
CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

May 3, 2010

Embedded software verification by
abstract interpretation

Patrick Cousot
CIMS – NYU & ENS

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa

1 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

• Motivation for static analysis

• An informal introduction to abstract interpretation

• A short overview of a few applications and on-going
work on aerospace software

• References

Content

2

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Motivation

3 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Computer scientists have made great
contributions to failures of complex systems

4

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Sep. 5, 2006 September 5, 2006 J!!!— 3 — []¨—"""I ľ P. Cousot

• Onboard checking the presence of bugs is great!

• Proving their absence is even better!!!

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Static analysis

5 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Static analysis

6

• Static analysis consists in automatically answering
questions about the runtime executions of programs

• Static means « at compile time », by examining the
program text only, without executions on computers

• Automatic means by a computer, without human
intervention during the analysis

Program

Question

Static
analyzer
program

Computer

Answer

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Static analysis is undecidable

• Undecidability essentially means that any static
analyzer/verifier cannot answer “yes” or “no” to a
question about all input programs

• It will not terminate or will terminate with answer
«!I don’t know!» on infinitely many input programs

7 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Facing undecidability
• Degugging: test a few … many cases ! costly,

unsafe, not a verification!

• Deductive methods: ask for human help (e.g. to make
guesses or guide a theorem prover) ! complex,
error-prone & very costly

• Model checking: explore finite models of programs !
combinatorial explosion & models may be different
from programs

• Abstract interpretation: make sound approximations of
program executions ! always terminate but some
potential bug warinings may be false alarms (when
the abstraction is incomplete)

8

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Abstract interpretation

9 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Abstract interpretation

10

• Started in the 70’s and well-developped since then

• Originally for inferring program invariants (with first
applications to compilation, optimization, program
transformation, to help hand-made proofs, etc)

• Based on the idea that undecidability and complexity
of automated program analysis can be fought by
approximation

• Applications evolved from static analysis to verification

• !Does scale up!

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

An informal introduction to
abstract interpretation

11 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

1) Define the programming language semantics

12

Formalize the concrete execution of programs (e.g. transition system)

x

y

Trajectory
in state space

Space/time trajectory

(x,y)

t

x

y

t=0

t=1

t=2

t=…

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

II) Define the program properties of interest

13

Formalize what you are interested to know about program behaviors

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

III) Define which specification must be checked

14

Formalize what you are interested to prove about program behaviors

!"#$%&'()*"('

+",,%$-')
.#/0'1."#%',

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

IV) Choose the appropriate abstraction

15

Abstract away all information on program behaviors irrelevant to the proof

!"#$%&#'$()&'$

*"++&,-$%
'(./$0'"(&$+

1,+'(.0'&"#%"2%'3$%'(./$0'"(&$+

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

!"##$%&'(
)*+,'-)"*$'#

."*%$//'0(1"0'

2%#)*+-)$"0("3()4'()*+,'-)"*$'#

V) Mechanically verify in the abstract

16

The proof is fully automatic

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2$,.#/1.%"()"3).4').#/0'1."#%',

Soundness of the abstract verification

17

Never forget any possible case so the abstract proof is correct in the concrete

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Unsound validation: testing

18

Try a few cases

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Bounded model-checking

Forbidden zone

Possible
trajectories

Unsound validation: bounded model-checking

19

Simulate the beginning of all executions

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Unsound validation: static analysis

20

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#)"#)3/-,')/-/#4)5

6-/#4)777

Incompleteness

21

When abstract proofs may fail while concrete proofs would succeed

By soundness an alarm must be raised for this overapproximation!

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#

3-/#4)555

True error

22

The abstract alarm may correspond to a concrete error

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

!"#$%&&'())*"('

+",,%$-')
.#/0'1."#%',

!/-,')/-/#2

3-/#2)444

False alarm

23

The abstract alarm may correspond to no concrete error (false negative)

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Principle of an abstract interpreter

24

• Read the input program

• Optionally read the question (can be implicit e.g.
absence of runtime errors or inserted in the
program e.g. assert)

• Compute the abstraction of the program execution

• Output the result:

• Answer to the question (yes, no, I don’t know)

• Optionally, provide information on program
execution (e.g. over-approximation of the range
of variation of numerical variables, shape of data
structures, etc)

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

What to do about false alarms?

25

• Automatic refinement: inefficient and may not
terminate (Gödel)

• Domain-specific abstraction:

• Adapt the abstraction to the programming
paradigms typically used in given domain-specific
applications

• e.g. synchronous control/command: no recursion, no
dynamic memory allocation, maximum execution
time, etc.

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

ASTRÉE

26

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Target language and applications

27

• C programming language

• Without recursion, longjump, dynamic
memory allocation, conflicting side effects,
backward jumps, system calls (stubs)

• With all its horrors (union, pointer
arithmetics, etc)

• Reasonably extending the standard (e.g. size &
endianess of integers, IEEE 754-1985 floats, etc)

• Synchronous control/command

• e.g. generated from Scade/Lustre, Simulink, or a
proprietary system

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

The class of considered periodic
synchronous programs

28

The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever

- read volatile input variables,
- compute output and state variables,
- write to output variables;
__ASTREE_wait_for_clock ();
end loop

Task scheduling is static:
– Requirements: the only interrupts are clock ticks;
– Execution time of loop body less than a clock tick,
as verified by the aiT WCET Analyzers [FHL+01].

