
Patrick Cousot

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Présentation de
l’équipe-projet

ABSTRACTION

1

Rocquencourt, 13 Janvier 2011

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

The Team: • Julien Bertrane,!!ATER ENS

• Patrick Cousot,!!Prof. ENS

• Radhia Cousot,!!DR2 CNRS

• Jérôme Feret,!!CR1 INRIA

• Antoine Miné,!!CR2 CNRS

• Xavier Rival,!!CR1 INRIA

• Visitors (~10), PhD students (3),
P o s t - d o c s (A l e s s a n d r o
Romanel), Interns (I)

2

Recent former members: • David Monniaux (Vérimag),
• Bruno Blanchet (Cascade),
• Laurent Mauborgne (IMDEA),
• Liqian Chen (NUDT, Changsha, China),
• Elodie-Jane Sims (CMU-Silicon Valley)

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Abstract interpretation: from theory to practice

• Develop formal semantics of systems
(description of the possible evolution of
discrete/continuous/hybrid systems over
time)

• Formalize the specification and inference of
properties of such semantics

• Develop precise, efficient, and scalable
abstractions of system behavior properties

• Apply (maybe with approximation) to the
inference of execution properties of systems

• Develop automatic static analysers

• Industrialize these static analysers

3

Theory

Practice

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Foundations

4

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Abstract Domains

5

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

• Algebraic structure (implemented as an analyzer
module)

such that

Abstract domain

6

in a complete lattice/cpo of concrete properties �P�, ⊆� and a concrete transformer

F��P�. We define postfp≤ f �
�

x
��� f (x) ≤ x

�
.

R� concrete observables
9

P� � ℘(R�) concrete properties

F��P� ∈ P�→P� concrete transformer of program P

C��P� � postfp⊆ F��P� ∈ ℘(P�) concrete semantics of program P

where the concrete transformer F��P� of program P is built out of the set primitives

∅, R�, ∪, ∩, . . . and the forward and backward transformers f, b ∈ P� → P� for

assignment, the transformer p ∈ P�→B for tests,

Note that if the concrete transformer admits a least fixpoint, then it is enough to

consider only that least fixpoint and we don’t need to compute the whole set of post-

fixpoints (see also Sect. 3.4).

Example 1. In the context of invariance properties for imperative languages with pro-

gram interpretation� ∈ I, we can take a concrete state to be a function from variables
10

to elements in the set �V, so that properties are sets of such functions.

R� � x→�V concrete environments

P� � ℘(R�) concrete invariance properties

The transformer F��P� for the invariance semantics is defined by structural induction

on the program P in terms of the complete lattice operations �℘(R�), ⊆, ∅, R�, ∪, ∩�
and the following local invariance transformers

f��x := e�P � {η[x← �e��η] | η ∈ P)} Floyd’s assignment post-condition

b��x := e�P � {η | η[x← �e��η] ∈ P} Hoare’s assignment pre-condition

p��ϕ�P � {η ∈ P | �ϕ��η = true} test ��

Example 2. The program P � x=1; while true {x=incr(x)} with the arithmetic

interpretation � on integers �V = Z has loop invariant lfp⊆ F��P� where F��P�(X) �
{η ∈ R� | η(x) = 1} ∪ {η[x← η(x) + 1] | η ∈ X}. The increasing chain of iterates

F��P�
n = {η ∈ R� | 0 < η(x) < n} has limit lfp⊆ F��P� =

�
n�0 F��P�

n = {η ∈ R� | 0 <
η(x)}. ��

3.2 Abstract domains

In static analysis by abstract interpretation [18,20], abstract domains are used to encap-

sulate abstract program properties and abstract operations (including the logical lattice

structure, elementary transformers, convergence acceleration operators, etc.). An ab-

stract domain is therefore �A,�,⊥,�,�,�,�,�, f̄, b̄, p̄, . . .� where

9
Examples of observables are set of states, set of partial or complete execution traces, etc.

10
maybe including the program counter etc.

P,Q, . . . ∈ A abstract properties

� ∈ A × A→B abstract partial order
11

⊥,� ∈ A infimum, supremum

�,�,�,� ∈ A × A→A abstract join, meet, widening, narrowing

. . .

f̄ ∈ (x ×E(x, f ,p))→A→A abstract forward assignment transformer

b̄ ∈ (x ×E(x, f ,p))→A→A abstract backward assignment transformer

p̄ ∈ C(x, f ,p)→A→A abstract condition transformer

3.3 Abstract semantics

The abstract semantics of a program P is assumed to be given as a set of post-fixpoints

C�P� � {P | F�P�(P) � P} or in least fixpoint form C�P� � {lfp� F�P�} (or, by the sin-

gleton isomorphism, the more frequent lfp� F�P�) when such a least fixpoint does exist

(e.g. [46]) where F�P� ∈ A→A is the abstract transformer of program P built out of the

primitives ⊥,�,�,�,�,�, f̄, b̄, p̄, . . .12
. As was the case for the concrete semantics, we

preferably use least fixpoints when that is possible.

3.4 Soundness of abstract domains

Soundness relates abstract properties to concrete properties using a function γ such that

γ ∈ A �→P� concretization
13

The soundness of abstract domains, is defined as, for all P,Q ∈ A,

(P � Q)⇒ (γ(P) ⊆ γ(Q)) order γ(⊥) = ∅ infimum

γ(P � Q) ⊇ (γ(P) ∪ γ(Q)) join γ(�) = �� supremum
14

...

