se.inf.ethz.ch/teaching/2009-H/tc-0239/index.html#slides

Soundness

78

20 P. C�����

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-

fixpoint Â of � such that lfp � � Â∧�(Â) � Â, we have, by recurrence and since

� is increasing, that lfp � � ��(Â) � Â.

When Â is not a fixpoint of � , any iterate in the sequence Y 0 = Â, . . . ,

Y �+1 = �(Y �) = ��(Â) is an overapproximation of the unknown lfp � more

precise than Â.

However, this downward iteration �Y �� � ∈ N� might be infinite or con-

verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence

acceleration means that Y �+1
will be a function of Y �

and �(Y �) 10
and so

Y �+1 = Y � � �(Y �) where
�

is called a narrowing 11
.

• For convergence, the narrowing must ensure termination with a fixpoint.

• For soundness, the narrowing must perform over-approximations, that is

� � � � �, so as to stay above the unknown least fixpoint, which requires

remaining above any fixpoint (which we have no way to distinguish from the

least one)
12

.

For example, a narrowing for intervals could be

∅ � � � ∅
� � ∅ � ∅

[�� �] � [�� �] � [L � = −∞ ? � : � M� L � = +∞ ? � : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So [��
�] � [�� �] will just eliminate the infinite bounds in [�� �] and replace them by

the bounds of the next iterate [�� �].
10

and more generally Y �+1
could depend on the sequence of previous iterates Y 0

, �(Y 0), . . . ,

Y �
, �(Y �), as was also the case for widening.
11

We use a binary operator notation rather than a functional notation because of the analogy

between narrowing

�
and meets ∧, �, etc, see chapter 30.

12
By recurrence, if X = �(X ) is any fixpoint of � such that X � Y �

then X = �(X ) � �(Y �)
since � is increasing so X � Y � � Y � � �(Y �) = Y �+1

by the overapproximation hypothesis.
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3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-

fixpoint Â of � such that lfp � � Â∧ �(Â) � Â, we have, by recurrence and since

� is increasing, that lfp � � ��(Â) � Â.

When Â is not a fixpoint of � , any iterate in the sequence Y 0 = Â, . . . ,

Y �+1 = �(Y �) = ��(Â) is an overapproximation of the unknown lfp � more

precise than Â.

However, this downward iteration �Y �� � ∈ N� might be infinite or con-

verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence

acceleration means that Y �+1
will be a function of Y �

and �(Y �) 10
and so

Y �+1 = Y � � �(Y �) where
�

is called a narrowing 11
.

• For convergence, the narrowing must ensure termination with a fixpoint.

• For soundness, the narrowing must perform over-approximations, that is

� � � � �, so as to stay above the unknown least fixpoint, which requires

remaining above any fixpoint (which we have no way to distinguish from the

least one)
12

.

For example, a narrowing for intervals could be

∅ � � � ∅
� � ∅ � ∅

[�� �] � [�� �] � [L � = −∞ ? � : � M� L � = +∞ ? � : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So [��
�] � [�� �] will just eliminate the infinite bounds in [�� �] and replace them by

the bounds of the next iterate [�� �].
10

and more generally Y �+1
could depend on the sequence of previous iterates Y 0

, �(Y 0), . . . ,

Y �
, �(Y �), as was also the case for widening.
11

We use a binary operator notation rather than a functional notation because of the analogy

between narrowing

�
and meets ∧, �, etc, see chapter 30.

12
By recurrence, if X = �(X ) is any fixpoint of � such that X � Y �

then X = �(X ) � �(Y �)
since � is increasing so X � Y � � Y � � �(Y �) = Y �+1

by the overapproximation hypothesis.

Software Verification, ETH Zurich, Switzerland, 25 November 2009                                                                                                                                     © P. Cousot,,http://se.inf.ethz.ch/teaching/2009-H/tc-0239/index.html#slides

Convergence

79

20 P. C�����

1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-

fixpoint Â of � such that lfp � � Â∧ �(Â) � Â, we have, by recurrence and since

� is increasing, that lfp � � ��(Â) � Â.

When Â is not a fixpoint of � , any iterate in the sequence Y 0 = Â, . . . ,

Y �+1 = �(Y �) = ��(Â) is an overapproximation of the unknown lfp � more

precise than Â.

However, this downward iteration �Y �� � ∈ N� might be infinite or con-

verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence

acceleration means that Y �+1
will be a function of Y �

and �(Y �) 10
and so

Y �+1 = Y � � �(Y �) where
�

is called a narrowing 11
.

• For convergence, the narrowing must ensure termination with a fixpoint.

• For soundness, the narrowing must perform over-approximations, that is

� � � � �, so as to stay above the unknown least fixpoint, which requires

remaining above any fixpoint (which we have no way to distinguish from the

least one)
12

.

For example, a narrowing for intervals could be

∅ � � � ∅
� � ∅ � ∅

[�� �] � [�� �] � [L � = −∞ ? � : � M� L � = +∞ ? � : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So [��
�] � [�� �] will just eliminate the infinite bounds in [�� �] and replace them by

the bounds of the next iterate [�� �].
10

and more generally Y �+1
could depend on the sequence of previous iterates Y 0

, �(Y 0), . . . ,

Y �
, �(Y �), as was also the case for widening.
11

We use a binary operator notation rather than a functional notation because of the analogy

between narrowing

�
and meets ∧, �, etc, see chapter 30.

12
By recurrence, if X = �(X ) is any fixpoint of � such that X � Y �

then X = �(X ) � �(Y �)
since � is increasing so X � Y � � Y � � �(Y �) = Y �+1

by the overapproximation hypothesis.
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1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.8.2 Convergence Acceleration with Narrowing

Because the upward iteration sequence with widening concerges to a post-

fixpoint Â of � such that lfp � � Â∧�(Â) � Â, we have, by recurrence and since

� is increasing, that lfp � � ��(Â) � Â.

When Â is not a fixpoint of � , any iterate in the sequence Y 0 = Â, . . . ,

Y �+1 = �(Y �) = ��(Â) is an overapproximation of the unknown lfp � more

precise than Â.

However, this downward iteration �Y �� � ∈ N� might be infinite or con-

verging slowly.

It is therefore necessary to ensure its fast convergence. Convergence

acceleration means that Y �+1
will be a function of Y �

and �(Y �) 10
and so

Y �+1 = Y � � �(Y �) where
�

is called a narrowing 11
.

• For convergence, the narrowing must ensure termination with a fixpoint.

• For soundness, the narrowing must perform over-approximations, that is

� � � � �, so as to stay above the unknown least fixpoint, which requires

remaining above any fixpoint (which we have no way to distinguish from the

least one)
12

.