Rencontres INRIA–Industrie, 11/10/2007 — 38 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

The semantics of C implementations
is very hard to define

29

The Semantics of C is Hard (Ex. 2: Runtime Errors)

What is the effect of out-of-bounds array indexing?
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

Yields different results on different machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC

n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits

Bus error PC Intel 64 bits

MPI, 8/26/2008 — 46 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Implicit specification

30

• Absence of runtime errors: overflows, division by
zero, buffer overflow, null & dangling pointers,
alignment errors, …

• Semantics of runtime errors:

1. Terminating execution: stop (e.g. floating-point
exceptions when traps are activated)

2. Predictable outcome: go on with worst case
(e.g. signed integer overflows result in some
integer, some options: e.g. modulo arithmetics)

3. Unpredictable outcome: stop on error (e.g.
memory corruption), go on with non-erroneous
cases

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of error with predictable output:
modular arithmetics

31

Modular arithmetics is not very intuitive
In C:
% cat -n modulo-c.c

1 #include <stdio.h>
2 int main () {
3 int x,y;
4 x = -2147483647 / -1;
5 y = ((-x) -1) / -1;
6 printf("x = %i, y = %i\n",x,y);
7 }
8

% gcc modulo-c.c
% ./a.out
x = 2147483647, y = -2147483648

Rencontres INRIA–Industrie, 11/10/2007 — 44 — ľ P. Cousot

positive

negative

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Analysis by ASTRÉE

32

Static Analysis with Astrée
% cat -n modulo.c

1 int main () {
2 int x,y;
3 x = -2147483647 / -1;
4 y = ((-x) -1) / -1;
5 __ASTREE_log_vars((x,y));
6 }
7

% astree –exec-fn main –unroll 0 modulo.c\
|& egrep -A 1 "(<integers)|(WARN)"

modulo.c:4.4-18::[call#main@1:]: WARN: signed int arithmetic range
{2147483648} not included in [-2147483648, 2147483647]
<integers (intv+cong+bitfield+set): y in [-2147483648, 2147483647] /\ Top,
x in {2147483647} /\ {2147483647} >

Astrée signals the overflow and goes on with an unkown value.

Rencontres INRIA–Industrie, 11/10/2007 — 45 — ľ P. Cousot

ASTRÉE signals the overflow and goes on with an
unknown integer (as required by the C standard)

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 201033

Example of error with predictable output:
float arithmetics

Float Arithmetics does Overflow

In C:
% cat -n overflow.c
1 void main () {
2 double x,y;
3 x = 1.0e+256 * 1.0e+256;
4 y = 1.0e+256 * -1.0e+256;
5 __ASTREE_log_vars((x,y));
6 }

% gcc overflow.c
% ./a.out
x = inf, y = -inf

% astree –exec-fn main
overflow.c |& grep "WARN"
overflow.c:3.4-23::[call#main1:]:
WARN: double arithmetic range
[1.79769e+308, inf] not
included in [-1.79769e+308,
1.79769e+308]
overflow.c:4.4-24::[call#main1:]:
WARN: double arithmetic range
[-inf, -1.79769e+308] not
included in [-1.79769e+308,
1.79769e+308]

Rencontres INRIA–Industrie, 11/10/2007 — 47 — ľ P. Cousot

The Ariane 5.01 maiden flight failure

– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher self-
detroyed after 42 seconds
of flight because of a
software overflow

A 16 bits piece of code of Ariane 4 had been reused within the new 32 bits code for Ariane 5.
This caused an uncaught overflow, ultimately making the launcher uncontrolable.

Rencontres INRIA–Industrie, 11/10/2007 — 48 — ľ P. Cousot

The Ariane 5.01 maiden flight failure

– June 4th, 1996 was the
maiden flight of Ariane 5
– The launcher was de-
troyed after 40 seconds
of flight because of a
software overflow12

12 A 16 bit piece of code of Ariane 4 had been reused within the new 32 bit code for Ariane 5.
This caused an uncaught overflow, making the launcher uncontrolable.

Rencontres INRIA–Industrie, 11/10/2007 — 48 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Analysis by Astrée

% cat -n unpreditable-a.c
1 const int false = 0;
2 int main () { int n, T[1], x;
3 n = 1;
4 x = T[n];
5 __ASTREE_assert((false));
6 }

% astree –exec-fn main unpreditable-a.c |& grep "WARN"
unpreditable-a.c:4.4-8::[call#main@2:]: WARN: invalid dereference: dereferencing
4 byte(s) at offset(s) [4;4] may overflow the variable T of byte-size 4
%

No alarm on assert(false) because execution is assumed to stop after a definite
runtime error with unpredictable results (4).

(4) Equivalent semantics if no alarm.

MPI, 8/26/2008 J✁✁ ✁ – 48 –? []¨ –✄ ✄✄I ľ P. Cousot

Example of error with unpredictable
output: buffer overflow

34

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Soundness

• In absence of error of type 3. (without unpredictable
consequences) ! fully sound

• In presence of errors of type 3. (with unpredictable
consequences), ASTRÉE may miss further errors
occuring after this first error due to the unpredictable
behavior ! sound up to the first error with
unpredictable consequences

35 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Rounding is not an error but is problematic!

