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Motivation
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Computer scientists have made great 
contributions to failures of complex systems

4

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Sep. 5, 2006 September 5, 2006 J!!!— 3 — []¨—"""I ľ P. Cousot

• Onboard checking the presence of bugs is great!

• Proving their absence is even better!!!
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Static analysis
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Static analysis

6

• Static analysis consists in automatically answering 
questions about the runtime executions of programs

• Static means « at compile time », by examining the 
program text only, without executions on computers

• Automatic means by a computer, without human 
intervention during the analysis

Program

Question

Static
analyzer 
program

Computer

Answer

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa                                                                                                                                                                                                                                                                  May 3, 2010

Static analysis is undecidable

• Undecidability essentially means that any static 
analyzer/verifier cannot answer “yes” or “no” to a 
question about all input programs

• It will not terminate or will terminate with answer 
«!I don’t know!» on infinitely many input programs
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Facing undecidability
• Degugging: test a few … many cases ! costly, 

unsafe, not a verification! 

• Deductive methods: ask for human help (e.g. to make 
guesses or guide a theorem prover) ! complex, 
error-prone & very costly

• Model checking: explore finite models of programs ! 
combinatorial explosion & models may be different 
from programs

• Abstract interpretation: make sound approximations of 
program executions  ! always terminate but some 
potential bug warinings may be false alarms (when 
the abstraction is incomplete)

8
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Abstract interpretation
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Abstract interpretation

10

• Started in the 70’s and well-developped since then

• Originally for inferring program invariants (with first 
applications to compilation, optimization, program 
transformation, to help hand-made proofs, etc)

• Based on the idea that undecidability and complexity 
of automated program analysis can be fought by 
approximation

• Applications evolved from static analysis to verification

• !Does scale up!
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An informal introduction to 
abstract interpretation
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1) Define the programming language semantics

12

Formalize the concrete execution of programs (e.g. transition system)

x

y

Trajectory 
in state space

Space/time trajectory

(x,y)

t

x

y

t=0

t=1

t=2

t=…
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II) Define the program properties of interest

13

Formalize what you are interested to know about program behaviors
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III) Define which specification must be checked 

14

Formalize what you are interested to prove about program behaviors
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IV) Choose the appropriate abstraction

15

Abstract away all information on program behaviors irrelevant to the proof
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V) Mechanically verify in the abstract

16

The proof is fully automatic



CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa                                                                                                                                                                                                                                                                  May 3, 2010

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2$,.#/1.%"()"3).4').#/0'1."#%',

Soundness of the abstract verification

17

Never forget any possible case so the abstract proof is correct in the concrete

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa                                                                                                                                                                                                                                                                  May 3, 2010

Unsound validation: testing

18

Try a few cases
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Bounded model-checking

Forbidden zone

Possible
trajectories

Unsound validation: bounded model-checking

19

Simulate the beginning of all executions
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Unsound validation: static analysis

20

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive
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Incompleteness

21

When abstract proofs may fail while concrete proofs would succeed

By soundness an alarm must be raised for this overapproximation!
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True error

22

The abstract alarm may correspond to a concrete error
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False alarm

23

The abstract alarm may correspond to no concrete error (false negative)
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Principle of an abstract interpreter

24

• Read the input program

• Optionally read the question (can be implicit e.g. 
absence of runtime errors or inserted in the 
program e.g. assert)

• Compute the abstraction of the program execution

• Output the result:

• Answer to the question (yes, no, I don’t know)

• Optionally, provide information on program 
execution (e.g. over-approximation of the range 
of variation of numerical variables, shape of data 
structures, etc)
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What to do about false alarms?

25

• Automatic refinement: inefficient and may not 
terminate (Gödel)

• Domain-specific abstraction: 

• Adapt the abstraction to the programming 
paradigms typically used in given domain-specific 
applications 

• e.g. synchronous control/command: no recursion, no 
dynamic memory allocation, maximum execution 
time, etc.
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ASTRÉE

26
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Target language and applications

27

• C programming language

• Without recursion, longjump, dynamic 
memory allocation, conflicting side effects, 
backward jumps, system calls (stubs)

• With all its horrors (union, pointer 
arithmetics, etc)

• Reasonably extending the standard (e.g. size & 
endianess of integers,  IEEE 754-1985 floats, etc)

• Synchronous control/command

• e.g.  generated from Scade/Lustre, Simulink, or a 
proprietary system 
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The class of considered periodic 
synchronous programs

28

The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever

- read volatile input variables,
- compute output and state variables,
- write to output variables;
__ASTREE_wait_for_clock ();
end loop

Task scheduling is static:
– Requirements: the only interrupts are clock ticks;
– Execution time of loop body less than a clock tick,
as verified by the aiT WCET Analyzers [FHL+01].