For example, a narrowing for intervals could be

∅ � � � ∅
� � ∅ � ∅

[�� �] � [�� �] � [L � = −∞ ? � : � M� L � = +∞ ? � : � M]
Recall than in � � � the � is an iterate and � is the next iterate �(�). So [��
�] � [�� �] will just eliminate the infinite bounds in [�� �] and replace them by

the bounds of the next iterate [�� �].
10

and more generally Y �+1
could depend on the sequence of previous iterates Y 0

, �(Y 0), . . . ,

Y �
, �(Y �), as was also the case for widening.
11

We use a binary operator notation rather than a functional notation because of the analogy

between narrowing

�
and meets ∧, �, etc, see chapter 30.

12
By recurrence, if X = �(X ) is any fixpoint of � such that X � Y �

then X = �(X ) � �(Y �)
since � is increasing so X � Y � � Y � � �(Y �) = Y �+1

by the overapproximation hypothesis.
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So the narrowed interval is larger than [�� �] that is �(�) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC��� could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.
(* reachability analysis with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator
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So the narrowed interval is larger than [�� �] that is �(�) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC��� could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.
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So the narrowed interval is larger than [�� �] that is �(�) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC��� could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.
(* reachability analysis with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator
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So the narrowed interval is larger than [�� �] that is �(�) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC��� could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.
(* reachability analysis with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator

Chapter 3
An informal introduction to static
analysis and verification by
abstract interpretation
We provide an informal introduction to basic concepts of abstract interpretation
and its application to program static analysis and verification by means of
simple examples.

3.1 Mathematical Semantics
Let us start with the following example program.

P � 1x := 1 ; while 2true do 3x := (x + 1); od4.

The mathematical semantics of this program can be informally described
at follows.

Execution start at program point 1 by assigning 1 to program vari-
able x. When at program point 2 the evaluation of the loop test
yields the value true so execution continues at program 3 where
the value of variable x is incremented by 1 before coming back
to 2. Since the loop condition is never false, program point 4 is
unreachable so program execution never ends.

More formally, we write �� � �� for the state of program execution where ex-
ecution is at program point � , � = 1� 2� 3� 4, and variable x has integer value
� ∈ Z (where Z is the set of all mathematical integers). A complete program

5
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So the narrowed interval is larger than [�� �] that is �(�) which ensures
that we perform an overapproximation. Because only finitely many bounds can
be infinite hence potentially removed, termination is guaranteed.

Examples of narrowings are as follows.

A functional encoding in of the narrowing in OC��� could be
(* interval narrowing *)
open Interval
let narrow x y = match x,y with
| EMPTY , _ -> EMPTY
| _, EMPTY -> EMPTY
| INT (a,b), INT (c,d) ->

let a’ = if a= min_int then c else a in
let b’ = if b= max_int then d else b in

INT (a’,b ’);;

In our example, the narrowing is applied once around the loop at program point
2, like the widening.
(* invariantNarrowing .ml , invariant narrowing *)
open IntervalNarrowing
let pnarrow (x1 ,x2 ,x3 ,x4) (x ’1 ,x ’2 ,x ’3 ,x ’4) =

(x ’1 , narrow x2 x ’2 ,x ’3 ,x ’4);;

The abstract interpreter now calls the iterator using the invariant widening
until reaching a postfixpoint and then calls the iterator using the invariant
narrowing until reaching a fixpoint.
(* reachability analysis with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator

22 P. C�����

let analyzer () =
let fw x = pwiden x (f x) in

let w = ( lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint ( lfp pgreater w fn );;
analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening

and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the

widening, in particular because it is blocked by fixpoints jumped over by the

widening.

Remark 3.1 For simplicity, we have designed a specific abstract interpreter

for a specific program.

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.
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let analyzer () =
let fw x = pwiden x (f x) in

let w = ( lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint ( lfp pgreater w fn );;
analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening

and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the

widening, in particular because it is blocked by fixpoints jumped over by the

widening.

Remark 3.1 For simplicity, we have designed a specific abstract interpreter

for a specific program.

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.
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let analyzer () =
let fw x = pwiden x (f x) in

let w = ( lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint ( lfp pgreater w fn );;
analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening

and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the

widening, in particular because it is blocked by fixpoints jumped over by the

widening.

Remark 3.1 For simplicity, we have designed a specific abstract interpreter

for a specific program.

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.
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let analyzer () =
let fw x = pwiden x (f x) in

let w = ( lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint ( lfp pgreater w fn );;
analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening

and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the

widening, in particular because it is blocked by fixpoints jumped over by the

widening.

Remark 3.1 For simplicity, we have designed a specific abstract interpreter

for a specific program.

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.
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let analyzer () =
let fw x = pwiden x (f x) in

let w = ( lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint ( lfp pgreater w fn );;
analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening

and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the

widening, in particular because it is blocked by fixpoints jumped over by the

widening.

Remark 3.1 For simplicity, we have designed a specific abstract interpreter

for a specific program.

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.
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• The iteration with dual widening starts from above the greatest fixpoint and

stabilizes below to a prefixpoint;

• The iteration with dual narrowing starts from below the greatest fixpoint

and stabilizes below;

So we need four different notations, as follows.

Iteration Iteration

starts from stabilizes

Widening
�

below above

Narrowing
�

above above

Dual widening
��

above below

Dual narrowing
��

below below

No dual widening
��

has ever been found but trivial ones such as bounded

execution (bounded model-checking), execution on a few cases (debugging),

etc.

27.12 Comparison of the Abstraction/Concretization-based

and Widening/Narrowing-based Fixpoint Approx-

imation

27.12.1 On the use of abstract domains satisfying ACC

Because of the frequent confusion between the static analysis of a given spe-

cific program P and the static analysis of all programs P ∈W of a language

with infinitely many different programs, some common believe about widen-

ings/narrowings are erroneous such as the widening approach to program static
analysis is useless since it is always possible to perform an iterative static
analysis using a finite abstract domain 17

or widenings can always be designed
by further abstraction in an abstract domain satisfying the ascending chain
condition 18

.

17
R.B. Kieburtz and M. Napierala. Abstract semantics. In S. Abramsky and C. Hankin,

eds., Abstract Interpretation of Declarative Languages, chapter 7, pp. 143–180. Ellis Horwood,

Chichester, U.K., 1987.
18

C. Hankin, S. Hunt: Approximate Fixed Points in Abstract Interpretation. In Sci. Comput.
Program. 22(3):283–306 (1994)
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let analyzer () =
let fw x = pwiden x (f x) in

let w = ( lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

pprint ( lfp pgreater w fn );;
analyzer ();;

The result is now almost instantaneous.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml \
? reachability_narrowing_bounded .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

When compared to the Jacobi iterations, the chaotic iterates with widening

and narrowing are extremely fast as shown below.

% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? reachability_narrowing_bounded_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,1073741823) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,1073741823)
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)

0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Of course the narrowing cannot always recover all information lost by the

widening, in particular because it is blocked by fixpoints jumped over by the

widening.