36

Example of rounding error

/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951488.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
134217728.000000

Rencontres INRIA–Industrie, 11/10/2007 — 50 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 201037

Rounding is not an error but is problematic!Example of rounding error

/* float-error.c */
int main () {

float x, y, z, r;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
printf("%f\n", r);

}
% gcc float-error.c
% ./a.out
0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */
int main () {
double x; float y, z, r;
/* x = ldexp(1.,50)+ldexp(1.,26); */
x = 1125899973951487.0;
y = x + 1;
z = x - 1;
r = y - z;
printf("%f\n", r);
}
% gcc double-error.c
% ./a.out
0.000000

Rencontres INRIA–Industrie, 11/10/2007 — 50 — ľ P. Cousot
CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Explanation of the huge rounding error

38

Explanation of the huge rounding error

(1)
x

!"#$%

&$'#(%
x)*+

,*
x-*+

,*
x

!'./01/2

(2)
x

3'.4$"%

!"#$%

&$'#(%

x)*x-*
x

!'./01/2

*56,*77,89+

,

Rencontres INRIA–Industrie, 11/10/2007 — 51 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Analysis by ASTRÉE

39

Static analysis with Astrée 13
% cat -n double-error.c

2 int main () {
3 double x; float y, z, r;;
4 /* x = ldexp(1.,50)+ldexp(1.,26); */
5 x = 1125899973951488.0;
6 y = x + 1;
7 z = x - 1;
8 r = y - z;
9 __ASTREE_log_vars((r));

10 }
% gcc double-error.c
% ./a.out
134217728.000000
% astree –exec-fn main –print-float-digits 10 double-error.c |& grep "r in "
direct = <float-interval: r in [-134217728, 134217728] >
13 Astrée makes a worst-case assumption on the rounding (+1, `1, 0, nearest) hence the possibility to
get -134217728.

Rencontres INRIA–Industrie, 11/10/2007 — 52 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of accumulation of rounding errors

40

Example of accumulation of small rounding errors

% cat -n rounding-c.c
1 #include <stdio.h>
2 int main () {
3 int i; double x; x = 0.0;
4 for (i=1; i<=1000000000; i++) {
5 x = x + 1.0/10.0;
6 }
7 printf("x = %f\n", x);
8 }

% gcc rounding-c.c
% ./a.out
x = 99999998.745418
%

since (0:1)10 = (0:0001100110011001100 : : :)2

Rencontres INRIA–Industrie, 11/10/2007 — 53 — ľ P. Cousot

The Patriot missile failure

– “On February 25th, 1991, a Patriot
missile . . . failed to track and inter-
cept an incoming Scud (˜).”
– The software failure was due to accu-
mulated rounding error (y)

(˜) This Scud subsequently hit an Army barracks, killing 28 Americans.
(y)– “Time is kept continuously by the system’s internal clock in

tenths of seconds”

– “The system had been in operation for over 100 consecutive
hours”

– “Because the system had been on so long, the resulting inac-
curacy in the time calculation caused the range gate to shift
so much that the system could not track the incoming Scud”

Rencontres INRIA–Industrie, 11/10/2007 — 55 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Analysis by ASTRÉE

41

Static analysis with Astrée
% cat -n rounding.c

1 int main () {
2 double x; x = 0.0;
3 while (1) {
4 x = x + 1.0/10.0;
5 __ASTREE_log_vars((x));
6 __ASTREE_wait_for_clock(());
7 }
8 }

% cat rounding.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem rounding.config –unroll 0 rounding.c\
|& egrep "(x in)|(\|x\|)|(WARN)" | tail -2

direct = <float-interval: x in [0.1, 200000040.938] >
|x| <= 1.*((0. + 0.1/(1.-1))*(1.)^clock - 0.1/(1.-1)) + 0.1

<= 200000040.938

Rencontres INRIA–Industrie, 11/10/2007 — 54 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Scaling is not an error but can be problematic

42

Static Analysis of Scaling with Astrée
% cat -n scale.c

1 int main () {
2 float x; x = 0.70000001;
3 while (1) {
4 x = x / 3.0;
5 x = x * 3.0;
6 __ASTREE_log_vars((x));
7 __ASTREE_wait_for_clock(());
8 }
9 }

% gcc scale.c
% ./a.out
x = 0.699999988079071

% cat scale.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem scale.config –unroll 0 scale.c\
|& grep "x in" | tail -1

direct = <float-interval: x in [0.69999986887, 0.700000047684] >
%

Rencontres INRIA–Industrie, 11/10/2007 — 57 — ľ P. Cousot

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Sep. 5, 2006 September 5, 2006 J!!!— 3 — []¨—"""I ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Examples of abstractions in
ASTRÉE

43 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Abstractions

44

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

•

• Example:

•

•

Example of general purpose abstraction: octagons

45

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of general purpose abstraction:
decision trees

46

Example of abstract domain functor in Astrée: decision trees

– Code Sample:
/* boolean.c */

typedef enum {F=0,T=1} BOOL;

BOOL B;

void main () {

unsigned int X, Y;

while (1) {

...

B = (X == 0);

...

if (!B) {

Y = 1 / X;

}

...

}

}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

MPI, 8/26/2008 — 66 — ľ P. Cousot

The boolean relation abstract
domain is parameterized by the
height of the decision tree (an
ana lyzer opt ion) and the
abstract domain at the leaves

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Filters

47

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

– Computes Xn =



¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

Rencontres INRIA–Industrie, 11/10/2007 — 59 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of domain-specific abstraction: ellipses

48

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — ľ P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of domain-specific abstraction: exponentials

49

Arithmetic-geometric progressions (Example 2)
% cat count.c

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

volatile BOOLEAN I; int R; BOOLEAN T;

void main() {

R = 0;

while (TRUE) {

__ASTREE_log_vars((R));

if (I) { R = R + 1; }

else { R = 0; }

T = (R >= 100);

__ASTREE_wait_for_clock(());

}}

% cat count.config

__ASTREE_volatile_input((I [0,1]));

__ASTREE_max_clock((3600000));

% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!