Rencontres INRIA–Industrie, 11/10/2007 — 38 — ľ P. Cousot
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The semantics of C implementations 
is very hard to define

29

The Semantics of C is Hard (Ex. 2: Runtime Errors)

What is the effect of out-of-bounds array indexing?
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

Yields different results on different machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC

n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits

Bus error PC Intel 64 bits

MPI, 8/26/2008 — 46 — ľ P. Cousot
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Implicit specification

30

• Absence of runtime errors: overflows, division by 
zero, buffer overflow, null & dangling pointers, 
alignment errors, …

• Semantics of runtime errors:

1. Terminating execution: stop (e.g. floating-point 
exceptions when traps are activated)

2. Predictable outcome: go on with worst case 
(e.g. signed integer overflows result in some 
integer, some options: e.g. modulo arithmetics)

3. Unpredictable outcome: stop on error (e.g. 
memory corruption), go on with non-erroneous 
cases
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Example of error with predictable output: 
modular arithmetics

31

Modular arithmetics is not very intuitive
In C:
% cat -n modulo-c.c

1 #include <stdio.h>
2 int main () {
3 int x,y;
4 x = -2147483647 / -1;
5 y = ((-x) -1) / -1;
6 printf("x = %i, y = %i\n",x,y);
7 }
8

% gcc modulo-c.c
% ./a.out
x = 2147483647, y = -2147483648

Rencontres INRIA–Industrie, 11/10/2007 — 44 — ľ P. Cousot

positive

negative
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Analysis by ASTRÉE

32

Static Analysis with Astrée
% cat -n modulo.c

1 int main () {
2 int x,y;
3 x = -2147483647 / -1;
4 y = ((-x) -1) / -1;
5 __ASTREE_log_vars((x,y));
6 }
7

% astree –exec-fn main –unroll 0 modulo.c\
|& egrep -A 1 "(<integers)|(WARN)"

modulo.c:4.4-18::[call#main@1:]: WARN: signed int arithmetic range
{2147483648} not included in [-2147483648, 2147483647]
<integers (intv+cong+bitfield+set): y in [-2147483648, 2147483647] /\ Top,
x in {2147483647} /\ {2147483647} >

Astrée signals the overflow and goes on with an unkown value.

Rencontres INRIA–Industrie, 11/10/2007 — 45 — ľ P. Cousot

ASTRÉE signals the overflow and goes on with an 
unknown integer (as required by the C standard)
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Example of error with predictable output: 
float arithmetics

Float Arithmetics does Overflow

In C:
% cat -n overflow.c
1 void main () {
2 double x,y;
3 x = 1.0e+256 * 1.0e+256;
4 y = 1.0e+256 * -1.0e+256;
5 __ASTREE_log_vars((x,y));
6 }

% gcc overflow.c
% ./a.out
x = inf, y = -inf

% astree –exec-fn main
overflow.c |& grep "WARN"
overflow.c:3.4-23::[call#main1:]:
WARN: double arithmetic range
[1.79769e+308, inf] not
included in [-1.79769e+308,
1.79769e+308]
overflow.c:4.4-24::[call#main1:]:
WARN: double arithmetic range
[-inf, -1.79769e+308] not
included in [-1.79769e+308,
1.79769e+308]

Rencontres INRIA–Industrie, 11/10/2007 — 47 — ľ P. Cousot

The Ariane 5.01 maiden flight failure

– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher self-
detroyed after 42 seconds
of flight because of a
software overflow

A 16 bits piece of code of Ariane 4 had been reused within the new 32 bits code for Ariane 5.
This caused an uncaught overflow, ultimately making the launcher uncontrolable.
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The Ariane 5.01 maiden flight failure

– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher was de-
troyed after 40 seconds
of flight because of a
software overflow12

12 A 16 bit piece of code of Ariane 4 had been reused within the new 32 bit code for Ariane 5.
This caused an uncaught overflow, making the launcher uncontrolable.

Rencontres INRIA–Industrie, 11/10/2007 — 48 — ľ P. Cousot
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Analysis by Astrée

% cat -n unpreditable-a.c
1 const int false = 0;
2 int main () { int n, T[1], x;
3 n = 1;
4 x = T[n];
5 __ASTREE_assert((false));
6 }

% astree –exec-fn main unpreditable-a.c |& grep "WARN"
unpreditable-a.c:4.4-8::[call#main@2:]: WARN: invalid dereference: dereferencing
4 byte(s) at offset(s) [4;4] may overflow the variable T of byte-size 4
%

No alarm on assert(false) because execution is assumed to stop after a definite
runtime error with unpredictable results (4).

(4) Equivalent semantics if no alarm.

MPI, 8/26/2008 J✁✁ ✁ – 48 –? []¨ –✄ ✄✄I ľ P. Cousot

Example of error with unpredictable 
output: buffer overflow

34
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Soundness

• In absence of error of type 3. (without unpredictable 
consequences) ! fully sound

• In presence of errors of type 3. (with unpredictable 
consequences),  ASTRÉE may miss further errors 
occuring after this first error due to the unpredictable 
behavior ! sound up to the first error with 
unpredictable consequences

35 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa                                                                                                                                                                                                                                                                  May 3, 2010

Rounding is not an error but is problematic!