Observe that defining an abstraction consists in choosing the domain A of abstract prop-

erties and the concretization γ. So, this essentially consists in choosing a set of concrete

properties γ[A] (where γ[X] � {γ(x) | x ∈ X}) which can be exactly represented in

the abstract while the other concrete properties P ∈ P� \ γ[A] cannot and so must be

over-approximated by some P ∈ A such that P ⊆ γ(P). By assuming the existence of an

element � of A with concretization ��, there always exists such a P. For precision, the

minimum one, or else the minimal ones, if any, are to be preferred.

11
If � is a pre-order then A is assumed to be quotiented by the equivalence relation ≡ � �∩�−1

.
12

In general, this is more complex, with formulæ involving many fixpoints, but this simple set-

ting already exhibits all difficulties.
13

Given posets �L, �� and �P, ��, we let L �→ P to be the set of increasing (monotone, isotone,

. . .) maps of L into P.
14

For example �� � R� in the context of invariance properties for imperative languages.

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Abstract Domains

7

(I) Numerical Domains

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Problems in numerical abstract domains
• Traditional linear/polyedral abstract domains are

implemented with the double description method,
using rationals for soundness

• Inequalities:

• Generators:

• Results: sound algorithms using floats (with the
inequalities representation only) and generalizations

• Current research:

• For efficiency, use the double description with floats
while remaining sound

• For precision, non-linear and sound abstract domains
8

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

New numerical abstract domains
• Expressivity (non-convex relational domains)

• Efficiency (sound implementations with floats not
rationals)

9

Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. Linear Absolute Value Relation Analysis. ESOP 2011, to appear.
Liqian Chen, Antoine Miné, Ji Wang, Patrick Cousot: An Abstract Domain to Discover Interval Linear Equalities. VMCAI 2010: 112-128
Liqian Chen, Antoine Miné, Ji Wang, Patrick Cousot: Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships. SAS 2009: 309-325
Liqian Chen, Antoine Miné, Patrick Cousot: A Sound Floating-Point Polyhedra Abstract Domain. APLAS 2008: 3-18

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n

is an interval matrix and b ∈ Rm
is a plain vector of real numbers. It represents

the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or

state), i.e., an assignment of numerical/real values to program variables. Note that with

respect to the weak solution set, an interval linear equation ϕ:
�

k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ�:
�

k [ak, ak] × xk ≤ b and

ϕ��:
�

k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection

with each orthant in Rn
gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval

polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval

polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some

examples of interval polyhedra (1) as well as examples that are not interval polyhedra

(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection

with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval

polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples

(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)

{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted

as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation � on interval polyhedra is defined as

P1 � P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.

The inclusion P1 � P2 holds iff for all (
�

k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
�

k [ak, ak] × xk subject to P1. However, �may be too expensive to compute. We

define an approximate order relation �s on interval polyhedra based on syntactic repre-

sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ�:Σk[a�k, a
�
k]×xk ≤ b�, ϕ �s ϕ� iff b ≤ b� and

∀k.[ak, ak] ⊆ [a�k, a
�
k]. And P1 �s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n

is an interval matrix and b ∈ Rm
is a plain vector of real numbers. It represents

the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or

state), i.e., an assignment of numerical/real values to program variables. Note that with

respect to the weak solution set, an interval linear equation ϕ:
�

k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ�:
�

k [ak, ak] × xk ≤ b and

ϕ��:
�

k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection

with each orthant in Rn
gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval

polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval

polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some

examples of interval polyhedra (1) as well as examples that are not interval polyhedra

(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection

with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval

polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples

(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)

{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted

as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation � on interval polyhedra is defined as

P1 � P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.

The inclusion P1 � P2 holds iff for all (
�

k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
�

k [ak, ak] × xk subject to P1. However, �may be too expensive to compute. We

define an approximate order relation �s on interval polyhedra based on syntactic repre-

sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ�:Σk[a�k, a
�
k]×xk ≤ b�, ϕ �s ϕ� iff b ≤ b� and

∀k.[ak, ak] ⊆ [a�k, a
�
k]. And P1 �s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n

is an interval matrix and b ∈ Rm
is a plain vector of real numbers. It represents

the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or

state), i.e., an assignment of numerical/real values to program variables. Note that with

respect to the weak solution set, an interval linear equation ϕ:
�

k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ�:
�

k [ak, ak] × xk ≤ b and

ϕ��:
�

k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection

with each orthant in Rn
gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval

polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval

polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some

examples of interval polyhedra (1) as well as examples that are not interval polyhedra

(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection

with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval

polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples

(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)

{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted

as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation � on interval polyhedra is defined as

P1 � P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.

The inclusion P1 � P2 holds iff for all (
�

k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
�

k [ak, ak] × xk subject to P1. However, �may be too expensive to compute. We

define an approximate order relation �s on interval polyhedra based on syntactic repre-

sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ�:Σk[a�k, a
�
k]×xk ≤ b�, ϕ �s ϕ� iff b ≤ b� and

∀k.[ak, ak] ⊆ [a�k, a
�
k]. And P1 �s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n

is an interval matrix and b ∈ Rm
is a plain vector of real numbers. It represents

the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or

state), i.e., an assignment of numerical/real values to program variables. Note that with

respect to the weak solution set, an interval linear equation ϕ:
�

k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ�:
�

k [ak, ak] × xk ≤ b and

ϕ��:
�

k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection

with each orthant in Rn
gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval

polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval

polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some

examples of interval polyhedra (1) as well as examples that are not interval polyhedra

(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection

with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval

polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples

(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)

{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted

as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation � on interval polyhedra is defined as

P1 � P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.