More precise than the clock domain (intervals for X, X + clock,
X ` clock) which could therefore be suppressed!
MPI, 8/26/2008 — 84 — ľ P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of domain-specific abstraction: exponentials

50

Example of analysis by Astrée (suite)
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev()
{ X=E;

if (FIRST) { P = X; }
else
{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };
B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1 +
1.19209290217e-07)ˆclock - 5.87747175411e-39
/ 1.19209290217e-07 <= 23.0393526881

FICS’08, Shanghai, 3–6/6/2008 — 65 — ľ P. Cousot

Example of analysis by Astrée (suite)
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev()
{ X=E;

if (FIRST) { P = X; }
else
{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };
B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1 +
1.19209290217e-07)ˆclock - 5.87747175411e-39
/ 1.19209290217e-07 <= 23.0393526881

FICS’08, Shanghai, 3–6/6/2008 — 65 — ľ P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several different abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ∈ [a, b] x ≡ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y � a x2 + by2 − axy � d −abt � y(t) � abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, difficult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics C�t�I. The combination of these
analyses is sound as C�t�I ⊆ γ1(lfp⊆F1) ∩ · · · ∩ γn(lfp⊆Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ∈ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ∈ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (�x1, . . . , xn�) � ρ(�F1(x1), . . . ,
Fn(xn�) and �r1, . . . , rn� = lfp⊆F in C�t�I ⊆ γ1(r1) ∩ · · · ∩ γn(rn)” where ρ performs the reduction between
abstract domains. For example ρ(�[0, 100], odd�) = �[1, 99], odd�.

10 of 38

American Institute of Aeronautics and Astronautics

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Arithmetic-geometric abstraction

51

Arithmetic-geometric progressions 14 [Fer05]

– Abstract domain: (R+)5

– Concretization:
‚ 2 (R

+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“

λx . ax+ b ‹ (λx . a0x+ b0)k
”

(M)g

i.e. any function bounded by the arithmetic-geometric
progression.
References

[1] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–58, Springer, 2005.14 here in R

Rencontres INRIA–Industrie, 11/10/2007 — 64 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 201052

A common believe on static analyzers

“The properties that can be proved by static analyzers are often
simple” [2]
Like in mathematics:

– May be simple to state (no overflow)

– But harder to discover (P 2 [`1325:4522; 1325:4522])
– And difficult to prove (since it requires finding a non trivial
non-linear invariant for second order filters with complex
roots [Fer04], which can hardly be found by exhaustive enu-
meration)

Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.

MPI, 8/26/2008 J✁✁ ✁ – 37 –? []¨ –✄ ✄✄I ľ P. Cousot

An erroneous common belief on static analyzersExample of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — ľ P. Cousot

()

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Industrial applications

53 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Examples of applications

54

• Verification of the absence of runtime-errors in

• Fly-by-wire flight control systems

• ATV docking system

• Flight warning system
(on-going work)

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

• 8 years of research (CNRS/ENS/INRIA):
www.astree.ens.fr

• Industrialization by AbsInt (since Jan. 2010):

Industrialization

55

www.absint.com/astree/

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of case study: the
ATV docking control

software

56

The development of the ASTRÉE Static Analyzer was supported in part by the French
exploratory project ASTRÉE of the Réseau National de recherche et d'innovation en
Technologies Logicielles (RNTL) (2002—2006). The final review of the ASTRÉE project

was on July 7th, 2006.

In EMSOFT 2007, Embedded Systems Week, Salzburg, Austria, September 30th, 2007, pp. 7—9,
ACM Press.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, and Xavier Rival.
Why does ASTRÉE scale up.
Formal Methods in System Design, Springer, to appear, 2010.

29.

Bibliographic References on the Industrial Use of ASTRÉE

David Delmas and Jean Souyris.
ASTRÉE: from Research to Industry.

Proc. 14th International Static Analysis Symposium, SAS 2007, G. Filé & H. Riis-Nielson (eds),
Kongens Lyngby, Denmark, 22-24 August 2007, LNCS 4634, pp. 437—451, © Springer, Berlin.

30.

Jean Souyris and David Delmas.
Experimental Assessment of ASTRÉE on Safety-Critical Avionics Software.
Proc. Int. Conf. Computer Safety, Reliability, and Security, SAFECOMP 2007, Francesca Saglietti
and Norbert Oster (Eds.), Nuremberg, Germany, September 18—21, 2007, Volume 4680 of
Lecture Notes in Computer Science, pp. 479—490, © Springer, Berlin.

31.

O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, E. Goubault, D. Lesens, L.
Mauborgne, A. Miné, S. Putot, X. Rival, M. Turin.
Space software validation using Abstract Interpretation.

Proc. 13thData Systems in Aerospace, DASIA 2009, Istanbul, Turkey, 26-29 May 2009,
© Eurospace, Paris.

32.

News on ASTRÉE in the press

Le Journal du CNRS, Nº 182, mars 2005, page 35, Le CNRS, l'A380 et l'aéronautique de demain.

Le Monde, Nº 18741, 27 avril 2005, page 18, L'avion qui "bat des ailes" a fédéré de nombreux
chercheurs.

Software ohne Fehl und Tadel by Karlhorst Klotz, Das M.I.T. Magazin für Innovation Technology,
21 June 2005.

Le Journal du CNRS, Nº 185, juin 2005, page 25, A380 : Le CNRS à la fête.

Le Journal du CNRS, Nº 185, juin 2005, pages 25-27, Sécurité : toujours plus !