Remark 3.1 For simplicity, we have designed a specific abstract interpreter

for a specific program.

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.
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Observe that the code defining the transformer could be directly generated

from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and

an abstract interpreter would be used to evaluate the transformer by calls to

the interval abstract domain). ✷

3.9 Verification
The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime. We

can turn it into a verifier checking an interval specification. The specification

can be provided by the user or remain implicit (e.g. absence of runtime errors

such as overflows). One kind of user specification is a type declaration, for

example an interval declaration for integer variables like var x : 1��100;. Let

us understand this declaration as: “only values between 1 and 100 can be

assigned to x, otherwise execution stops” (with a runtime error). Observe that

this does not mean that x always has a value betwwen 1 and 100 because it

can be initialized with any integer value.
13

. For the follwoing example

P � � var x : 1��100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become




X1 = {x ← [min_int� max_int]}
X2 = {x ← �[1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M� � [1� 100]}
X3 = X2 �̇ {x ← [min_int� 100]}
X4 = X2 �̇ {x ← [101� max_int]}

since execution stops if and when a value outside [1� 100] is going to be

assigned to x. The result of the analysis is now the following. This declaration

is encoded in OC��� as follows
14

.

(* declaration .ml *)
open Interval
open Invariant

13
This interpretation of the interval declaration is that of the P����� programming language,

see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.
14

Notice that the restriction of the mathematical invariance equations to machine integers as

well as the verification of absence of overflow could have been encoded in the same way, see

exercice 3-1.

•

•

•

•
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In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated

from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and

an abstract interpreter would be used to evaluate the transformer by calls to

the interval abstract domain). ✷

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need

not follow the Jacobi iteration strategy and can be done in any chaotic order

provided no equation is forgotten forever (or equivalently every equation is

evaluated infinitely often) until it is stabilized.

A particular instance of such an efficient chaotic iteration follows program

execution as defined by induction on its syntax (see chapter 13). Starting from

the entry condition at program point
1
, we can stabilize the loop

2
—

3
before

computing the invariant at program point
4
.

We define

(* structural reachability analysis with widening and
narrowing *)

open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = ( lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
( lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4 );;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with

widening and then the iteration with narrowing for the loop
2
—

3
)

24 P. C�����

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated

from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and

an abstract interpreter would be used to evaluate the transformer by calls to

the interval abstract domain). ✷

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need

not follow the Jacobi iteration strategy and can be done in any chaotic order

provided no equation is forgotten forever (or equivalently every equation is

evaluated infinitely often) until it is stabilized.

A particular instance of such an efficient chaotic iteration follows program

execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point
1
, we can stabilize the

loop
2
—

3
before computing the invariant at program point

4
.

We define

(* structural reachability analysis with widening and
narrowing *)

open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = ( lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
( lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4 );;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with

widening and then the iteration with narrowing for the loop
2
—

3
)

24 P. C�����

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated

from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and

an abstract interpreter would be used to evaluate the transformer by calls to

the interval abstract domain). ✷

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need

not follow the Jacobi iteration strategy and can be done in any chaotic order

provided no equation is forgotten forever (or equivalently every equation is

evaluated infinitely often) until it is stabilized.

A particular instance of such an efficient chaotic iteration follows program

execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point
1
, we can stabilize the

loop
2
—

3
before computing the invariant at program point

4
.

We define

(* structural reachability analysis with widening and
narrowing *)

open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = ( lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
( lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4 );;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with

widening and then the iteration with narrowing for the loop
2
—

3
)

24 P. C�����

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated

from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and

an abstract interpreter would be used to evaluate the transformer by calls to

the interval abstract domain). ✷

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need

not follow the Jacobi iteration strategy and can be done in any chaotic order

provided no equation is forgotten forever (or equivalently every equation is

evaluated infinitely often) until it is stabilized.

A particular instance of such an efficient chaotic iteration follows program

execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point
1
, we can stabilize the

loop
2
—

3
before computing the invariant at program point

4
.

We define

(* structural reachability analysis with widening and
narrowing *)

open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = ( lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
( lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4 );;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with

widening and then the iteration with narrowing for the loop
2
—

3
)

Software Verification, ETH Zurich, Switzerland, 25 November 2009                                                                                                                                     © P. Cousot,,http://se.inf.ethz.ch/teaching/2009-H/tc-0239/index.html#slides
92

24 P. C�����

In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated

from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and

an abstract interpreter would be used to evaluate the transformer by calls to

the interval abstract domain). ✷

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need

not follow the Jacobi iteration strategy and can be done in any chaotic order

provided no equation is forgotten forever (or equivalently every equation is

evaluated infinitely often) until it is stabilized.

A particular instance of such an efficient chaotic iteration follows program

execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point
1
, we can stabilize the

loop
2
—

3
before computing the invariant at program point

4
.

We define

(* structural reachability analysis with widening and
narrowing *)

open Interval
open IntervalWidening
open IntervalNarrowing
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open TransformerBounded
open Iterator
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let p1 = f1 () in
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let fn x2 = narrow x2 (f x2) in
( lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4 );;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with

widening and then the iteration with narrowing for the loop
2
—

3
)

Structural iterations (cont’d)
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In practice, abstract interpreters are parameterized by the program they

have to analyze, and by the abstraction which should be used for the analysis.

Observe that the code defining the transformer could be directly generated

from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and

an abstract interpreter would be used to evaluate the transformer by calls to

the interval abstract domain). ✷

2.12 Chaotic Iterations and Structural Instance
We will see in section 6.3 that the iteration of the abstract equations need

not follow the Jacobi iteration strategy and can be done in any chaotic order

provided no equation is forgotten forever (or equivalently every equation is

evaluated infinitely often) until it is stabilized.

A particular instance of such an efficient chaotic iteration follows program

execution as defined by induction on its syntax (see chapter 13).

Starting from the entry condition at program point
1
, we can stabilize the

loop
2
—

3
before computing the invariant at program point

4
.

We define

(* structural reachability analysis with widening and
narrowing *)

open Interval
open IntervalWidening
open IntervalNarrowing
open Invariant
open TransformerBounded
open Iterator
let analyzer () =

let p1 = f1 () in
let p2 = let f x2 = f2 p1 (f3 x2) in

let fw x2 = widen x2 (f x2) in
let w = ( lfp less EMPTY fw) in

let fn x2 = narrow x2 (f x2) in
( lfp greater w fn) in

let p3 = f3 p2 in
let p4 = f4 p2 in

pprint (p1 , p2 , p3 , p4 );;
analyzer ();;

and get exactly the same global result (the trace shows the iteration with

widening and then the iteration with narrowing for the loop
2
—

3
)

Structural iterations (cont’d)
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% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml \
? structural_reachability_narrowing_bounded_trace .ml
% time ./a. out
_|_ (1 ,1) (1 ,1073741823) converged to fixpoint .
(1 ,1073741823) (1 ,101) converged to fixpoint .
1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

2.13 Verification
The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.

The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).