36

Example of rounding error

/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951488.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
134217728.000000

Rencontres INRIA–Industrie, 11/10/2007 — 50 — ľ P. Cousot
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Rounding is not an error but is problematic!Example of rounding error

/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951487.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
0.000000

Rencontres INRIA–Industrie, 11/10/2007 — 50 — ľ P. Cousot
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Explanation of the huge rounding error

38

Explanation of the huge rounding error

(1)
x
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Rencontres INRIA–Industrie, 11/10/2007 — 51 — ľ P. Cousot
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Analysis by ASTRÉE

39

Static analysis with Astrée 13
% cat -n double-error.c

2 int main () {
3 double x; float y, z, r;;
4 /* x = ldexp(1.,50)+ldexp(1.,26); */
5 x = 1125899973951488.0;
6 y = x + 1;
7 z = x - 1;
8 r = y - z;
9 __ASTREE_log_vars((r));

10 }
% gcc double-error.c
% ./a.out
134217728.000000
% astree –exec-fn main –print-float-digits 10 double-error.c |& grep "r in "
direct = <float-interval: r in [-134217728, 134217728] >
13 Astrée makes a worst-case assumption on the rounding (+1, `1, 0, nearest) hence the possibility to
get -134217728.

Rencontres INRIA–Industrie, 11/10/2007 — 52 — ľ P. Cousot
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Example of accumulation of rounding errors

40

Example of accumulation of small rounding errors

% cat -n rounding-c.c
1 #include <stdio.h>
2 int main () {
3 int i; double x; x = 0.0;
4 for (i=1; i<=1000000000; i++) {
5 x = x + 1.0/10.0;
6 }
7 printf("x = %f\n", x);
8 }

% gcc rounding-c.c
% ./a.out
x = 99999998.745418
%

since (0:1)10 = (0:0001100110011001100 : : :)2

Rencontres INRIA–Industrie, 11/10/2007 — 53 — ľ P. Cousot

The Patriot missile failure

– “On February 25th, 1991, a Patriot
missile . . . failed to track and inter-
cept an incoming Scud (˜).”
– The software failure was due to accu-
mulated rounding error (y)

(˜) This Scud subsequently hit an Army barracks, killing 28 Americans.
(y)– “Time is kept continuously by the system’s internal clock in

tenths of seconds”

– “The system had been in operation for over 100 consecutive
hours”

– “Because the system had been on so long, the resulting inac-
curacy in the time calculation caused the range gate to shift
so much that the system could not track the incoming Scud”

Rencontres INRIA–Industrie, 11/10/2007 — 55 — ľ P. Cousot
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Analysis by ASTRÉE

41

Static analysis with Astrée
% cat -n rounding.c

1 int main () {
2 double x; x = 0.0;
3 while (1) {
4 x = x + 1.0/10.0;
5 __ASTREE_log_vars((x));
6 __ASTREE_wait_for_clock(());
7 }
8 }

% cat rounding.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem rounding.config –unroll 0 rounding.c\
|& egrep "(x in)|(\|x\|)|(WARN)" | tail -2

direct = <float-interval: x in [0.1, 200000040.938] >
|x| <= 1.*((0. + 0.1/(1.-1))*(1.)^clock - 0.1/(1.-1)) + 0.1

<= 200000040.938

Rencontres INRIA–Industrie, 11/10/2007 — 54 — ľ P. Cousot
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Scaling is not an error but can be problematic

42

Static Analysis of Scaling with Astrée
% cat -n scale.c

1 int main () {
2 float x; x = 0.70000001;
3 while (1) {
4 x = x / 3.0;
5 x = x * 3.0;
6 __ASTREE_log_vars((x));
7 __ASTREE_wait_for_clock(());
8 }
9 }

% gcc scale.c
% ./a.out
x = 0.699999988079071

% cat scale.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem scale.config –unroll 0 scale.c\
|& grep "x in" | tail -1

direct = <float-interval: x in [0.69999986887, 0.700000047684] >
%

Rencontres INRIA–Industrie, 11/10/2007 — 57 — ľ P. Cousot

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Sep. 5, 2006 September 5, 2006 J!!!— 3 — []¨—"""I ľ P. Cousot
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Examples of abstractions in 
ASTRÉE
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Abstractions

44

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics
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Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

•  

• Example:

•  

•

Example of general purpose abstraction: octagons
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Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21
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II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.
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Example of general purpose abstraction: 
decision trees

46

Example of abstract domain functor in Astrée: decision trees

– Code Sample:
/* boolean.c */

typedef enum {F=0,T=1} BOOL;

BOOL B;

void main () {

unsigned int X, Y;

while (1) {

...

B = (X == 0);

...

if (!B) {

Y = 1 / X;

}

...

}

}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

MPI, 8/26/2008 — 66 — ľ P. Cousot

The boolean relation abstract 
domain is parameterized by the 
height of the decision tree (an 
ana lyzer opt ion) and the 
abstract domain at the leaves
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Filters

47

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

– Computes Xn =



¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

Rencontres INRIA–Industrie, 11/10/2007 — 59 — ľ P. Cousot
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Example of domain-specific abstraction: ellipses

48

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — ľ P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.
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Example of domain-specific abstraction: exponentials 

49

Arithmetic-geometric progressions (Example 2)
% cat count.c

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

volatile BOOLEAN I; int R; BOOLEAN T;

void main() {

R = 0;

while (TRUE) {

__ASTREE_log_vars((R));

if (I) { R = R + 1; }

else { R = 0; }

T = (R >= 100);

__ASTREE_wait_for_clock(());

}}

% cat count.config

__ASTREE_volatile_input((I [0,1]));

__ASTREE_max_clock((3600000));

% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!