Le Journal du CNRS, Nº 239, décembre 2009, page 14, Le CNRS décolle avec l'A380

Support of ASTRÉE

Pictures of ASTRÉE

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

11 of 12 4/30/10 11:29 AM

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

The ASTRIUM ST case study MSU SW
• The MSU SW contains mainly:

1. Navigation and control
algorithms

2. A (very simplified) mission
management

• Single task cyclic synchronous
software

• Initially in ADA → Scade 5/6
exact model → C (38K LOCS)

57

The C code of the case study may contain errors!“ ” [:-)]
Space

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Preparatory work

• Definition of stubs for the library (reusable)

• Choice of code generation options for SCADE

• Definition of a few environment properties (a few input
ranges)

• Setting ASTRÉE parameters

• Analysis takes < 4mn

58

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

!Complex control flow
!Quaternion computation (normalisation)

!Runge Kutta integration (4th order integration scheme)

!Kalman filters (8th order linear filter)

!Controller estimation
!Bugs

Alarms raised by ASTRÉE

59

 False alarms

 True alarms

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Analysis of the alarms

60

• Correct bugs (in Scade compiler V6 and in the analyzed
program)

• Add numerical protections on environment (forgotten
hypotheses)

• Add numerical protections in computations (in a first
phase)

 ! 0 false alarms
Very efficient tool compared to Polyspace Verifier

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Resolution of the alarms

61

!Complex control flow
!Quaternion computation
!Runge Kutta integration
!Kalman filters
!Controller estimation
!Bugs

! 0 false alarm

 ! 30 numerical protections

 Corrected

 Improvement of the model

• Manual first phase:

• Automatic second phase:
Design and implementation of a few abstract
domains (quaternions, Runge Kutta integration,
Kalman filters) avoiding the unecessary
protections ! 0 false alarm

 ! 30 numerical protections

 Corrected

 Improvement of the model

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of new abstract domain: quaternions

• Quaternions are a number system
extending complex numbers and applied to
mechanics in three-dimensional space

• ASTRÉE did not handle precisely enough the
normalization

• An new abstract domain added to ASTRÉE solved
this problem

• The abstract properties are

where are 4 variables and is an
interval meaning

62

conjugated ·. Quaternions are usually converted to rotation matrices and conversely. Quaternion computa-

tions can cause arithmetic overflows. An interesting value for a quaternion q = (u, i, j, k) is its norm ||q||
which is defined as ||q|| �

�
u2 + i2 + j2 + k2. Quaternions are usually meant to be normalized, that is to

have always a unit norm: ||q|| = 1. Yet, because of rounding errors and approximated algorithms, their norm

may diverge along the execution of the program. Thus, quaternions are often re-normalized (or divided by

their norm) so as to avoid overflows.

Hopefully, the norm behaves well with respect to algebraic operations, as stated by the following prop-

erties:

| ||q1||− ||q2|| | ≤ ||q1 + q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

| ||q1||− ||q2|| | ≤ ||q1 − q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

||λ · q|| = |λ| · ||q|| (positive homogeneity)

||q1 × q2|| = ||q1|| · ||q2||
||q|| = ||q||.

(1)

Since it is quite difficult to prove the absence of overflows without tracking the computations over quater-

nions, we have designed a quaternion domain. This domain handles predicates of the form Q(x1, x2, x3, x4, I),

where x1, x2, x3, x4 are four variables and I is an interval. The meaning of such a predicate is that the value

of the expression

�
x2
1 + x2

2 + x2
3 + x2

4 ranges within the interval I. So these predicates encode the properties

of interest in our domain. In order to infer such properties, we need intermediate properties, so as to encode

the fact that a given variable is the given coordinate of a quaternion that is being computed. As a matter

of fact, the domain also handles predicates of the form P (x, i,φ, ε), where x is a variable, i is an integer

in the set {1, 2, 3, 4}, φ is an arithmetic formula over quaternions as defined by the following grammar:

φ � [x1, x2, x3, x4] | λ · φ | φ1 × φ2 | φ1 + φ2 | φ, and ε is a non-negative real number. The meaning of

a predicate P (x, i,φ, ε) is that the value of the i-th coordinate of the quaternion denoted by φ ranges in

the interval [x − ε, x + ε], this way, the number ε can be used to model the rounding errors accumulated

during operations over quaternions. The interpretation of arithmetic formulas is the following: the formula

[x1, x2, x3, x4] denotes the quaternion the four coordinates of which are the values of the variables x1, x2, x3,

and x4, whereas other constructs denote the algebraic operations over quaternions.

Whenever the four coordinates of a given quaternion have been discovered (that is to say that Astrée has

inferred four predicates P (x1, 1, φ, ε1), P (x2, 2, φ, ε2), P (x3, 3, φ, ε3), and P (x4, 4, φ, ε4) where φ is a formula,

x1, x2, x3, and x4 are four program variables, and ε1, ε2, ε3, ε4 are four non-negative real numbers), the

corresponding quaternion is promoted (that is to say that Astrée infers a new predicate Q(x1, x2, x3, x4, I)

where the interval I is obtained by applying the formulas about norm (1) and the first triangle inequality

in order to handle the contribution of rounding errors, which is encoded by the numbers ε1, ε2, ε3, and ε4).

Moreover, the depth of the formulas φ which can occur in predicates can be bounded for efficiency purposes.

Some tuples (x1, x2, x3, x4) of variables can be declared as a quaternion with a norm in a given interval

I by using a directive, so that the end-user can assert some hypotheses about volatile inputs. In such a

case, Astrée assumes that the predicate Q(x1, x2, x3, x4, I) holds, without any check. Moreover, whenever

the values x1, x2, x3, x4 of four variables x1, x2, x3, and x4 are divided by the value of the expression�
x2

1 + x2
2 + x2

3 + x2
4, Astrée promotes them to a new quaternion and computes an interval for its norm

(taking into account rounding errors).

III.J. Combination of abstractions

Astrée uses dozens of abstract domains which can interact with each others.
29

These interactions enable

Astrée to refine abstract elements (as with a partially reduced product of abstract domains (Sect. II.P)),

but also to refine their predicate transformers. Special care has to be taken when reduction is used after

extrapolation (widening or narrowing) steps, in order not to break the construction of inductive invariants.