One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1��100;.

Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).

Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.
18

.

For the following example

P � � var x : 1��100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become




X1 = {x ← [min_int� max_int]}
X2 = {x ← �[1� 1] ∪ι L X3(x) = ∅ι ? ∅ι : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M� ∩ι [1� 100]}
X3 = X2 ∩̇ι {x ← [min_int� 100]}
X4 = X2 ∩̇ι {x ← [101� max_int]}

since execution stops if and when a value outside [1� 100] is going to be

assigned to x.

18
This interpretation of the interval declaration is that of the P����� programming language,

see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.
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Observe that the code defining the transformer could be directly generated

from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and

an abstract interpreter would be used to evaluate the transformer by calls to

the interval abstract domain). ✷

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.

The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).

One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1��100;.

Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).

Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.
13

.

For the follwoing example

P � � var x : 1��100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become




X1 = {x ← [min_int� max_int]}
X2 = {x ← �[1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M� � [1� 100]}
X3 = X2 �̇ {x ← [min_int� 100]}
X4 = X2 �̇ {x ← [101� max_int]}

since execution stops if and when a value outside [1� 100] is going to be

assigned to x. The result of the analysis is now the following. This declaration

is encoded in OC��� as follows
14

.

13
This interpretation of the interval declaration is that of the P����� programming language,

see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.
14

Notice that the restriction of the mathematical invariance equations to machine integers as

well as the verification of absence of overflow could have been encoded in the same way, see

exercice 3-1.

•

•
•

•

•

•
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Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).

Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.
13

.

For the following example

P � � var x : 1��100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become




X1 = {x ← [min_int� max_int]}
X2 = {x ← �[1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M� � [1� 100]}
X3 = X2 �̇ {x ← [min_int� 100]}
X4 = X2 �̇ {x ← [101� max_int]}

since execution stops if and when a value outside [1� 100] is going to be

assigned to x. The result of the analysis is now the following. This declaration

is encoded in OC��� as follows
14

.

13
This interpretation of the interval declaration is that of the P����� programming language,

see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.
14

Notice that the restriction of the mathematical invariance equations to machine integers as

well as the verification of absence of overflow could have been encoded in the same way, see

exercice 3-1.
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Observe that the code defining the transformer could be directly generated

from the program text and so we have a model of an abstract compiler.

(An alternative would use a computer representation of the equations and

an abstract interpreter would be used to evaluate the transformer by calls to

the interval abstract domain). ✷

3.9 Verification

The abstract interpreter that we have designed is a sound static analyzer.
Given a program it produces interval information always valid at runtime.

We can turn it into a verifier checking an interval specification.

The specification can be provided by the user or remain implicit (e.g. ab-

sence of runtime errors such as overflows).

One kind of user specification is a type declaration, for example an interval

declaration for integer variables like var x : 1��100;.

Let us understand this declaration as: “only values between 1 and 100 can

be assigned to x, otherwise execution stops” (with a runtime error).

Observe that this does not mean that x always has a value betwwen 1 and

100 because it can be initialized with any integer value.
13

.

For the following example

P � � var x : 1��100 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 1); od4.

the abstract interval equations become




X1 = {x ← [min_int� max_int]}
X2 = {x ← �[1� 1] � L X3(x) = ∅ ? ∅ : let [�� �] = X3(x) in

[min(� + 1� max_int)� min(� + 1� max_int)] M� � [1� 100]}
X3 = X2 �̇ {x ← [min_int� 100]}
X4 = X2 �̇ {x ← [101� max_int]}

since execution stops if and when a value outside [1� 100] is going to be

assigned to x.

This declaration is encoded in OC��� as follows
14

.

13
This interpretation of the interval declaration is that of the P����� programming language,

see K. Jensen and N. Wirth: Pascal User Manual and Report, Second Edition, Springer, 1975.
14

Notice that the restriction of the mathematical invariance equations to machine integers as

well as the verification of absence of overflow could have been encoded in the same way, see

exercice 3-1.
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(* declaration .ml *)
open Interval
open Invariant
let d =

( INT ( min_int , max_int ),
INT (1 ,100) ,
INT ( min_int , max_int ),
INT ( min_int , max_int ));;

The verification of absence of errors checks that at any point during an
execution without error up to some point in the computation will not have an
error at the next execution step.
(* verifier .ml , interval invariant abstract domain *)
let pwarning (b1 , b2 , b3 , b4) =

let m = " Potential error at line " in
if not b1 then print_string (m ^"1\ n ");
if not b2 then print_string (m ^"2\ n ");
if not b3 then print_string (m ^"3\ n ");
if not b4 then print_string (m ^"4\ n ");;

let pverify leq f a =
let b = leq (f a) a in

pwarning b;

The abstract interpreter performs the iterative abstract reachability fixpoint
overapproximation with widening/narrowing and intersection with the decla-
ration, then prints the least fixpoint result, and finally checks for errors.
(* reachability verification with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator
open Declaration
open Verifier
let verifier () =

let fw x = ( pmeet ( pwiden x (f x)) d) in
let w = ( lfp pless pbot fw) in

let fn x = pnarrow x (f x) in
let a = ( lfp pgreater w fn) in

pprint a; pverify cless f a;;
verifier ();;

The result of the analysis is now the following.
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since execution stops if and when a value outside [1� 100] is going to be
assigned to x.

This declaration is encoded in OC��� as follows 14.
(* declaration .ml *)
open Interval
open Invariant
let d =

( INT ( min_int , max_int ),
INT (1 ,100) ,
INT ( min_int , max_int ),
INT ( min_int , max_int ));;

The verification of absence of errors checks that at any point during an
execution without error up to some point in the computation will not have an
error at the next execution step.
(* verifier .ml , interval invariant abstract domain *)
let pwarning (b1 , b2 , b3 , b4) =

let m = " Potential error at line " in
if not b1 then print_string (m ^"1\ n ");
if not b2 then print_string (m ^"2\ n ");
if not b3 then print_string (m ^"3\ n ");
if not b4 then print_string (m ^"4\ n ");;

let pverify leq f a d =
let b = leq (f a) d in

pwarning b;

The abstract interpreter performs the iterative abstract reachability fixpoint
overapproximation with widening/narrowing and intersection with the decla-
ration, then prints the least fixpoint result, and finally checks for errors.
(* reachability verification with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator
open Declaration
open Verifier
let verifier () =

let fw x = ( pmeet ( pwiden x (f x)) d) in

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.
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since execution stops if and when a value outside [1� 100] is going to be
assigned to x.