The inclusion P1 � P2 holds iff for all (
�

k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
�

k [ak, ak] × xk subject to P1. However, �may be too expensive to compute. We

define an approximate order relation �s on interval polyhedra based on syntactic repre-

sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ�:Σk[a�k, a
�
k]×xk ≤ b�, ϕ �s ϕ� iff b ≤ b� and

∀k.[ak, ak] ⊆ [a�k, a
�
k]. And P1 �s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n

is an interval matrix and b ∈ Rm
is a plain vector of real numbers. It represents

the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or

state), i.e., an assignment of numerical/real values to program variables. Note that with

respect to the weak solution set, an interval linear equation ϕ:
�

k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ�:
�

k [ak, ak] × xk ≤ b and

ϕ��:
�

k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection

with each orthant in Rn
gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval

polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval

polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some

examples of interval polyhedra (1) as well as examples that are not interval polyhedra

(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection

with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval

polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples

(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)

{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted

as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation � on interval polyhedra is defined as

P1 � P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.

The inclusion P1 � P2 holds iff for all (
�

k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
�

k [ak, ak] × xk subject to P1. However, �may be too expensive to compute. We

define an approximate order relation �s on interval polyhedra based on syntactic repre-

sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ�:Σk[a�k, a
�
k]×xk ≤ b�, ϕ �s ϕ� iff b ≤ b� and

∀k.[ak, ak] ⊆ [a�k, a
�
k]. And P1 �s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n

is an interval matrix and b ∈ Rm
is a plain vector of real numbers. It represents

the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or

state), i.e., an assignment of numerical/real values to program variables. Note that with

respect to the weak solution set, an interval linear equation ϕ:
�

k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ�:
�

k [ak, ak] × xk ≤ b and

ϕ��:
�

k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection

with each orthant in Rn
gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval

polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval

polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some

examples of interval polyhedra (1) as well as examples that are not interval polyhedra

(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection

with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval

polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples

(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)

{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted

as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation � on interval polyhedra is defined as

P1 � P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.

The inclusion P1 � P2 holds iff for all (
�

k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
�

k [ak, ak] × xk subject to P1. However, �may be too expensive to compute. We

define an approximate order relation �s on interval polyhedra based on syntactic repre-

sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ�:Σk[a�k, a
�
k]×xk ≤ b�, ϕ �s ϕ� iff b ≤ b� and

∀k.[ak, ak] ⊆ [a�k, a
�
k]. And P1 �s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n

is an interval matrix and b ∈ Rm
is a plain vector of real numbers. It represents

the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or

state), i.e., an assignment of numerical/real values to program variables. Note that with

respect to the weak solution set, an interval linear equation ϕ:
�

k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ�:
�

k [ak, ak] × xk ≤ b and

ϕ��:
�

k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection

with each orthant in Rn
gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval

polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval

polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some

examples of interval polyhedra (1) as well as examples that are not interval polyhedra

(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection

with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval

polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples

(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)

{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted

as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation � on interval polyhedra is defined as

P1 � P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.

The inclusion P1 � P2 holds iff for all (
�

k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
�

k [ak, ak] × xk subject to P1. However, �may be too expensive to compute. We

define an approximate order relation �s on interval polyhedra based on syntactic repre-

sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ�:Σk[a�k, a
�
k]×xk ≤ b�, ϕ �s ϕ� iff b ≤ b� and

∀k.[ak, ak] ⊆ [a�k, a
�
k]. And P1 �s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n

is an interval matrix and b ∈ Rm
is a plain vector of real numbers. It represents

the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or

state), i.e., an assignment of numerical/real values to program variables. Note that with

respect to the weak solution set, an interval linear equation ϕ:
�

k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ�:
�

k [ak, ak] × xk ≤ b and

ϕ��:
�

k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection

with each orthant in Rn
gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval

polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval

polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some

examples of interval polyhedra (1) as well as examples that are not interval polyhedra

(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection

with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval

polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples

(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)

{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted

as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation � on interval polyhedra is defined as

P1 � P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.

The inclusion P1 � P2 holds iff for all (
�

k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
�

k [ak, ak] × xk subject to P1. However, �may be too expensive to compute. We

define an approximate order relation �s on interval polyhedra based on syntactic repre-

sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ�:Σk[a�k, a
�
k]×xk ≤ b�, ϕ �s ϕ� iff b ≤ b� and

∀k.[ak, ak] ⊆ [a�k, a
�
k]. And P1 �s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n

is an interval matrix and b ∈ Rm
is a plain vector of real numbers. It represents

the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or

state), i.e., an assignment of numerical/real values to program variables. Note that with

respect to the weak solution set, an interval linear equation ϕ:
�

k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ�:
�

k [ak, ak] × xk ≤ b and

ϕ��:
�

k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection

with each orthant in Rn
gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval

polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval

polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some

examples of interval polyhedra (1) as well as examples that are not interval polyhedra

(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection

with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval

polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples

(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)

{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted

as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation � on interval polyhedra is defined as

P1 � P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.