In Astrée, abstract domains are implemented as independent modules that share a common interface.

Each module implements some primitives such as predicate transformers (abstract assignments, abstract

guards, control-flow joins) and extrapolation primitives (widening and narrowing operators). Moreover,

in order to enable the collaboration between domains, each abstract domain is fitted with some optional

primitives so as to express properties about abstract states in a common format which can be understood by

all abstract domains. Basically, a reduction has to be requested by a computation in an abstract domain. We

distinguish between two kinds of reductions: either the reduction is requested by the domain which misses

an information, or by the domain which discovers an information. This asymmetry enables a fine tuning

21 of 38

American Institute of Aeronautics and Astronautics

conjugated ·. Quaternions are usually converted to rotation matrices and conversely. Quaternion computa-

tions can cause arithmetic overflows. An interesting value for a quaternion q = (u, i, j, k) is its norm ||q||
which is defined as ||q|| �

�
u2 + i2 + j2 + k2. Quaternions are usually meant to be normalized, that is to

have always a unit norm: ||q|| = 1. Yet, because of rounding errors and approximated algorithms, their norm

may diverge along the execution of the program. Thus, quaternions are often re-normalized (or divided by

their norm) so as to avoid overflows.

Hopefully, the norm behaves well with respect to algebraic operations, as stated by the following prop-

erties:

| ||q1||− ||q2|| | ≤ ||q1 + q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

| ||q1||− ||q2|| | ≤ ||q1 − q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

||λ · q|| = |λ| · ||q|| (positive homogeneity)

||q1 × q2|| = ||q1|| · ||q2||
||q|| = ||q||.

(1)

Since it is quite difficult to prove the absence of overflows without tracking the computations over quater-

nions, we have designed a quaternion domain. This domain handles predicates of the form Q(x1, x2, x3, x4, I),

where x1, x2, x3, x4 are four variables and I is an interval. The meaning of such a predicate is that the value

of the expression

�
x2
1 + x2

2 + x2
3 + x2

4 ranges within the interval I. So these predicates encode the properties

of interest in our domain. In order to infer such properties, we need intermediate properties, so as to encode

the fact that a given variable is the given coordinate of a quaternion that is being computed. As a matter

of fact, the domain also handles predicates of the form P (x, i,φ, ε), where x is a variable, i is an integer

in the set {1, 2, 3, 4}, φ is an arithmetic formula over quaternions as defined by the following grammar:

φ � [x1, x2, x3, x4] | λ · φ | φ1 × φ2 | φ1 + φ2 | φ, and ε is a non-negative real number. The meaning of

a predicate P (x, i,φ, ε) is that the value of the i-th coordinate of the quaternion denoted by φ ranges in

the interval [x − ε, x + ε], this way, the number ε can be used to model the rounding errors accumulated

during operations over quaternions. The interpretation of arithmetic formulas is the following: the formula

[x1, x2, x3, x4] denotes the quaternion the four coordinates of which are the values of the variables x1, x2, x3,

and x4, whereas other constructs denote the algebraic operations over quaternions.

Whenever the four coordinates of a given quaternion have been discovered (that is to say that Astrée has

inferred four predicates P (x1, 1, φ, ε1), P (x2, 2, φ, ε2), P (x3, 3, φ, ε3), and P (x4, 4, φ, ε4) where φ is a formula,

x1, x2, x3, and x4 are four program variables, and ε1, ε2, ε3, ε4 are four non-negative real numbers), the

corresponding quaternion is promoted (that is to say that Astrée infers a new predicate Q(x1, x2, x3, x4, I)

where the interval I is obtained by applying the formulas about norm (1) and the first triangle inequality

in order to handle the contribution of rounding errors, which is encoded by the numbers ε1, ε2, ε3, and ε4).

Moreover, the depth of the formulas φ which can occur in predicates can be bounded for efficiency purposes.

Some tuples (x1, x2, x3, x4) of variables can be declared as a quaternion with a norm in a given interval

I by using a directive, so that the end-user can assert some hypotheses about volatile inputs. In such a

case, Astrée assumes that the predicate Q(x1, x2, x3, x4, I) holds, without any check. Moreover, whenever

the values x1, x2, x3, x4 of four variables x1, x2, x3, and x4 are divided by the value of the expression�
x2

1 + x2
2 + x2

3 + x2
4, Astrée promotes them to a new quaternion and computes an interval for its norm

(taking into account rounding errors).

III.J. Combination of abstractions

Astrée uses dozens of abstract domains which can interact with each others.
29

These interactions enable

Astrée to refine abstract elements (as with a partially reduced product of abstract domains (Sect. II.P)),

but also to refine their predicate transformers. Special care has to be taken when reduction is used after

extrapolation (widening or narrowing) steps, in order not to break the construction of inductive invariants.

In Astrée, abstract domains are implemented as independent modules that share a common interface.

Each module implements some primitives such as predicate transformers (abstract assignments, abstract

guards, control-flow joins) and extrapolation primitives (widening and narrowing operators). Moreover,

in order to enable the collaboration between domains, each abstract domain is fitted with some optional

primitives so as to express properties about abstract states in a common format which can be understood by

all abstract domains. Basically, a reduction has to be requested by a computation in an abstract domain. We

distinguish between two kinds of reductions: either the reduction is requested by the domain which misses

an information, or by the domain which discovers an information. This asymmetry enables a fine tuning

21 of 38

American Institute of Aeronautics and Astronautics

conjugated ·. Quaternions are usually converted to rotation matrices and conversely. Quaternion computa-

tions can cause arithmetic overflows. An interesting value for a quaternion q = (u, i, j, k) is its norm ||q||
which is defined as ||q|| �

�
u2 + i2 + j2 + k2. Quaternions are usually meant to be normalized, that is to

have always a unit norm: ||q|| = 1. Yet, because of rounding errors and approximated algorithms, their norm

may diverge along the execution of the program. Thus, quaternions are often re-normalized (or divided by

their norm) so as to avoid overflows.