This declaration is encoded in OC��� as follows 14.
(* declaration .ml *)
open Interval
open Invariant
let d =

( INT ( min_int , max_int ),
INT (1 ,100) ,
INT ( min_int , max_int ),
INT ( min_int , max_int ));;

The verification of absence of errors checks that at any point during an
execution without error up to some point in the computation will not have an
error at the next execution step.
(* verifier .ml , interval invariant abstract domain *)
let pwarning (b1 , b2 , b3 , b4) =

let m = " Potential error at line " in
if not b1 then print_string (m ^"1\ n ");
if not b2 then print_string (m ^"2\ n ");
if not b3 then print_string (m ^"3\ n ");
if not b4 then print_string (m ^"4\ n ");;

let pverify leq f a d =
let b = leq (f a) d in

pwarning b;

The abstract interpreter performs the iterative abstract reachability fixpoint
overapproximation with widening/narrowing and intersection with the decla-
ration, then prints the least fixpoint result, and finally checks for errors.
(* reachability verification with widening and narrowing *)
open Invariant
open InvariantWidening
open InvariantNarrowing
open TransformerBounded
open Iterator
open Declaration
open Verifier
let verifier () =

let fw x = ( pmeet ( pwiden x (f x)) d) in

14Notice that the restriction of the mathematical invariance equations to machine integers as
well as the verification of absence of overflow could have been encoded in the same way, see
exercice 3-1.
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let w = ( lfp pless pbot fw) in
let fn x = pnarrow x (f x) in

let a = ( lfp pgreater w fn) in
pprint a; pverify cless f a d;;

verifier ();;

The result of the analysis is now the following.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
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% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant

•

•
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% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant
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% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant

26 P. C�����

let d =
( INT ( min_int , max_int ),

INT (1 ,101) ,
INT ( min_int , max_int ),
INT ( min_int , max_int ));;

3.10 Exercices
Exercice 3-1
Write the machine invariant equations (3.2) as a restriction of the mathemat-

ical invariant equations (3.1) to machine integers in the declarative style of

section 3.9.

Exercice 3-2
Add an appropriate interval declaration for x in the following program

P � 1x := 1 ; while 2(x <= 100) do 3x := (x + 4); od4.

and verify its correctness by interval abstract interpretation.

3.11 Answers to Exercices
Answer to exercice 3-1
Let X = �(X ) be the mathematical invariant equations (3.1). Define D = �D1�
D2� D3� D4� be the declaration such that D� = [min_int� max_int], � = 1� � � � � 4
with [�� �] � {� ∈ N | � � � � �}. Then the machine invariant equations (3.2)

are X = �(X ) �̇ D where �̇ is the pointwise meet X �̇ Y � �X1 � Y1� X2 � Y2�
X3 �Y3� X4 �Y4�, which is the in the declarative style of section 3.9. Of course,

when implementing this transformer, the machine computation of � must avoid

overflows in the analyser.

Answer to exercice 3-2
The program

P � � var x : 1��105 ; 1x := 1 ; while 2(x <= 100) do 3x := (x + 4); od4.

has the following abstract interval equations

26 P. C�����

tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant
let d =

( INT ( min_int , max_int ),
INT (1 ,101) ,
INT ( min_int , max_int ),
INT ( min_int , max_int ));;

yields no error, the verification is completed.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declarationCorrect .ml \
? verifier .ml reachability_narrowing_declaration_correct .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,101) 3:(1 ,100) 4:(101 ,101)
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

3.11 Conclusion
In this chapter 3 we introduced static analysis and verification methods based
on the idea of abstraction by the sole mean of examples. The mathematical
soundness of the approach was taken for granted, in particular the correctness
of the invariance and interval equations and the existence of a least solu-
tion was postulated. In the following chapters we provide the mathematical
foundations justifying the correctness of these examples and study in detail
the notion of abstraction and its application to the semantics, proof, automatic
analysis and verification of computer programs.

3.12 Bibliography
The static interval analysis with widening/narrowing was introduced by (Cousot
and Cousot, 1976) 15

15Interval static analysis uses intervals to overapproximate all possible computations of a
program without ever executing so that all possible execution paths are taken into account.
It should not be confused with Moore interval analysis or interval mathematics originating
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% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iterator .ml declaration .ml \
? verifier .ml reachability_narrowing_declaration .ml
% time ./a. out

1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Observe that the program execution always stops at program point 3 with
an overflow outside the range [1� 100] so program point 4 is now unreachable
(with an overapproximation we can prove the presence of dead code but not
its absence).

Notice that the error is signaled as potential (with an overapproximation
we can prove the values to definitely be within given bounds but not to prove
that execution ever assigns a given value to a variable). Here is a trace of the
analysis.
% ocamlc interval .ml intervalWidening .ml intervalNarrowing .ml \
? invariant .ml invariantWidening .ml invariantNarrowing .ml \
? transformerBounded .ml iteratorTrace .ml declaration .ml\
? verifier .ml reachability_narrowing_declaration_trace .ml
% time ./a. out

1:_|_ 2:_|_ 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:_|_ 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,1) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,1) 4:_|_
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_
converged to lfp .
1:( -1073741824 ,1073741823) 2:(1 ,100) 3:(1 ,100) 4:_|_

Potential error at line 2
0.000 u 0.000 s 0:00.00 0.0% 0+0 k 0+0 io 0pf +0w
%

Notice that in general the verification cannot be done during the analysis
since a widening may cause an overapproximation potentially raising a poten-
tial error while the narrowing may refine the analysis well enough to that this
potential error disappears.

Correcting the declaration
(* declarationCorrect .ml *)
open Interval
open Invariant
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Chapter 22
Abstract Interpreters
An abstract interpreter computes an abstract semantics or an approximation
of this abstract semantics for a language.

Abstract interpreters are parameterized by abstract domains which compo-
sition specifies the abstraction.

So the abstraction can be changed, in particular refined without redesign-
ing the whole abstract interpreter.

There are many different possible styles of abstract interpreters 1.
A first distinction come from the use of the abstract semantics and its

soundness.
Analyzers: the objective is to automatically and statically determine abstract

information about the program dynamic/runtime concrete behavior. A
typical use of this information is in program transformation or compiler
optimization, in which case loss of precision means loss of performance
but not of correctness which is often preferred to high analysis costs.

Verifiers: The automatically and statically determined information about the
program dynamic/runtime concrete behavior is used to prove a program
specification. By definition verifiers are sound 2 (but in general incom-
plete). They provide presumptions of presence as well as guarantees
of absence of some categories of bugs with respect to a class of spec-
ifications (i.e. true or false positives and true but never false negatives

1We exclude here debuggers and simulators which involve executing the program and restrict
ourselves to static analysis and verification methods involving no execution of the program, in
which case we would use the dynamic qualifier.