The inclusion P1 � P2 holds iff for all (
�

k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
�

k [ak, ak] × xk subject to P1. However, �may be too expensive to compute. We

define an approximate order relation �s on interval polyhedra based on syntactic repre-

sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ�:Σk[a�k, a
�
k]×xk ≤ b�, ϕ �s ϕ� iff b ≤ b� and

∀k.[ak, ak] ⊆ [a�k, a
�
k]. And P1 �s P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

e.g. interval equalities

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

• Freely available (LGPL) library of numerical domains developed
with INRIA-RA, including a web-based sample analyzer for
demonstration, teaching and prototyping (Interproc)

• Common, AI-based API for numerical abstract domains with
reference implementation of classic domains (intervals,
polyhedra, octagons, ...)

• Easy to prototype new analyses or domains (e.g., interval
polyhedra) with support for

APRON Library

10

Bertrand Jeannet, Antoine Miné: Apron: A Library of Numerical Abstract Domains for Static Analysis. CAV 2009: 661-667

Underlying libraries & abstract domains

box

intervals

octagons

octagons

NewPolka

convex polyhedra

linear equalities

PPL + Wrapper

convex polyhedra

linear congruences

Abstraction toolbox

– scalar & interval arithmetic
– linearization of expressions
– fall-back implementations

Data-types

Coefficients
Expressions
Constraints
Generators
Abs. values

Semantics: A
γ

→ ℘(Z
n

× R
m)

dimensions and space dimensionality

Variables and Environments

Semantics: A
γ

→ ℘(V → Z # R)

Developer interface

User interface

C API

OCaml binding C++ binding

• integer, rational, machine-integer
and float data-types

• linear, non-linear and float
expressions

• C, C++, Java, OCaml

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Abstract Domains

11

(II) Symbolic domains

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Abstract Domains
(II) Symbolic domains

(a) Array content analysis

12

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Array content analysis
• Existing abstract domains are imprecise or do not

scale up

• We have developed efficient, expressive & scalable
abstract domain functors based on the idea of
symbolic segmentation with dynamic bounds
combined with decision trees

13

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: A Scalable Segmented Decision Tree Abstract Domain. Essays in Memory of Amir Pnueli 2010: 72-95
Patrick Cousot, Radhia Cousot, & Francesco Logozzo. A Parametric Segmentation Functor for Fully Automatic and Scalable Array Content Analysis. POPL 2011, 105—118, 2011.

void InitPartial(int[] A, int[] C) {
Contract.Requires(A.Length == C.Length);

int i = 0, j = 0;

while (i < A.Length) {
if (p(A[i])) // For some predicate p

C[j++] = 1;
i++;
} }

Figure 3. Partial array initialization. Partition-based techniques
use four partitions encoding the fact that at loop exit C may be
empty, partially filled, almost-totally filled or totally filled. Our
analysis: (i) compactly represents the same information with only
one segmentation; and (ii) infers the segmentation automatically.

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=A.Length] = A: {0} 0 {A.Length,i}?

where A.Length = i since the segmentation of p2 provides the
information that 0 � i � A.Length.

The array content analysis always terminates since the only two
reasons for non-termination are impossible:

1. The array might have infinitely many symbolic segments as in
{0} {n-3} ... {n-2} ... {n-1} ... {n} which is prevented
by segmentation unification and widening;

2. A segment might take successive strictly increasing abstract
values which is prevented by the use of a widening/narrowing
convergence acceleration for segment content analysis [7]. No
widening was necessary for constant propagation which satisfies
the ascending chain condition (⊥ � i � �, i ∈ Z).

4.4 Partial Array Initialization
Full array initialization is a very well studied example, and array-
partitioning techniques perform reasonably well on it [17, 19].
However, partial array initialization (Fig. 3) illustrates the multipli-
cation of partitions which makes those techniques not-scalable. At
the end of the loop, our analysis (instantiated with constant propa-
gation) infers the following segmentation for C:

{0} 1 {j}? T {i,A.Length,C.Length}?

which compactly captures the fact that C may be empty (when
0 = j = i), may be not initialized (when j = 0), may be partially
initialized (when 0 < j < i), may be fully initialized (when
0 < j = i). Compare it with partition-based approaches where
the abstract state at the end of the loop contains four disjuncts:
one representing the concrete state when none of the C elements
is initialized (j = 0), two representing the partial initialization of C
distinguishing when j+1 < C.Length or j < C.Length, and one
representing the total initialization (j == C.Length) ([17, 7.2]).
We tried this example using our early implementation of [19] and
we got a 2× slow-down with respect to a normal run of Clousot
(it is worth noting that the experimental results reported in [17] and
those in [18] are even worse than our first implementation). For this
example, Clousot lifted with the functor abstract domain was so
fast that we were unable to measure its impact on the performances:
the additional cost is in the order of magnitude the noise of the
virtual machine (JIT, garbage collector . . .) i.e. few milliseconds.