More precise than the clock domain (intervals for X, X + clock,
X ` clock) which could therefore be suppressed!
MPI, 8/26/2008 — 84 — ľ P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2
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Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]
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x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.
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Example of domain-specific abstraction: exponentials 
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Example of analysis by Astrée (suite)
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev( )
{ X=E;

if (FIRST) { P = X; }
else
{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };
B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev( );
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1 +
1.19209290217e-07)ˆclock - 5.87747175411e-39
/ 1.19209290217e-07 <= 23.0393526881

FICS’08, Shanghai, 3–6/6/2008 — 65 — ľ P. Cousot
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II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2
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±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):
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too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.
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Arithmetic-geometric abstraction

51

Arithmetic-geometric progressions 14 [Fer05]

– Abstract domain: (R+)5

– Concretization:
‚ 2 (R

+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“

λx . ax+ b ‹ (λx . a0x+ b0)k
”

(M)g

i.e. any function bounded by the arithmetic-geometric
progression.
References

[1] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–58, Springer, 2005.14 here in R
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A common believe on static analyzers

“The properties that can be proved by static analyzers are often
simple” [2]
Like in mathematics:

– May be simple to state (no overflow)

– But harder to discover (P 2 [`1325:4522; 1325:4522])
– And difficult to prove (since it requires finding a non trivial
non-linear invariant for second order filters with complex
roots [Fer04], which can hardly be found by exhaustive enu-
meration)

Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.

MPI, 8/26/2008 J✁✁ ✁ – 37 –? []¨ –✄ ✄✄I ľ P. Cousot

An erroneous common belief on static analyzersExample of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — ľ P. Cousot
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Industrial applications
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Examples of applications

54

• Verification of the absence of runtime-errors in 

• Fly-by-wire flight control systems

• ATV docking system 

• Flight warning system
(on-going work)

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa                                                                                                                                                                                                                                                                  May 3, 2010

• 8 years of research (CNRS/ENS/INRIA):
www.astree.ens.fr

• Industrialization by AbsInt (since Jan. 2010):

Industrialization

55

www.absint.com/astree/
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Example of case study: the 
ATV docking control 

software

56
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Support of ASTRÉE
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The ASTRÉE Static Analyzer http://www.astree.ens.fr/
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The ASTRIUM ST case study MSU SW
• The MSU SW contains mainly:

1. Navigation and control 
algorithms

2. A (very simplified) mission 
management

• Single task cyclic synchronous 
software

• Initially in ADA → Scade 5/6 
exact model → C (38K LOCS)

57

The C code of the case study may contain errors!“                                                       ” [ :-) ]
Space 
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Preparatory work

• Definition of stubs for the library (reusable)

• Choice of code generation options for SCADE

• Definition of a few environment properties (a few input 
ranges)

• Setting ASTRÉE parameters

• Analysis takes < 4mn

58
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!Complex control flow
!Quaternion computation (normalisation)

!Runge Kutta integration (4th order integration scheme)

!Kalman filters (8th order linear filter)

!Controller estimation
!Bugs

Alarms raised by ASTRÉE

59

    False alarms

    True alarms
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Analysis of the alarms

60

• Correct bugs (in Scade compiler V6 and in the analyzed 
program)

• Add numerical protections on environment (forgotten 
hypotheses)

• Add numerical protections in computations (in a first 
phase)

 ! 0 false alarms
Very efficient tool compared to Polyspace Verifier
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Resolution of the alarms

61

!Complex control flow
!Quaternion computation
!Runge Kutta integration
!Kalman filters
!Controller estimation
!Bugs

! 0 false alarm

    ! 30 numerical protections

    Corrected

    Improvement of the model

• Manual first phase:

• Automatic second phase:
Design and implementation of a few abstract 
domains (quaternions, Runge Kutta integration, 
Kalman filters) avoiding the unecessary 
protections ! 0 false alarm

    ! 30 numerical protections

    Corrected

    Improvement of the model
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Example of new abstract domain: quaternions

• Quaternions                        are a number system 
extending complex numbers and applied to 
mechanics in three-dimensional space

• ASTRÉE did not handle precisely enough the 
normalization

• An new abstract domain added to ASTRÉE solved 
this problem

• The abstract properties are

where                        are 4 variables and  is an 
interval meaning  

62

conjugated ·. Quaternions are usually converted to rotation matrices and conversely. Quaternion computa-

tions can cause arithmetic overflows. An interesting value for a quaternion q = (u, i, j, k) is its norm ||q||
which is defined as ||q|| �

�
u2 + i2 + j2 + k2. Quaternions are usually meant to be normalized, that is to

have always a unit norm: ||q|| = 1. Yet, because of rounding errors and approximated algorithms, their norm

may diverge along the execution of the program. Thus, quaternions are often re-normalized (or divided by

their norm) so as to avoid overflows.