2Although the word is sometimes clichéd and hackneyed through overuse for provably un-
sound tools. For example checking liveness on a program model may be unsound for the concrete
semantics.

5
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•

Chapter 22
Abstract Interpreters
An abstract interpreter computes an abstract semantics or an approximation
of this abstract semantics for a language.

Abstract interpreters are parameterized by abstract domains which compo-
sition specifies the abstraction.

So the abstraction can be changed, in particular refined without redesign-
ing the whole abstract interpreter.

There are many different possible styles of abstract interpreters 1.
A first distinction come from the use of the abstract semantics and its
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information about the program dynamic/runtime concrete behavior. A
typical use of this information is in program transformation or compiler
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so that an error may be reported in the abstract while absent in the
concrete while absence of error in the abstract implies absence of error
in the concrete).

Bug-finding checkers: Bug-finders are both unsound and incomplete. They
provide presumptions of presence of some categories of bugs (i.e. both
true or false positives and negatives are possible since not all concrete
errors are reported in the abstract while reported errors might be spuri-
ous).
A second distinction is between the scope of applicability of the analyz-

er/verifier/checker.
Program specific interpreters: The program specific interpreters are built for

a given program P . For example a specific model of the program exe-
cution is built manually and this model is then checked in this abstract
with respect to given specification.

Language-specific interpreters: The language-specific interpreters are built
for all programs P ∈ P of a given language P .

Domain-specific interpreters: The domain-specific interpreters are language-
specific interpreters specifically built for a given infinite family of pro-
grams in the language P (e.g. corresponding to a specific domain of
application).

Language-independant interpreters: The language-independant interpreters
are built for all languages, which generally means for a given family
of languages which program abstract semantics are transformed into a
common representation of their abstract semantics.
A similar third distinction is between analyzable/verifiable/checkable

units.
Global interpreters: Global interpreters can analyze/verify/check only exe-

cutable programs, as a whole (may be with stubbed libraries). So a
program that is not compilable, linkable and executable cannot be ana-
lyzed in general becuase its concrete semantics would be undefined.

Local/modular interpreters: Local/modular interpreters can analyze/verify/check
program parts (may be with hypotheses on the execution environment of
the part). So a program part may be analyzed even if it does not execute
or even compile.
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program parts (may be with hypotheses on the execution environment of
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program parts (may be with hypotheses on the execution environment of
the part). So a program part may be analyzed even if it does not execute
or even compile.
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A forth distinction is between the styles of specifications of program

properties to be analyzed, verified or checked. We assume that this spec-

ification includes the hypothesis to be done on the runtime environment, if

any.

Implicit specification: The specification to be verified is defined once for all

for the language (e.g. absence of runtime errors for a given language

which verification conditions can be generated automatically for each

program in the language);

Explicit specification: The specification to be verified is provided by the user

using a specification language.

Mixed specification: Part of the specification is provided by the user and

part automatically. For example, the user can specify hypothesis on the

execution environment while the property to be checked is generated

automatically from the program text.

A fifth distinction is between the styles of abstract semantics of programs.

Transitional interpreters: The transitional abstract interpreters are based on

the transitional semantics of the language and so iterate the applica-

tion of transformers for individual program execution steps until global

stabilization.

Structural interpreters: The structural abstract interpreters are based on the

structural semantics of the language and so proceed by induction on the

program syntax with iteration of the transformers of the body of loops

until local stabilization.

A sixth difference is on the user interaction requirements.

Automatic interpreters: Once given a program and a specification, the abstract

interpreter works completely automatically, without any need (and pos-

sibility) of user intervention.

Interactive interpreters: The execution of the interpreter is in interaction with

the user e.g. to provide inductive arguments (such as inductive invariants

when their fixpoint definition is not amenable to automatization) or to

help in guiding proofs.

Automatic controlable interpreters: The execution of the interpreter is auto-

matic but can depend on offline parameters or directives to help taking
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decisions during the online analysis (as opposed to automatic inter-

preters never depending on the user understanding of the abstraction

and interactive interpreters where users can abserve the deroulement of

the analysis/verfication/check online).

A seventh difference is between the choice of convergence.

Terminating interpreters: always terminate with finite resources (but may be

an imprecise result)

Finitary interpreters: termination is due to the choice of a finitary ab-

straction (e.g. finite abstract domain or increasing iteration with

ACC which involve an offline
3

loss of information, at design time);

Infinitary interpreters: termination is obtained by enforcing convergence

of the iterates through extrapolation which involves an online
4

loss

of information, at analysis time);

Non-terminating interpreters: have the possibility to never terminate for some

programs or specifications or terminate by memory overflow or time out.

A eighth difference is between the choice of the abstraction.

Fixed interpreters: the abstraction used by the interpreter is fixed and cannot

be changed without redesigning the abstract interpreter. This is typically

the case of dataflow analyses embedded in an optimizing compiler.

Extensible interpreters: the abstraction used by the interpreter can be modi-

fied without redesigning the whole interpreter e.g. by combining abstract

domains.

A ninth difference is between the choice of the refinement of the abstrac-

tion (e.g. in case of false alarm).

Offline refining interpreters: The abstraction of the concrete semantics is cho-

sen before the computation of the abstract semantics so that the abstrac-

tion is fixed during the analysis phase. The refinement must therefore

be done offline by changing the abstract domains.

3
Offline is sometimes called static meaning before the analysis or verification, which can be

confusing with static meaning at compile time, before program execution.
4
Online is sometimes called dynamic meaning during the analysis or verification, which can

be confusing with dynamic meaning at runtime, during program execution.
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ACC which involve an offline
3

loss of information, at design time);

Infinitary interpreters: termination is obtained by enforcing convergence

of the iterates through extrapolation which involves an online
4

loss

of information, at analysis time);

Non-terminating interpreters: have the possibility to never terminate for some

programs or specifications or terminate by memory overflow or time out.

A eighth difference is between the choice of the abstraction.

Fixed interpreters: the abstraction used by the interpreter is fixed and cannot

be changed without redesigning the abstract interpreter. This is typically

the case of dataflow analyses embedded in an optimizing compiler.

Extensible interpreters: the abstraction used by the interpreter can be modi-

fied without redesigning the whole interpreter e.g. by combining abstract

domains.

A ninth difference is between the choice of the refinement of the abstrac-

tion (e.g. in case of false alarm).

Offline refining interpreters: The abstraction of the concrete semantics is cho-

sen before the computation of the abstract semantics so that the abstrac-

tion is fixed during the analysis phase. The refinement must therefore

be done offline by changing the abstract domains.

3
Offline is sometimes called static meaning before the analysis or verification, which can be

confusing with static meaning at compile time, before program execution.
4
Online is sometimes called dynamic meaning during the analysis or verification, which can

be confusing with dynamic meaning at runtime, during program execution.