4.5 Array in-situ rearrangement example
The in-situ array rearrangement algorithm of Fig. 4 [4, 23] maintains
an invariant

[0,100] [-100,100] [-100,-1]

0 a b A.length

void Rearrangement(int[] A) {
Contract.Requires(A.length > 1);
Contract.Requires(Contract.Forall(0,A.length,

i => (-100 <= A[i] && A[i] <= 100)));
int a = 0, b = A.length;

/* 1: */ while /* 2: */ (a < b) {
/* 3: */ if A[a] >= 0 then {
/* 4: */ a = a + 1;
/* 5: */ } else {
/* 6: */ b = b - 1;
/* 7: */ int x = A[a]; A[a] = A[b]; A[b] = x;
/* 8: */ } }
/* 9: */ }

Figure 4. The array in-situ rearrangement example.

where positive numbers are on the left of a, the negative numbers
are on the right, from b included, and in the middle, between a and
b − 1 the numbers remain to be handled. If A[a] is positive, the
limit a is moved to the right. Otherwise, A[a] is exchanged with
A[b-1] and b is moved to the left. The algorithm terminates when
the central zone is empty. This invariant which is automatically
inferred by the automatic array segmentation analysis illustrates the
interest of using possibly empty segments:
p1 = (A: {0 a} [-100,100] {b A.length}

a:[0,0] b:[2,+oo] A.length:[2,+oo])
p2 = (A: {0}[0,100]{a}?[-100,100]{b}?[-100,-1]{A.length}?

a:[0,+oo] b:[0,+oo] A.length:[2,+oo])
p9 = (A: {0} [0,100] {b a}? [-100,-1] {A.length}?

a:[0,+oo] b:[0,+oo] A.length:[2,+oo])

5. Abstract Domains and Functors
An abstract domain D includes a set D of abstract properties as
well as abstract functions and operations D.op for the partial order
structure of abstract properties (�), the join (�), the meet (�),
convergence acceleration operators: widening (�) and narrowing
(
�

), the abstract property transformers involved in the definition of
the semantics of the programming language: the abstract evaluation
of program arithmetic and Boolean expressions, the assignment
to scalar variables . . . [7]. A monotonic concretization function γ
provides the meaning of abstract properties in terms of concrete
properties.

An abstract domain functor D is a function from the pa-
rameter abstract domains D1, . . . ,Dn to a new abstract domain
D(D1, . . . ,Dn). The term “functor” is mutated from OCaml ter-
minology. The formal parameters D1, . . . ,Dn of the abstract do-
main functor D can be instantiated to various actual abstract do-
mains without needing to rewrite the code of the static analyzer.
So various abstractions can be experimented at no programming
cost. The abstract domain functor D(D1, . . . ,Dn) composes ab-
stract properties D1, . . . ,Dn of the parameter abstract domains
D1, . . . ,Dn to build a new class of abstract properties D (e.g.
abstract environments mapping program numerical variables to in-
tervals) and operations (e.g. assignment of an interval to a variable).
For short, we can omit the parameters writing D or op when the
parameters D1, . . . ,Dn are clear from the context.

6. Concrete Semantics
We describe the elements of the semantics of programming lan-
guages to which our array content analysis does apply, that is scalar
variables, simple expressions, and unidimensional arrays and cor-
responding assignments.

6.1 Scalar Variables Semantics The operational semantics of
scalar variables with basic types (bool, char, int, float, etc.) is
assumed to be concrete variable environments ρ ∈ Rv mapping

109

indices A1 of array A, A1 ∈ [A.low, A.high] and a variable Av ∈ D standing for any value
of the array in a given segment such that Av <D A1 and Av is a leave. For leaves we use
constant propagation [15]. The loop invariant found at point 3 is

Av: 0Av: !

k: ! 2 !

A1: ! 1 ! k !A1: !

0 ! k < n

Av: !Av: !

The fixpoint iteration with widening is the following:

0: � k {0 < n, 0 � A1 < n} : � A1 : � Av : � � � � �k and A uninitialized�
�: ⊥ �� = 1, . . . , 8, infimum�
1:,2:,3:,6: � k {k = 0 < n} : � A1 : � Av : � � � � �0: where k = 0, k < n, k � 0�
7: � k {k = 1 � n} : � A1 : � Av : � � � � �6: where k = k + 1�
2:,3: � k {0 � k � 1, k < n} : � A1 : � Av : � � � � �joining 1: and 7:, test k < n�
4: � k {1 = k < n} : � A1 : � Av : � � � � �3: with k > 0�
5: � k {1 = k < n} : � A1 : � Av : � � 1 � Av : 0 � 2 � Av : � � � �

�4: with A[k] = 0 where k = 1�
6: � k {0 � k � 1, k < n} : � A1 {k = 0} : � Av : � � � 1

� A1 {k = 1} : � Av : � � 1 � Av : 0 � 2 � Av : � � � �
�joining 3: and k � 0 so k = 0 together with 5: where k = 1�

7: � k {1 � k � 2, k � n} : � A1 {k = 1} : � Av : � � � 2

� A1 {k = 2} : � Av : � � 1 � Av : 0 � 2 � Av : � � � � �6: where k = k + 1�
1: �t 7: � k {0 � k � 2, k � n} : � A1 {0 � k � 1} : � Av : � � � 2

� A1 {k = 2} : � Av : � � 1 � Av : 0 � 2 � Av : � � � � � �join of 1: and 7:�
2:,3: � k {0 � k < n} : � A1 {0 � k � 1} : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �2: �
(1: �t 7)