Hopefully, the norm behaves well with respect to algebraic operations, as stated by the following prop-

erties:

| ||q1||− ||q2|| | ≤ ||q1 + q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

| ||q1||− ||q2|| | ≤ ||q1 − q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

||λ · q|| = |λ| · ||q|| (positive homogeneity)

||q1 × q2|| = ||q1|| · ||q2||
||q|| = ||q||.

(1)

Since it is quite difficult to prove the absence of overflows without tracking the computations over quater-

nions, we have designed a quaternion domain. This domain handles predicates of the form Q(x1, x2, x3, x4, I),

where x1, x2, x3, x4 are four variables and I is an interval. The meaning of such a predicate is that the value

of the expression

�
x2
1 + x2

2 + x2
3 + x2

4 ranges within the interval I. So these predicates encode the properties

of interest in our domain. In order to infer such properties, we need intermediate properties, so as to encode

the fact that a given variable is the given coordinate of a quaternion that is being computed. As a matter

of fact, the domain also handles predicates of the form P (x, i,φ, ε), where x is a variable, i is an integer

in the set {1, 2, 3, 4}, φ is an arithmetic formula over quaternions as defined by the following grammar:

φ � [x1, x2, x3, x4] | λ · φ | φ1 × φ2 | φ1 + φ2 | φ, and ε is a non-negative real number. The meaning of

a predicate P (x, i,φ, ε) is that the value of the i-th coordinate of the quaternion denoted by φ ranges in

the interval [x − ε, x + ε], this way, the number ε can be used to model the rounding errors accumulated

during operations over quaternions. The interpretation of arithmetic formulas is the following: the formula

[x1, x2, x3, x4] denotes the quaternion the four coordinates of which are the values of the variables x1, x2, x3,

and x4, whereas other constructs denote the algebraic operations over quaternions.

Whenever the four coordinates of a given quaternion have been discovered (that is to say that Astrée has

inferred four predicates P (x1, 1, φ, ε1), P (x2, 2, φ, ε2), P (x3, 3, φ, ε3), and P (x4, 4, φ, ε4) where φ is a formula,

x1, x2, x3, and x4 are four program variables, and ε1, ε2, ε3, ε4 are four non-negative real numbers), the

corresponding quaternion is promoted (that is to say that Astrée infers a new predicate Q(x1, x2, x3, x4, I)

where the interval I is obtained by applying the formulas about norm (1) and the first triangle inequality

in order to handle the contribution of rounding errors, which is encoded by the numbers ε1, ε2, ε3, and ε4).

Moreover, the depth of the formulas φ which can occur in predicates can be bounded for efficiency purposes.

Some tuples (x1, x2, x3, x4) of variables can be declared as a quaternion with a norm in a given interval

I by using a directive, so that the end-user can assert some hypotheses about volatile inputs. In such a

case, Astrée assumes that the predicate Q(x1, x2, x3, x4, I) holds, without any check. Moreover, whenever

the values x1, x2, x3, x4 of four variables x1, x2, x3, and x4 are divided by the value of the expression�
x2

1 + x2
2 + x2

3 + x2
4, Astrée promotes them to a new quaternion and computes an interval for its norm

(taking into account rounding errors).

III.J. Combination of abstractions

Astrée uses dozens of abstract domains which can interact with each others.
29

These interactions enable

Astrée to refine abstract elements (as with a partially reduced product of abstract domains (Sect. II.P)),

but also to refine their predicate transformers. Special care has to be taken when reduction is used after

extrapolation (widening or narrowing) steps, in order not to break the construction of inductive invariants.

In Astrée, abstract domains are implemented as independent modules that share a common interface.

Each module implements some primitives such as predicate transformers (abstract assignments, abstract

guards, control-flow joins) and extrapolation primitives (widening and narrowing operators). Moreover,

in order to enable the collaboration between domains, each abstract domain is fitted with some optional

primitives so as to express properties about abstract states in a common format which can be understood by

all abstract domains. Basically, a reduction has to be requested by a computation in an abstract domain. We

distinguish between two kinds of reductions: either the reduction is requested by the domain which misses

an information, or by the domain which discovers an information. This asymmetry enables a fine tuning
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On-going work
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Verification of 
target programs

64
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Verification of compiled programs

65

• The valid source may be proved correct while the 
certified compiler is incorrect so the target program 
may go wrong

• Possible approaches:

• Verification at the target level

• Source to target proof translation and proof 
check on the target

! Translation validation (local verification of 
equivalence of run-time error free source and 
target)

• Formally certified compilers
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Verification of 
imperfectly clocked 

synchronous systems

66
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• Example of (buggy) communicating synchronous systems:

• Synchronized and dysynchronized executions:

Imperfect synchrony

67

But these computations are performed according to two clocks C and C
�
. It may be that these clocks are

synchronous. This case is depicted in the lower left part of Fig. 2. The two alternating boolean outputs of

the two systems being always equal, the comparison always results in no alarm (OK statement).