C�. �� — A������� I����������� 9

Online refining interpreters: The abstraction of the concrete semantics is cho-
sen during the computation of the abstract semantics so that the abstrac-
tion can be refined online, during the analysis phase.
A tenth distinction concerns the refinement process.

Increasing interpreters: Increasing abstract interpreters ensure that a refine-
ment of the abstraction will always produce a more precise result.

Non-increasing interpreters: Non-increasing abstract interpreters have the
property that a refinement of the abstraction may sometime yield less
precise results.
A eleventh distinction concerns the encoding and computation of the

abstract transitional or structural semantics.
Interpretation: In a first phase, the abstract semantics are encoded in an inter-

mediate equational, constraint, etc. form using some intermediate lan-
guage. The encoding is generally in the form of a term encoded in
some data structure. In a second phase, an interpreter designed for this
intermediate language is executed to compute the abstract semantics
iteratively.

Compilation: In a first phase, the abstract semantics is compiled into exe-
cutable code written in some programming language and including an
iterator. In a second phase, the execution of the compiled program di-
rectly yields the abstract semantics.
A twelveth distinction involves the abstract transformers.

Offline abstract transformers: The offline abstract transformers are computed
during the first phase while generating the intermediate encoding or
code (so that α ◦ � ◦ γ is encoded directly into some � which evaluation
in the second phase does not involve that of α , � , or γ);

Online abstract transformers: The online abstract transformers are encoded
during the first phase but effectively computed during the second inter-
pretation or execution phase (for example α ◦ � ◦ γ(�) is computed for a
given parameter � e.g. using a theorem prover to discover a minimal �
such that α ◦ � ◦ γ(�) � � or directly computing α ◦ � ◦ γ(�) by refering
to the concrete domain);
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Online refining interpreters: The abstraction of the concrete semantics is cho-
sen during the computation of the abstract semantics so that the abstrac-
tion can be refined online, during the analysis phase.
A tenth distinction concerns the refinement process.

Increasing interpreters: Increasing abstract interpreters ensure that a refine-
ment of the abstraction will always produce a more precise result.

Non-increasing interpreters: Non-increasing abstract interpreters have the
property that a refinement of the abstraction may sometime yield less
precise results.
A eleventh distinction concerns the encoding and computation of the

abstract transitional or structural semantics.
Interpretation: In a first phase, the abstract semantics are encoded in an inter-

mediate equational, constraint, etc. form using some intermediate lan-
guage. The encoding is generally in the form of a term encoded in
some data structure. In a second phase, an interpreter designed for this
intermediate language is executed to compute the abstract semantics
iteratively.

Compilation: In a first phase, the abstract semantics is compiled into exe-
cutable code written in some programming language and including an
iterator. In a second phase, the execution of the compiled program di-
rectly yields the abstract semantics.
A twelveth distinction involves the abstract transformers.

Offline abstract transformers: The offline abstract transformers are computed
during the first phase while generating the intermediate encoding or
code (so that α ◦ � ◦ γ is encoded directly into some � which evaluation
in the second phase does not involve that of α , � , or γ);

Online abstract transformers: The online abstract transformers are encoded
during the first phase but effectively computed during the second inter-
pretation or execution phase (for example α ◦ � ◦ γ(�) is computed for a
given parameter � e.g. using a theorem prover to discover a minimal �
such that α ◦ � ◦ γ(�) � � or directly computing α ◦ � ◦ γ(�) by refering
to the concrete domain);
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Online refining interpreters: The abstraction of the concrete semantics is cho-
sen during the computation of the abstract semantics so that the abstrac-
tion can be refined online, during the analysis phase.
A tenth distinction concerns the refinement process.

Increasing interpreters: Increasing abstract interpreters ensure that a refine-
ment of the abstraction will always produce a more precise result.

Non-increasing interpreters: Non-increasing abstract interpreters have the
property that a refinement of the abstraction may sometime yield less
precise results.
A eleventh distinction concerns the encoding and computation of the

abstract transitional or structural semantics.
Interpretation: In a first phase, the abstract semantics are encoded in an inter-

mediate equational, constraint, etc. form using some intermediate lan-
guage. The encoding is generally in the form of a term encoded in
some data structure. In a second phase, an interpreter designed for this
intermediate language is executed to compute the abstract semantics
iteratively.

Compilation: In a first phase, the abstract semantics is compiled into exe-
cutable code written in some programming language and including an
iterator. In a second phase, the execution of the compiled program di-
rectly yields the abstract semantics.
A twelveth distinction involves the abstract transformers.

Offline abstract transformers: The offline abstract transformers are computed
during the first phase while generating the intermediate encoding or
code (so that α ◦ � ◦ γ is encoded directly into some � which evaluation
in the second phase does not involve that of α , � , or γ);

Online abstract transformers: The online abstract transformers are encoded
during the first phase but effectively computed during the second inter-
pretation or execution phase (for example α ◦ � ◦ γ(�) is computed for a
given parameter � e.g. using a theorem prover to discover a minimal �
such that α ◦ � ◦ γ(�) � � or directly computing α ◦ � ◦ γ(�) by refering
to the concrete domain);
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Online refining interpreters: The abstraction of the concrete semantics is cho-
sen during the computation of the abstract semantics so that the abstrac-
tion can be refined online, during the analysis phase.
A tenth distinction concerns the refinement process.

Increasing interpreters: Increasing abstract interpreters ensure that a refine-
ment of the abstraction will always produce a more precise result.

Non-increasing interpreters: Non-increasing abstract interpreters have the
property that a refinement of the abstraction may sometime yield less
precise results.
A eleventh distinction concerns the encoding and computation of the

abstract transitional or structural semantics.
Interpretation: In a first phase, the abstract semantics are encoded in an inter-

mediate equational, constraint, etc. form using some intermediate lan-
guage. The encoding is generally in the form of a term encoded in
some data structure. In a second phase, an interpreter designed for this
intermediate language is executed to compute the abstract semantics
iteratively.

Compilation: In a first phase, the abstract semantics is compiled into exe-
cutable code written in some programming language and including an
iterator. In a second phase, the execution of the compiled program di-
rectly yields the abstract semantics.
A twelveth distinction involves the abstract transformers.

Offline abstract transformers: The offline abstract transformers are computed
during the first phase while generating the intermediate encoding or
code (so that α ◦ � ◦ γ is encoded directly into some � which evaluation
in the second phase does not involve that of α , � , or γ);

Online abstract transformers: The online abstract transformers are encoded
during the first phase but effectively computed during the second inter-
pretation or execution phase (for example α ◦ � ◦ γ(�) is computed for a
given parameter � e.g. using a theorem prover to discover a minimal �
such that α ◦ � ◦ γ(�) � � or directly computing α ◦ � ◦ γ(�) by refering
to the concrete domain);
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Mixed abstract transformers: The abstract transformers are computed partly

during the first generation phase and partly during the second inter-

pretation phase. (e.g. α2 ◦ α1 ◦ � ◦ γ1 ◦ γ2(�) where � = α1 ◦ � ◦ γ1
is computed in the first phase while α2 ◦ � ◦ γ2(�) is computed in the

second).