7, test k < n�
4: � k {0 < k < n} : � A1 {k = 1} : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �3: with k > 0�
5: � k {0 < k < n} : � A1 {k = 1} : � Av : � � 1 � Av : 0 � 2 � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k + 1 � Av : � � � � � �4: with A[k] = 0�
6: � k {0 � k < n} : � A1 {k = 0} : � Av : � � � 1

� A1 {k = 1} : � Av : � � 1 � Av : 0 � 2 � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k + 1 � Av : � � � � �
�joining 3: and k � 0 with 5:�

7: � k {0 < k � n} : � A1 {k = 1} : � Av : � � � 2

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Abstract Domains
(II) Symbolic domains

(b) Shape analysis

14

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

• Challenges:
• dynamic structures with destructive updates
• complex structural invariants (red-black trees, call-

stack, ...)
• We develop relational and expressive parametric

abstract domains based on inductive properties and
disjointness of regions

• Ongoing work: standardization of abstract domain
interfaces to build composite abstractions (shape-
shape and shape-numerical)

Shape abstract domains

15

Vincent Laviron, Bor-Yuh Evan Chang, Xavier Rival: Separating Shape Graphs. ESOP 2010: 387-406 20!
Pascal Sotin, Bertrand Jeannet, Xavier Rival: Concrete Memory Models for Shape Analysis. Electr. Notes Theor. Comput. Sci. 267(1): 139-150 (2010)
Bor-Yuh Evan Chang, Xavier Rival: Relational inductive shape analysis. POPL 2008: 247-260

&x &y

n

!= 0

∈ [−10, 50]

list

next

data

list

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Abstract Domains
(II) Symbolic domains

(c) Combining algebraic and
logical abstract domains

16

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Logical & algebraic abstraction
• Algebraic abstractions: in inference tools, based on the

iterated reduced product of a combination of
abstract domains

• Logical abstraction: in verification tools, based on the
Nelson-Oppen sat isfiabi l i ty procedure for
combination f theories (SMT solvers)

• The approaches can be combined by

• Generalizing logical abstractions (widenings, …)

• Understanding Nelson-Oppen satisfiabil ity
procedure as an iterated reduced product

17

Patrick Cousot, Radhia Cousot, & Laurent Mauborgne. Logical Abstract Domains and Interpretations. In The Future of Software Engineering, S. Nanz (Ed.). © Springer 2010,
Pages 48—71.

Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. The reduced product of abstract domains and the combination of decision procedures, FoSSaCs 2011, to appear.

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Abstract Domains
(III) Temporal domains

1816

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

• Contraints to relate values and
time

• Integral bounding to express
quantitative properties
(average...)

• Value changes counting to
express stability specifications

• Fast abstract information
propagation algorithms

Temporal abstract domains

19

[a ,b]:x−β −α

α

[a,b]:x

β

width=δ
value chng 5

width=δ

false

true
value chng 5

1 2 3 4

α
α+2 <1 β

β+2
 <1

true

false

1 2 3 4

<1,2>:true

[3,4]:false

1 32 4

false

true

Temporal abstract domains

constraints value changes counting
<1,2>:true

[3,4]:false

1 32 4

false

true

width=δ
value chng 5

width=δ

false

true
value chng 5

1 2 3 4

• relates value and time. • express stability specifications.

integral bounding fast abstract information propagation

α
α+2 <1 β

β+2
 <1

true

false

1 2 3 4

[a ,b]:x−β −α

α

[a,b]:x

β

• express quantitative properties
(average value, ...)

•
←−
Ψ#(∃[a; b] : x) � ∃[a−β; b−α] : x

for the DELAY[α,β] gate.

Julien Bertrane: Proving the Properties of Communicating Imperfectly-Clocked Synchronous Systems. SAS 2006: 370-386

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Application:
Static Analysis of
Dynamic Systems

20

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Static Analysis and
Verification

21

(1) Quasi-synchronous systems

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Example

22

sensors

SHIFT
C

DISCR
C

SHIFT
C

DISCR
C

DISCR
C

SHIFT
C

XOR

C

NOT AND

C’C

NOT AND XOR

DISCR DISCR DISCR

SHIFTSHIFTSHIFT

C’ C’ C’

C’C’C’

[a;b]

[c;d]
[e;f]

[g;h]

C"

Integral Bounding

CONSTRAINTS CONSTRAINTS

Changes Counting

Changes CountingChanges CountingCONSTRAINTS CONSTRAINTS

Changes Counting Changes Counting

Changes Counting

Changes Counting Changes Counting

CONSTRAINTS

VOTER

Example of an analyzed code : two communicating
redundant units with imperfect clocks and a voter

sensors

SHIFT
C

DISCR
C

SHIFT
C

DISCR
C

DISCR
C

SHIFT
C

XOR

C

NOT AND

C’C

NOT AND XOR

DISCR DISCR DISCR

SHIFTSHIFTSHIFT

C’ C’ C’

C’C’C’

[a;b]

[c;d]
[e;f]

[g;h]

C"

Integral Bounding

CONSTRAINTS CONSTRAINTS

Changes Counting

Changes CountingChanges CountingCONSTRAINTS CONSTRAINTS

Changes Counting Changes Counting

Changes Counting

Changes Counting Changes Counting

CONSTRAINTS

VOTER

0 ∆2/3 ∆ Stability

analysis points a counter-example ? analysis proves the specification

• Two communicating redundant units, imperfect clocks &
voter:

• Result of the static analysis:

Counter-example ??? Specification proved
Julien Bertrane: Static Analysis by Abstract Interpretation of the Quasi-synchronous Composition of Synchronous Programs. VMCAI 2005: 97-112

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Static Analysis and
Verification

(II) Parallel Programs

23

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Static analysis of parallel software
• Critical embedded software are now parallel (e.g., IMA

[Integrated Modular Avionics])

• Semantic challenges:
• implicit communications through shared memory
• weak memory consistency
• strict priorities of real-time schedulers

• Abstraction challenges, to scale up while being precise:
• history-sensitive abstractions of interleaved control

flows
• fixpoint strategies to compute interferences

• Ongoing work on the Thésée prototype

24

Antoine Miné, Static Analysis of Run-Time Errors in Embedded Critical Parallel C Programs, ESOP 2011, to appear.

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Static Analysis
(III) Biological systems

25

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Reachability analysis (of signaling pathways)

26

• Focus on models of signaling pathways described by
collating biochemical interactions.

• These systems usually suffer from a huge combinatorial
complexity in the number of chemical species (i.e.
chemical complexes) which may be formed at run-time.

• We design scalable and precise analyses of the reachable
chemical species.

• Applications:

Vincent Danos, Jérôme Feret, Walter Fontana, Jean Krivine: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97
Jérôme Feret: Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation. ICCMSE 2007: 619-622

• debug models during modeling;
• precompute properties so as to enable

fast stochastic simulation;

• automatic simplification of the model;
• compute an idiomatic description of

the systems.

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Model reduction
• Quantitative (ODEs and

stochastic) semantics are
hard to compute, due to the
combinatorial complexity
(~1020 variables).

• We use an approximation of
the control flow between
regions of chemical species,
so as to compute exact
p ro j e c t i o n s o f t h e s e
semantics.

27

Jérôme Feret, Vincent Danos, Jean Krivine, Russell Harmer, Walter Fontana: Internal coarse-graining of molecular systems. PNAS, volume 106.(16), 6 pages.
Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, Jean Krivine: Abstracting the Differential Semantics of Rule-Based Models: Exact and Automated Model Reduction. LICS
2010: 362-381.
Russ Harmer, Vincent Danos, Jérôme Feret, Jean Krivine, Walter Fontana: Intrinsic information carriers in combinatorial dynamical systems. Chaos, volume 20.(3), 16 pages.
Jérôme Feret, Thomas A. Henzinger, Heinz Koeppl, Tatjana Petrov: Lumpability Abstractions of Rule-based Systems MeCBIC 2010: 142-161

Ground model: 356 variables.
Reduced model: 38 variables.

The two models match

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4 5 6

Co
nc

en
tra

tio
n

Time

/home/feret/demo/egfr-compressed.ka

(reduced) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(reduced) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

(ground) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(ground) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Software developed

28

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Static analyzers

29

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

ASTRÉE (commercialized)

30

• Routinely used by Airbus France (A380, A400M,
A350)

• Now in the industrialization and commercialization
phase (AbsInt)

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival: Why does Astrée scale up? Formal Methods in System Design 35(3): 229-264
(2009)

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

THÉSÉE (in development)
• Challenging application to the FWS (A380, A400M,

A350)

31

Antoine Miné, Static Analysis of Run-Time Errors in Embedded Critical Parallel C Programs, ESOP 2011, to appear.

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Dissemination

32

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Dissemination

33

• In the academic world (tutorials, summer schools,
invited talks, conference organization, …)

• In the industrial world (conferences, training, …)

Mike Hinchey, Michael Jackson, Patrick Cousot, Byron Cook, Jonathan P. Bowen, & Tiziana Margaria. Software engineering and formal methods. CACM 51(9): 54—59 (2008).

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rivaal. Why does Astrée scale up? Formal Methods in System Design 35 (3): 229—264
(2009).

Patrick Cousot & Radhia Cousot. A gentle introduction to formal verification of computer systems by abstract interpretation. Logics and Languages for Reliability and Security, J.
Esparza, O. Grumberg, & M. Broy (Eds), NATO Science Series III: Computer and Systems Sciences, © IOS Press, 2010, 1—29.

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by
Abstract Interpretation. AIAA Infotech@Aerospace 2010, Atlanta, GA. © AIAA (best paper of the conference).

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis by Abstract Interpretation of Embedded Critical
Software. Third IEEE International workshop UML and Formal Methods, 2010, Shanghai, China, © IEEE.

Daniel Kästner, Stephan Wilhelm, Stefana Nenova, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival.
ASTRÉE: Proving the Absence of Runtime Errors. Embedded Real Time Software and Systems (ERTS2 2010). Toulouse, France, 2010.