Hopefully, the norm behaves well with respect to algebraic operations, as stated by the following prop-

erties:

| ||q1||− ||q2|| | ≤ ||q1 + q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

| ||q1||− ||q2|| | ≤ ||q1 − q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

||λ · q|| = |λ| · ||q|| (positive homogeneity)

||q1 × q2|| = ||q1|| · ||q2||
||q|| = ||q||.

(1)

Since it is quite difficult to prove the absence of overflows without tracking the computations over quater-

nions, we have designed a quaternion domain. This domain handles predicates of the form Q(x1, x2, x3, x4, I),

where x1, x2, x3, x4 are four variables and I is an interval. The meaning of such a predicate is that the value

of the expression

�
x2
1 + x2

2 + x2
3 + x2

4 ranges within the interval I. So these predicates encode the properties

of interest in our domain. In order to infer such properties, we need intermediate properties, so as to encode

the fact that a given variable is the given coordinate of a quaternion that is being computed. As a matter

of fact, the domain also handles predicates of the form P (x, i,φ, ε), where x is a variable, i is an integer

in the set {1, 2, 3, 4}, φ is an arithmetic formula over quaternions as defined by the following grammar:

φ � [x1, x2, x3, x4] | λ · φ | φ1 × φ2 | φ1 + φ2 | φ, and ε is a non-negative real number. The meaning of

a predicate P (x, i,φ, ε) is that the value of the i-th coordinate of the quaternion denoted by φ ranges in

the interval [x − ε, x + ε], this way, the number ε can be used to model the rounding errors accumulated

during operations over quaternions. The interpretation of arithmetic formulas is the following: the formula

[x1, x2, x3, x4] denotes the quaternion the four coordinates of which are the values of the variables x1, x2, x3,

and x4, whereas other constructs denote the algebraic operations over quaternions.

Whenever the four coordinates of a given quaternion have been discovered (that is to say that Astrée has

inferred four predicates P (x1, 1, φ, ε1), P (x2, 2, φ, ε2), P (x3, 3, φ, ε3), and P (x4, 4, φ, ε4) where φ is a formula,

x1, x2, x3, and x4 are four program variables, and ε1, ε2, ε3, ε4 are four non-negative real numbers), the

corresponding quaternion is promoted (that is to say that Astrée infers a new predicate Q(x1, x2, x3, x4, I)

where the interval I is obtained by applying the formulas about norm (1) and the first triangle inequality

in order to handle the contribution of rounding errors, which is encoded by the numbers ε1, ε2, ε3, and ε4).

Moreover, the depth of the formulas φ which can occur in predicates can be bounded for efficiency purposes.

Some tuples (x1, x2, x3, x4) of variables can be declared as a quaternion with a norm in a given interval

I by using a directive, so that the end-user can assert some hypotheses about volatile inputs. In such a

case, Astrée assumes that the predicate Q(x1, x2, x3, x4, I) holds, without any check. Moreover, whenever

the values x1, x2, x3, x4 of four variables x1, x2, x3, and x4 are divided by the value of the expression�
x2

1 + x2
2 + x2

3 + x2
4, Astrée promotes them to a new quaternion and computes an interval for its norm

(taking into account rounding errors).

III.J. Combination of abstractions

Astrée uses dozens of abstract domains which can interact with each others.
29

These interactions enable

Astrée to refine abstract elements (as with a partially reduced product of abstract domains (Sect. II.P)),

but also to refine their predicate transformers. Special care has to be taken when reduction is used after

extrapolation (widening or narrowing) steps, in order not to break the construction of inductive invariants.

In Astrée, abstract domains are implemented as independent modules that share a common interface.

Each module implements some primitives such as predicate transformers (abstract assignments, abstract

guards, control-flow joins) and extrapolation primitives (widening and narrowing operators). Moreover,

in order to enable the collaboration between domains, each abstract domain is fitted with some optional

primitives so as to express properties about abstract states in a common format which can be understood by

all abstract domains. Basically, a reduction has to be requested by a computation in an abstract domain. We

distinguish between two kinds of reductions: either the reduction is requested by the domain which misses

an information, or by the domain which discovers an information. This asymmetry enables a fine tuning

21 of 38

American Institute of Aeronautics and Astronautics

conjugated ·. Quaternions are usually converted to rotation matrices and conversely. Quaternion computa-

tions can cause arithmetic overflows. An interesting value for a quaternion q = (u, i, j, k) is its norm ||q||
which is defined as ||q|| �

�
u2 + i2 + j2 + k2. Quaternions are usually meant to be normalized, that is to

have always a unit norm: ||q|| = 1. Yet, because of rounding errors and approximated algorithms, their norm

may diverge along the execution of the program. Thus, quaternions are often re-normalized (or divided by

their norm) so as to avoid overflows.

Hopefully, the norm behaves well with respect to algebraic operations, as stated by the following prop-

erties:

| ||q1||− ||q2|| | ≤ ||q1 + q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

| ||q1||− ||q2|| | ≤ ||q1 − q2|| ≤ ||q1|| + ||q2|| (triangle inequality)

||λ · q|| = |λ| · ||q|| (positive homogeneity)

||q1 × q2|| = ||q1|| · ||q2||
||q|| = ||q||.