But maybe the clocks C and C
�
are slightly desynchronized by a small delay ε. This case is depicted in the

lower right part of Fig.2. The two alternating boolean outputs of the two systems are then almost always

equal, but they differ near every clock tick. Then, the comparison being made precisely on those tick, it

always results into an alarm (“!=” statement). However, this alarm is probably unnecessary in that case,

since the desynchronization delay is very small. This desynchronization delay is in practice unavoidable, since

clocks are physical objects and cannot be perfect. This implementation of an alarm is therefore flawed. Such

errors cannot be always discovered by hand. Their detection has to be done automatically and statically.
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Figure 2. Example of two similar imperfectly-synchronous systems with an alarm watching differences in their outputs.

IV.B. Syntax and semantics

We assume that each part of the synchronous software compiled for one precise computer will execute

according to the clock C of that computer with a period (the time between two consecutive clock ticks)

remaining inside a known interval [µC; νC], with 0 < µC � νC. In the quasi-synchronous framework introduced

formally by Caspi et al.,
58

two clocks supposed to tick synchronously are allowed to desynchronize in the

following way: at most two consecutive ticks of one of the clock may happen between two consecutive ticks

of the other clock. This hypothesis is quite weak, and we usually work with a clock whose parameter is such

that 2×µC � νC, which implies quasi-synchrony compared to a perfect clock whose period is between µC and

νC. When µC is close to νC, our hypothesis is stronger and we expect to be able to prove more properties.

Furthermore, each communication channel ch has an interval [αch;βch] as parameter such that the delays

between the emission of a value and its reception must always belong to this interval. The communications

over a given channel are still considered serial, which means that if a value a is sent over channel ch before

a value b, then a is received before b.
In this realistic framework, idealistic cases usually considered can still be modelled. It is then assumed

that all clocks C, C’, . . . are perfect: µC = νC = µC’ = νC’ = . . . and that communications are instantaneous,

i.e., 0 = αch = βch = αch’ = βch’ for all the channels ch, ch’, . . . in the system.
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formally by Caspi et al.,
58

two clocks supposed to tick synchronously are allowed to desynchronize in the

following way: at most two consecutive ticks of one of the clock may happen between two consecutive ticks

of the other clock. This hypothesis is quite weak, and we usually work with a clock whose parameter is such

that 2×µC � νC, which implies quasi-synchrony compared to a perfect clock whose period is between µC and

νC. When µC is close to νC, our hypothesis is stronger and we expect to be able to prove more properties.

Furthermore, each communication channel ch has an interval [αch;βch] as parameter such that the delays

between the emission of a value and its reception must always belong to this interval. The communications

over a given channel are still considered serial, which means that if a value a is sent over channel ch before

a value b, then a is received before b.
In this realistic framework, idealistic cases usually considered can still be modelled. It is then assumed

that all clocks C, C’, . . . are perfect: µC = νC = µC’ = νC’ = . . . and that communications are instantaneous,

i.e., 0 = αch = βch = αch’ = βch’ for all the channels ch, ch’, . . . in the system.
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• negate previous input 
(on clocks C and C’)

• compare inputs

flawed
alarms

blackboard inputs
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Semantics and abstractions

• Continuous semantics (value s(t) of signals s at any 
time t)

• Clock ticks and serial communications do happen in 
known time intervals [l, h], l ≤ h

• Examples of abstractions:

•  

•  

• change counting

(signal changes less (more) than k times in time 
interval [a, b]) 

68

were in fact designed in a continuous world (through differential equations) in an environment (made of
space and time) that is a continuous object. In addition, using a continuous-time semantics enables the use
of very well-known mathematical theories about continuous numbers which are not so frequently used in
static analysis.

IV.D. Temporal abstract domains

IV.D.1. Abstract constraints

A first domain of abstract constraints59 abstracts ℘(R → V) as conjunctive sets of universal and existential
constraints. A universal constraint over a signal s ∈ R → V is defined by a time interval [a; b] and a value x,
and denoted ∀t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value x during
the whole time interval [a; b]. An existential constraint over a signal s is defined by a time interval [a; b] and a
value x, and denoted ∃t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value
x at least once during the time interval [a; b]. For example, ∃t ∈ [0; 1] : s(t) = true ∧ ∃t ∈ [0; 1] : s(t) = false
is the abstraction of functions in R → B that change their boolean value at least once between t = 0 and
t = 1.

The operators defined for usual operations in abstract domains (∪,∩) as well as the backward abstract
operators corresponding to synchronous language primitives (− >, pre, blackboard reading, etc.) are quite
precise in this domain.

IV.D.2. Changes counting domain

A second domain of change counting60 was designed in order to deal automatically with reasoning on the
stability and the variability of systems. The abstract properties (� k, a � �b) and (� k, a � �b), for a, b ∈ R+

and k ∈ N, respectively mean that behaviors do not change their value more (respectively less) than k times
during the time interval [a; b].

This domain is more precise for forward operators and defines a very precise reduced product with the
abstract constraint domain.

