Présentation de l'équipe-projet ABSTRACTION Patrick Cousot Rocquencourt, I3 Janvier 2011 \qquad	Abstract Domains	New numerical abstract domains - Expressivity (non-convex relational domains) - Efficiency (sound implementations with floats not rationals)	Array content analysis - Existing abstract domains are imprecise or do not scale up - We have developed efficient, expressive \& scalable abstract domain functors based on the idea of symbolic segmentation with dynamic bounds combined with decision trees \qquad \qquad
	Abstract domain - Algebraic structure (implemented as an analyzer module) $\langle A, \check{,}, \perp, \mathrm{~T}, \sqcup, \sqcap, \nabla, \Delta, \overline{\bar{f}}, \overline{\mathrm{~b}}, \overline{\mathrm{p}}, \ldots\rangle$ such that $\bar{P}, \bar{Q}, \ldots \in$ $\begin{aligned} & \because \in A \\ & \sqsubseteq \in A \times A \rightarrow \mathscr{E} \end{aligned}$ $\begin{aligned} & \quad \perp, \mathrm{T} \in A \\ & \sqcup, \Pi, \nabla, \Delta \in A \times A \rightarrow A \end{aligned}$ infimum, supremum $\in(x \times \mathbb{E}(x, f, p)) \rightarrow A \rightarrow A \quad$ abstract forward assignment transformer $\begin{array}{ll}\mathrm{b} \in(\mathrm{x} \times \mathbb{E}(\mathrm{x}, \mathrm{f}, \mathbb{p})) \rightarrow A \rightarrow A & \text { abstract backward assignment transformer } \\ \overline{\mathrm{p}} \in \mathbb{C}(\mathrm{x}, \mathbb{f}, \mathbb{p}) \rightarrow A \rightarrow A & \text { abstract condition transformer }\end{array}$ $\overline{\mathrm{p}} \in \mathbb{C}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \rightarrow A \rightarrow A$ abstract condition transformer	APRON Library - Freely available (LGPL) library of numerical domains developed with INRIA-RA, including a web-based sample analyzer for demonstration, teaching and prototyping (Interproc) - Common, Al-based API for numerical abstract domains with reference implementation of classic domains (intervals, polyhedra, octagons, ...) - Easy to prototype new analyses or domains (e.g., interval polyhedra) with support for - integer, rational, machine-integer and float data-types - linear, non-linear and float expressions - C, C++, Java, OCaml	Abstract Domains (II) Symbolic domains (b) Shape analysis
Abstract interpretation: from theory to practice - Develop formal semantics of systems Theory (description of the possible evolution of discrete/continuous/hybrid systems over time) - Formalize the specification and inference of properties of such semantics - Develop precise, efficient, and scalable abstractions of system behavior properties - Apply (maybe with approximation) to the inference of execution properties of systems - Develop automatic static analysers - Industrialize these static analysers	Abstract Domains (I) Numerical Domains	Abstract Domains (II) Symbolic domains	Shape abstract domains - Challenges: - dynamic structures with destructive updates - complex structural invariants (red-black trees, callstack, ...) - We develop relational and expressive parametric abstract domains based on inductive properties and disjointness of regions Ongoing work: standardization of abstract domain interfaces to build composite abstractions (shapeshape and shape-numerical) \qquad
Foundations	Problems in numerical abstract domains - Traditional linear/polyedral abstract domains are implemented with the double description method, using rationals for soundness - Inequalities: $P=\{x \mid A x=b, C x \geq d\}$ - Generators: $P=\left\{x \mid x=L \lambda+R \mu+V \nu, \mu, \nu \geq 0, \sum \nu=1\right\}$ - Results: sound algorithms using floats (with the inequalities representation only) and generalizations - Current research: - For efficiency, use the double description with floats while remaining sound - For precision, non-linear and sound abstract domains	Abstract Domains (II) Symbolic domains (a) Array content analysis	Abstract Domains (II) Symbolic domains (c) Combining algebraic and logical abstract domains

Logical \& algebraic abstraction

- Algebraic abstractions: in inference tools, based on the
iterated reduced product of a combination of abstract domains
- Logical abstraction: in verification tools, based on the Nelson-Oppen satisfiability procedure for combination f theories (SMT solvers)
- The approaches can be combined by
- Generalizing logical abstractions (widenings, ...)
- Understanding Nelson-Oppen satisfiability procedure as an iterated reduced product

Fiscomen oneme

Abstract Domains
(III) Temporal domains

Application:

Static Analysis of
Dynamic Systems
Static Analysis and
Verification
(I) Quasi-synchronous systems
Example
voter:

- Result of the static analysis:
Counter-example ?"? Specification proved
1

Static Analysis and Verification
(II) Parallel Programs

Static analysis of parallel software

- Critical embedded software are now parallel (e.g., IMA [Integrated Modular Avionics])
- Semantic challenges:
- implicit communications through shared memory
- weak memory consistency
- strict priorities of real-time schedulers
- Abstraction challenges, to scale up while being precise:
- history-sensitive abstractions of interleaved control
flows
- fixpoint strategies to compute interferences
- Ongoing work on the Thésée prototype

Static Analysis
(III) Biological systems
.