A thirteenth distinction involves the cost/precision ratio.

Precise interpreters: precise interpreters single out precision of the analysis

to the detriment of the cost, typically hours of computations per hundreds

of thousands of program lines.

Rapid interpreters: rapid interpreters favour fast responses (typically seconds

or minutes of computations per hundreds of thousands of program lines)

often to the detriment of their precison

Of course precise and rapid abstract interpreters are an hardly reachable goal.

A fourteenth distinction involves error reporting (in particular for rapid

verifiers often subject to many false alarms).

Total error reporting: All potential errors found are reported.

Partial error reporting: Only some of the potential errors are reported (e.g.

only the most common ones to avoid discouraging the user in case of

imprecise or unsound analysis).

In this chapter 22 we illustrate the various possible abstract interpreters by

presenting their behavior on a given program.

A revoir apres

Sufficient conditions for iterative fixpoint computation convergence

• Given a language �, we have seen that program properties can be defined

in fixpoint form as

lfp��P�

⊥�P� FJPK
where FJPK is a monotone operator on a cpo

�LJPK� �JPK� ⊥JPK� �JPK�
defined by structural induction on the syntactic structure of the program P

• The encoding of FJPK is essentially in two forms:

– as a term, encoded in some data structure, together with an abstract

interpreter which, when applied to the term representing FJPK and an

argument X ∈ LJPK will return FJPK(X )
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Mixed abstract transformers: The abstract transformers are computed partly

during the first generation phase and partly during the second inter-

pretation phase. (e.g. α2 ◦ α1 ◦ � ◦ γ1 ◦ γ2(�) where � = α1 ◦ � ◦ γ1
is computed in the first phase while α2 ◦ � ◦ γ2(�) is computed in the

second).

A thirteenth distinction involves the cost/precision ratio.

Precise interpreters: precise interpreters single out precision of the analysis

to the detriment of the cost, typically hours of computations per hundreds

of thousands of program lines.

Rapid interpreters: rapid interpreters favour fast responses (typically seconds

or minutes of computations per hundreds of thousands of program lines)

often to the detriment of their precison

Of course precise and rapid abstract interpreters are an hardly reachable goal.

A fourteenth distinction involves error reporting (in particular for rapid

verifiers often subject to many false alarms).

Total error reporting: All potential errors found are reported.

Partial error reporting: Only some of the potential errors are reported (e.g.

only the most common ones to avoid discouraging the user in case of

imprecise or unsound analysis).

In this chapter 22 we illustrate the various possible abstract interpreters by

presenting their behavior on a given program.

A revoir apres

Sufficient conditions for iterative fixpoint computation convergence

• Given a language �, we have seen that program properties can be defined

in fixpoint form as

lfp��P�

⊥�P� FJPK
where FJPK is a monotone operator on a cpo

�LJPK� �JPK� ⊥JPK� �JPK�
defined by structural induction on the syntactic structure of the program P

• The encoding of FJPK is essentially in two forms:

– as a term, encoded in some data structure, together with an abstract

interpreter which, when applied to the term representing FJPK and an

argument X ∈ LJPK will return FJPK(X )
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Mixed abstract transformers: The abstract transformers are computed partly

during the first generation phase and partly during the second inter-

pretation phase. (e.g. α2 ◦ α1 ◦ � ◦ γ1 ◦ γ2(�) where � = α1 ◦ � ◦ γ1
is computed in the first phase while α2 ◦ � ◦ γ2(�) is computed in the

second).

A thirteenth distinction involves the cost/precision ratio.

Precise interpreters: precise interpreters single out precision of the analysis

to the detriment of the cost, typically hours of computations per hundreds

of thousands of program lines.

Rapid interpreters: rapid interpreters favour fast responses (typically seconds

or minutes of computations per hundreds of thousands of program lines)

often to the detriment of their precison

Of course precise and rapid abstract interpreters are an hardly reachable goal.

A fourteenth distinction involves error reporting (in particular for rapid

verifiers often subject to many false alarms).

Total error reporting: All potential errors found are reported.

Partial error reporting: Only some of the potential errors are reported (e.g.

only the most common ones to avoid discouraging the user in case of

imprecise or unsound analysis).

In this chapter 22 we illustrate the various possible abstract interpreters by

presenting their behavior on a given program.

A revoir apres

Sufficient conditions for iterative fixpoint computation convergence

• Given a language �, we have seen that program properties can be defined

in fixpoint form as

lfp��P�

⊥�P� FJPK
where FJPK is a monotone operator on a cpo

�LJPK� �JPK� ⊥JPK� �JPK�
defined by structural induction on the syntactic structure of the program P

• The encoding of FJPK is essentially in two forms:

– as a term, encoded in some data structure, together with an abstract

interpreter which, when applied to the term representing FJPK and an

argument X ∈ LJPK will return FJPK(X )
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And the main difference is certainly on the choice of 
the abstractions!
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• The presentation relied purely on intuition, can be 
made formal (see references)

• The abstraction ideas can scale up with enough 
precision, e.g.

• ASTRÉE:

• http://www.astree.ens.fr/

• http://www.absint.de/astree/

• Clousot:

• MSR, Redmond
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An online course :  http://web.mit.edu/afs/athena.mit.edu/
course/16/16.399/www/

46 P. C�����

• Idem for narrowing

• Idem for tuples

30.14 Bibliography
The very first report on static analysis in infinite abstract domains not satis-

fying the ACC with widening/narrowing (Cousot and Cousot, 1975) was pub-

lished in (Cousot and Cousot, 1976). The most cited reference is (Cousot and

Cousot, 1977a). It is extended in (Cousot and Cousot, 1977b; Cousot, 1978) to

handle procedures, see also (Bourdoncle, 1993). (Cousot, 1978) contains a pre-

sentation of reachability analysis using transition systems (i.e. language inde-

pendent semantics and equational analyzers) later published in (Cousot, 1981).

The fact establihed in section 30.11 that solving fixpoint equations with conver-

gence accelaraton by widening/narrowing is more powerful than any finitary

abstraction (e.g. finite abstraction or concretization-based static analysis or

finite abstract model-checking) was shown in (Cousot and Cousot, 1992).

The first widening operator on polyhedra was proposed in (Cousot and Halb-

wachs, 1978) for the dual representation with both constraints and generators

(points, rays and lines). Its improvement, presented in (Halbwachs, 1979), is

now the standard widening of definition 30.11.

An online introduction (in French) : http://www.di.ens.fr/
~cousot/COUSOTtalks/CollegeDeFrance08.shtml
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