An example of reduction is (with times a < b < c < d < e < f) when abstract an property u =
(� 1, a � �e) interacts with the abstract properties v = ∃t ∈ [b; c] : s(t) = x and w = ∀t ∈ [d; f ] : s(t) = x.
Then, if there is at least one value change between c and d, then there are actually at least two changes.
Indeed, at some time t ∈ [c; d), the value has to be some y �= x, since at time d it has to be x (by w) and it
changes at least once in [c, d]. Then, at some point t� ∈ [b; c], the value has to be x (by v) which makes two
value changes: one between t� and t, and one between t and d. This is excluded by the stability property
u. As a consequence, there is no value change between c and d and, since the value at time d is x and
does not change, the value has to remain equal to x during whole time interval, which can be translated
into ∀t ∈ [c; d] : s(t) = x. This constraint merges with the constraint ∀t ∈ [d; f ] : s(t) = x and yields
∀t ∈ [c; f ] : s(t) = x.

IV.E. Application to redundant systems

It is often the case that similar (if not identical) systems run in parallel so that, in case one system has
a hardware failure, it is detected, either by the other similar systems or by a dedicated unit, and only
redundant units keep performing the computation. The continuous-time semantics presented in this section
has been precisely designed to prove the properties of such systems.

Another classic embedded unit aims at treating sensor values. Sensor values are indeed very unstable and
usually get stabilized by a synchronous system. The temporal abstract domains we introduced are precise
as well on the code for those systems.

A prototype static analyzer has been developed implementing the two temporal abstract domains pre-
sented as well as other, less central domains. This prototype is independent from Astrée (Sect. III) and
Thésée (Sect. VI).

The prototype analyzer was able to prove some temporal specification of redundant systems with a voting
system deciding between them. Furthermore, when some property did not hold, looking at the remaining
abstract set sometimes led to actual erroneous traces in altered implementations.

An example analysis involved the code used in industry as a test for such systems where clocks may
desynchronize and communication might be delayed. No hypothesis was given on the inputs of the studied
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Example of static analysis

69

Real code Analysis Analysis

Static analysis of communicating imperfectly clocked

redundant units
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For how long 
should the input 
b e s t a b i l i z e d 
before deciding 
on disagreement?
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Formal verification of static analyzers

70

• Intensive work on formalizing the theory of abstract 
interpretation in Coq

• Proofs essentially done by hand

• Presently verify the correctness of the 
implementation of abstract domains (e.g. intervals, 
octagons, ...)

• Then consider combinations of abstract domains

• Ultimately might be able to consider the whole static 
analyzer
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THÉSÉE: Verification of 
embedded real-time parallel 

C programs
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Parallel programs

72

• Bounded number of processes with shared memory, 
events, semaphores, message queues, blackboards,…

• Processes created at initialization only

• Real time operating system (ARINC 653) with fixed 
priorities (highest priority runs first)

• Scheduled on a single processor

Verified properties

• Absence of runtime errors

• Absence of unprotected data races
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Semantics

• No memory consistency model for C

• Optimizing compilers consider sequential processes 
out of their execution context

• We assume: 
• sequential consistency in absence of data race
• for data races, values are limited by possible 

interleavings between synchronization points

73

init: flag1 = flag2 = 0

process 1: process 2:

flag1 = 1; flag2 = 1;

if (!flag2) if (!flag1)

{ {
/* critical section */ /* critical section */

In the Java memory model, both processes can enter their critical section simultaneously. The rationale

is that, due to process-wide program optimisation without knowledge of other processes, a compiler might

assume that, e.g., in process 1, the write to flag1 and the read from flag2 are independent and can be

reordered, and the same for process 2, flag2 and flag1 respectively. As a consequence, each process can

read the other process’ flag before setting its own flag. Multi-processors with out-of-order execution or not

fully synchronized caches can also cause similar behaviors, even in the absence of compiler optimizations.

There is currently no memory consistency model for C; however, we need to choose one in order to

define our concrete semantics. It is safe to assume that, as C++, C will guarantee sequential consistency

for programs without data-race. We also draw from the Java model75 to give a semantics to unprotected

accesses, so that we can analyze the behavior of a program after a data-race. More precisely, assume that

a run of a process p performs a sequence of synchronisation operations at times t1 < . . . < tn, and a run

of another process p� performs two synchronisation operations at time t�1 < t�2; denote i and j such that

ti ≤ t�1 < ti+1 and tj ≤ t�2 < tj+1; then, a read from a variable v in p� between t�1 and t�2 can return either:

1) any value written to v by p between ti and tj+1 (unsynchronized access), or 2) the last value written to

v by p before ti if any or its initial value if none (synchronized access), or 3) the last value written to v by

p� if either the value was written after t�1 or there is no write from p to v before ti. This can be formalized

in fixpoint form76,77 and requires the D state components to store sets of values written to global variables

by processes (instead of a simple map). This semantics is sound to analyze data-race-free programs, and it

is also sound for programs with data-races under reasonable hypotheses75 on the optimizations used by the

compiler and the hardware consistency model enforced by the processor(s).