- Focus on models of signaling pathways described by
collating biochemical interactions.
- These systems usually suffer from a huge combinatorial complexity in the number of chemical species (i.e.
chemical complexes) which may be formed at run-time.
- We design scalable and precise analyses of the reachable
- Applications:
- Applications:
- pracompute eroperties so as to
fast stochastic simulation;
- automatic simplification of the model;
- compute an idiomatic description of
the systems.

Model reduction

- Quantitative (ODEs and stochastic) semantics are stochastic) semantics are
hard to compute, due to the combinatorial complexity ($\sim 10^{20}$ variables).
- We use an approximation of the control flow between regions of chemical species, regions of chemical species,
so as to compute exact projections of these semantics.

Static analyzers

ASTRÉE (commercialized)

- Routinely used by Airbus France (A380, A400M, A350)
- Now in the industrialization and commercialization phase (Abslnt)

THÉSÉE (in development)

- Challenging application to the FWS (A380, A400M, A350)

Dissemination

Dissemination

- In the academic world (tutorials, summer schools, invited talks, conference organization, ...)
- In the industrial world (conferences, training, ...)

 $=5$ $\pm=$

Conferences recently organized

- SAS 2010 (Perpignan)

SASB in 2011 (Venice)

- NSAD 2010
- SASB 2010
- TAPAS 2010

Program committees
ESOP 2010/1I, HSCC 2009/II, PLDI 2010, POPL 2011, SAS 2010/1I,VMCAI 2009/10/11,...
\cdots
${ }_{3} 4$

Research Contracts

Ongoing contracts

- SURVOL: FNRAE, Logiciel de Commande Embarqués: robustesse et sécurité, avec MIP-Univ. P. Sabatier, Toulouse, 2008-2011
- ASCERT: FNRAE, Analyses Statiques Certifiées, avec INRIA
Rennes, Rocquencourt, Grenoble, $2009-2012$
- SARDANES: Sémantique, analyse et transformation des applications
numériques embarruées synchrones. FNRAE avec Université de Perpignan \& Université de Brest, 2009-2012
- AbstractCell, long-term Junior ANR Chair of Excellence, J. Feret, Dec 2009 - Nov 2013.
- Abstract Interpretation and Code Obfuscation, Royal Society

UK, avec Imperial College, 2010-2012

- ANASTASY: Airbus France, Analyse statique et dynamique, 2010 -2014 \qquad

Starting contracts

- MBAT: Model-based Analysis and Testing of Embedded Systems, European project, Artemis programme, with Airbus, Daimler Volvo, Eads, Thales, Rockwell Collins, ... \& Univ. Munich, Univ Aalborg ..., 2011 - 2014

Submitted contract applications

- ANR (appel à projets bioinformatiques)
- DYALOG: Hierarchical dynamical modelling and analysis of large regulatory networks controlling cell fate decisions, avec IBEns/
Ens, Institut Curie, Université Montpellier 2, projet INRIA Contraintes, Pasteur, IBisc (Erry), Technologies avancées pour le Génome et la clinique (Marseille), 13 December
2010
-

Forthcoming contract applications

- ANR
- THÉSÉE: Static analysis of embedded parallel programs, avec Airbus France, March 201 I
- Europe (FP7):
- EvolBrid: A correct-by-evolution design and verification framework for hybrid-modeled complex embedded systems, FP7 (7 partners), January 201
- Ratis: Secure programming of embedded systems, FP7 (8 partners), December 201

> Main industrial collaborations

AbsInt Angewandte Informatik

- Industrialization of ASTRÉE www.absint.com/astree/

- 3 full-time engineers, everyday collaboration
\qquad
- Verification of space software

Sagem

- Analysis of inertial unit software

$x=2$

Airbus France

- Verification of parallel programs, mainly the FWS

Microsoft Research Redmond
- Verification of code contracts in Clousot (now distributed with Visual Studio Ultimate)
- Design of scalable abstract domains for
- Array content analysis
- Contract precondition inference from assertions

Ongoing work ..

- Analysis of complex discrete/continuous systems:
- Parallel programs: complex data structures, interference, real-time, scheduling with dynamic priorities (e.g. priority ceiling protocols), ...
- Biological systems
- Closed loop analysis of control/command system
- Verification of complex properties:
- Security properties
- Probabilistic properties
- Eventuality properties

Conclusion

- Small team, smart project, great scientific ambitions :-)