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Conferences recently organized

34

• SAS 2010 (Perpignan)
SASB in 2011 (Venice)

• NSAD 2010

• SASB 2010

• TAPAS 2010

Radhia Cousot, Matthieu Martel: Static Analysis - 17th International Symposium, SAS 2010, Perpignan, France, September 14-16, 2010. Proceedings Springer 2010
David Delmas, Xavier Rival: Preface. Electr. Notes Theor. Comput. Sci. 267(2): 1 (2010)
Antoine Miné, Enric Rodríguez-Carbonell: Preface. Electr. Notes Theor. Comput. Sci. 267(1): 1-2 (2010)

Program committees
ESOP 2010/11, HSCC 2009/11, PLDI 2010, POPL
2011, SAS 2010/11, VMCAI 2009/10/11, …

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Research Contracts

35

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Ongoing contracts

36

• SURVOL: FNRAE, Logiciel de Commande Embarqués: robustesse et
sécurité, avec MIP-Univ. P. Sabatier, Toulouse, 2008 — 2011

• ASCERT: FNRAE, Analyses Statiques Certifiées, avec INRIA
Rennes, Rocquencourt, Grenoble, 2009 — 2012

• SARDANES: Sémantique, analyse et transformation des applications
numériques embarquées synchrones, FNRAE avec Université de
Perpignan & Université de Brest, 2009 — 2012

• AbstractCell, long-term Junior ANR Chair of Excellence, J. Feret,
Dec 2009 — Nov 2013.

• Abstract Interpretation and Code Obfuscation, Royal Society
UK, avec Imperial College, 2010 — 2012

• ANASTASY: Airbus France, Analyse statique et dynamique, 2010
— 2014

FNRAE = Fondation de Recherche pour l’Aéronautique et l’Espace

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Starting contracts
• MBAT: Model-based Analysis and Testing of Embedded Systems,

European project, Artemis programme, with Airbus, Daimler,
Volvo, Eads, Thales, Rockwell Collins, … & Univ. Munich, Univ.
Aalborg …, 2011 — 2014

37

Submitted contract applications

• ANR (appel à projets bioinformatiques):

• DYALOG: Hierarchical dynamical modelling and analysis of large
regulatory networks controlling cell fate decisions, avec IBEns/
Ens, Institut Curie, Université Montpellier 2, projet INRIA
Contraintes, Pasteur, IBisc (Evry), Technologies avancées
pour le Génome et la clinique (Marseille), 13 December
2010

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Forthcoming contract applications

• ANR:

• THÉSÉE: Static analysis of embedded parallel
programs, avec Airbus France, March 2011

• Europe (FP7):

• EvolBrid: A correct-by-evolution design and verification
framework for hybrid-modeled complex embedded
systems, FP7 (7 partners), January 2011

• Ratis: Secure programming of embedded systems, FP7
(8 partners), December 2011

38

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Main industrial
collaborations

39

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

AbsInt Angewandte Informatik

40

• Industrialization of ASTRÉE

• 3 full-time engineers, everyday collaboration

www.absint.com/astree/

Daniel Kästner, Stephan Wilhelm, Stefana Nenova, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival.
ASTRÉE: Proving the Absence of Runtime Errors.
In Proc. of the Embedded Real Time Software and Systems (ERTS2 2010). Toulouse, France, May 19—21, 2010.

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

• Verification of space software

• Analysis of inertial unit software

Astrium

41

O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, E. Goubault, D. Lesens, L. Mauborgne, A. Miné, S. Putot, X. Rival, M. Turin.
Space software validation using Abstract Interpretation.
Proc. 13thData Systems in Aerospace, DASIA 2009, Istanbul, Turkey, 26-29 May 2009, ©!Eurospace, Paris.

Sagem

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Airbus France
• Verification of parallel programs, mainly the FWS

42

Daniel Kästner, Stephan Wilhelm, Stefana Nenova, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival.
ASTRÉE: Proving the Absence of Runtime Errors.
In Proc. of the Embedded Real Time Software and Systems (ERTS2 2010). Toulouse, France, May 19—21, 2010.

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Microsoft Research Redmond
• Verification of code contracts in Clousot (now

distributed with Visual Studio Ultimate)

• Design of scalable abstract domains for

• Array content analysis

• Contract precondition inference from assertions

43

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: A Scalable Segmented Decision Tree Abstract Domain. Essays in Memory of Amir Pnueli 2010: 72-95
Patrick Cousot, Radhia Cousot, & Francesco Logozzo. A Parametric Segmentation Functor for Fully Automatic and Scalable Array Content Analysis. POPL 2011, 105—118, 2011.

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Conclusion

44

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Ongoing work ...

45

• Parallel programs: complex data structures,
interference, real-time, scheduling with dynamic
priorities (e.g. priority ceiling protocols), ...

• Biological systems

• Closed loop analysis of control/command systems

• Security properties

• Probabilistic properties

• Eventuality properties

• Analysis of complex discrete/continuous systems:

• Verification of complex properties:

!"#$%&'($)'*+"',(-(,'$'+."#%$&,/#0($1,2.(3#0.(#4,(+5)$'+."#$"/#&'$'+)#
$"$67&+&#.0#-(.%$%+6+&'+)#-(.8($1&#

!"#$%&'((!)*&+%,(-%.+"#/((0),1).(
9.:($"'#;"&'+':',<#=>?#

@).6,#=.(1$6,#A:-B(+,:(,#/,#C$(+&<#D($"),#
9.:($"'#;"&'+':',<#=>?#

@).6,#=.(1$6,#A:-B(+,:(,#/,#C$(+&<#D($"),#

9E!9A<#=>?########F)'.%,(#GHIH#

INRIA Paris/Rocquencourt 13/01/2011 – Présentation de l’équipe-projet ABSTRACTION commune au CNRS et à l’ENS © P. Cousot

Conclusion

46

• Small team, smart project, great scientific
ambitions :-)