VI.B.2. Scheduling and synchronisation

The U state component in our concrete semantics models the scheduler state, which in turns defines which

process can run and which must wait. Firstly, it maintains the state of synchronisation objects, e.g., for each

mutex (there are finitely many), whether it is unlocked or locked by a process (and which one). Secondly, it

remembers, for each process, whether it is waiting for a resource internal to the system (e.g., trying to lock

an already locked mutex), for an external event (e.g., a message from the environment or a timeout), or is

runnable (i.e., either actually running or preempted by another process). As we assume that the scheduler

obeys a strict real-time semantics and there is a single processor, only one process can be scheduled in a

given state: the runnable process with highest priority. All higher priority processes are waiting at a system

call, while lower priority processes can be either waiting at a system call, or be runnable and preempted at

any program point.

The execution of a synchronisation primitive by the running process updates the scheduling state U . For

instance, trying to lock an already locked mutex causes the process to enter a wait state, while unlocking a

locked mutex causes either the mutex to be unlocked (if no process is waiting for it), or the mutex ownership

to pass to the highest priority process waiting for it (which then becomes runnable, and possibly preempts

the current process). Moreover, U might change due to external events, which we assume can take place at

any time. For instance, a process performing a timed wait enters a non-deterministic wait phase but can

become runnable at any time (as we do not model physical time), and possible preempt a lower priority

running process.

VI.C. Abstraction

Our prototype analyzer of parallel embedded realtime software, named Thésée, is based on Astrée
(Sect. III). It has a similar structure, reuses most of its abstractions (e.g., general-purpose numerical ab-

stractions for Di, trace partitioning with respect to Ci, etc.) and adds some more.
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 write to flag1/2 and 
read of flag2/1 are 
independent so can be 
reordered → error!
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Abstractions

• Based on Astrée for the sequential processes

• Takes scheduling into account

• OS entry points (semaphores, logbooks, sampling 
and queuing ports, buffers, blackboards, …) are all 
stubbed (using Astrée stubbing directives)

• Interference between processes: flow-insensitive 
abstraction of the writes to shared memory and 
inter-process communications

74

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa                                                                                                                                                                                                                                                                  May 3, 2010

Example of static analysis of a complex 
parallel application

• Degraded mode (5 processes, 100 000 LOCS)

• 1h40 on 64-bit 2.66 GHz Intel server

• 98 alarms

• Full mode (15 processes, 1 600 000 LOCS)

• 50 h

• 12 000 alarms !!! more work to be done !!! (e.g. 
analysis of complex data structures, logs, etc)
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Conclusion

76
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Cost-effective verification

77

• The rumor has it that:

• Manuel validation (testing) is costly, unsafe, not a 
verification!

• Formal proofs by theorem provers are 
extremely laborious hence costly

• Model-checkers do not scale up

• Why not try abstract interpretation?

• Domain-specific static analysis scales and can 
deliver no false alarm
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Characteristics of ASTRÉE (cont’d)

78

Characteristics of the Astrée Analyzer (Cont’d)

Sound: – Astrée is a bug eradicator: finds all bugs

in a well-defined class (runtime errors)
– Astrée is not a bug hunter: finding some bugs in a
well-defined class (e.g. by bug pattern detection like
FindBugsŮ, PREfast or PMD)
– Astrée is exhaustive: covers the whole state space ( 6=
MAGIC, CBMC)
– Astrée is comprehensive: never omits potential er-
rors ( 6= UNO, CMC from coverity.com) or sort most
probable ones to avoid overwhelming messages ( 6= Splint)

Rencontres INRIA–Industrie, 11/10/2007 — 73 — ľ P. Cousot
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Characteristics of ASTRÉE (cont’d)Characteristics of the Astrée Analyzer (Cont’d)

Static: compile time analysis (6= run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs ( 6= PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed ( 6= ESC Java,
ESC Java 2), or PREfast (annotate functions with
intended use)

Rencontres INRIA–Industrie, 11/10/2007 — 74 — ľ P. Cousot
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Characteristics of ASTRÉE (cont’d)Characteristics of the Astrée Analyzer (Cont’d)

Multiabstraction: uses many numerical/symbolic abstract
domains ( 6= symbolic constraints in Bane or the
canonical abstraction of TVLA)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing ( 6= model checking based
analyzers such as Bandera, Bogor, Java PathFinder,
Spin, VeriSoft)

Efficient: always terminate (6= counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

Rencontres INRIA–Industrie, 11/10/2007 — 75 — ľ P. Cousot
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Characteristics of the Astrée Analyzer (Cont’d)

Extensible/Specializable: can easily incorporate new abstrac-
tions (and reduction with already existing abstract
domains) ( 6= general-purpose analyzers PolySpace
Verifier)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

Rencontres INRIA–Industrie, 11/10/2007 — 76 — ľ P. Cousot

Characteristics of ASTRÉE (cont’d)
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Characteristics of ASTRÉE (cont’d)Characteristics of the Astrée Analyzer (Cont’d)

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: very few or no false alarm when adapted to an
application domain !̀ it is a VERIFIER!

Rencontres INRIA–Industrie, 11/10/2007 — 77 — ľ P. Cousot
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Basic introductions to abstract abstract 
interpretation

85
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