(1)

Since it is quite difficult to prove the absence of overflows without tracking the computations over quater-

nions, we have designed a quaternion domain. This domain handles predicates of the form Q(x1, x2, x3, x4, I),

where x1, x2, x3, x4 are four variables and I is an interval. The meaning of such a predicate is that the value

of the expression

�
x2
1 + x2

2 + x2
3 + x2

4 ranges within the interval I. So these predicates encode the properties

of interest in our domain. In order to infer such properties, we need intermediate properties, so as to encode

the fact that a given variable is the given coordinate of a quaternion that is being computed. As a matter

of fact, the domain also handles predicates of the form P (x, i,φ, ε), where x is a variable, i is an integer

in the set {1, 2, 3, 4}, φ is an arithmetic formula over quaternions as defined by the following grammar:

φ � [x1, x2, x3, x4] | λ · φ | φ1 × φ2 | φ1 + φ2 | φ, and ε is a non-negative real number. The meaning of

a predicate P (x, i,φ, ε) is that the value of the i-th coordinate of the quaternion denoted by φ ranges in

the interval [x − ε, x + ε], this way, the number ε can be used to model the rounding errors accumulated

during operations over quaternions. The interpretation of arithmetic formulas is the following: the formula

[x1, x2, x3, x4] denotes the quaternion the four coordinates of which are the values of the variables x1, x2, x3,

and x4, whereas other constructs denote the algebraic operations over quaternions.

Whenever the four coordinates of a given quaternion have been discovered (that is to say that Astrée has

inferred four predicates P (x1, 1, φ, ε1), P (x2, 2, φ, ε2), P (x3, 3, φ, ε3), and P (x4, 4, φ, ε4) where φ is a formula,

x1, x2, x3, and x4 are four program variables, and ε1, ε2, ε3, ε4 are four non-negative real numbers), the

corresponding quaternion is promoted (that is to say that Astrée infers a new predicate Q(x1, x2, x3, x4, I)

where the interval I is obtained by applying the formulas about norm (1) and the first triangle inequality

in order to handle the contribution of rounding errors, which is encoded by the numbers ε1, ε2, ε3, and ε4).

Moreover, the depth of the formulas φ which can occur in predicates can be bounded for efficiency purposes.

Some tuples (x1, x2, x3, x4) of variables can be declared as a quaternion with a norm in a given interval

I by using a directive, so that the end-user can assert some hypotheses about volatile inputs. In such a

case, Astrée assumes that the predicate Q(x1, x2, x3, x4, I) holds, without any check. Moreover, whenever

the values x1, x2, x3, x4 of four variables x1, x2, x3, and x4 are divided by the value of the expression�
x2

1 + x2
2 + x2

3 + x2
4, Astrée promotes them to a new quaternion and computes an interval for its norm

(taking into account rounding errors).

III.J. Combination of abstractions

Astrée uses dozens of abstract domains which can interact with each others.
29

These interactions enable

Astrée to refine abstract elements (as with a partially reduced product of abstract domains (Sect. II.P)),

but also to refine their predicate transformers. Special care has to be taken when reduction is used after

extrapolation (widening or narrowing) steps, in order not to break the construction of inductive invariants.

In Astrée, abstract domains are implemented as independent modules that share a common interface.

Each module implements some primitives such as predicate transformers (abstract assignments, abstract

guards, control-flow joins) and extrapolation primitives (widening and narrowing operators). Moreover,

in order to enable the collaboration between domains, each abstract domain is fitted with some optional

primitives so as to express properties about abstract states in a common format which can be understood by

all abstract domains. Basically, a reduction has to be requested by a computation in an abstract domain. We

distinguish between two kinds of reductions: either the reduction is requested by the domain which misses

an information, or by the domain which discovers an information. This asymmetry enables a fine tuning

21 of 38

American Institute of Aeronautics and Astronautics

I!

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

On-going work

63 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Verification of
target programs

64

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Verification of compiled programs

65

• The valid source may be proved correct while the
certified compiler is incorrect so the target program
may go wrong

• Possible approaches:

• Verification at the target level

• Source to target proof translation and proof
check on the target

! Translation validation (local verification of
equivalence of run-time error free source and
target)

• Formally certified compilers

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Verification of
imperfectly clocked

synchronous systems

66

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

• Example of (buggy) communicating synchronous systems:

• Synchronized and dysynchronized executions:

Imperfect synchrony

67

But these computations are performed according to two clocks C and C
�
. It may be that these clocks are

synchronous. This case is depicted in the lower left part of Fig. 2. The two alternating boolean outputs of

the two systems being always equal, the comparison always results in no alarm (OK statement).

But maybe the clocks C and C
�
are slightly desynchronized by a small delay ε. This case is depicted in the

lower right part of Fig.2. The two alternating boolean outputs of the two systems are then almost always

equal, but they differ near every clock tick. Then, the comparison being made precisely on those tick, it

always results into an alarm (“!=” statement). However, this alarm is probably unnecessary in that case,

since the desynchronization delay is very small. This desynchronization delay is in practice unavoidable, since

clocks are physical objects and cannot be perfect. This implementation of an alarm is therefore flawed. Such

errors cannot be always discovered by hand. Their detection has to be done automatically and statically.

NOTNOT

READ
C

READ

C’

C’

C

COMPARE

System 1 System 2

!= != !=!= !=

0 2 3 4 51

C’
true

false

C

true

false

C

true

false

Real
time

C

0 2 3 4 51

C’
true

false

System 2

COMPARE

C

true

false

C

true

false

Real
time

C

OK OK OKOK OK

System 1
ε ε εε ε

Figure 2. Example of two similar imperfectly-synchronous systems with an alarm watching differences in their outputs.

IV.B. Syntax and semantics

We assume that each part of the synchronous software compiled for one precise computer will execute

according to the clock C of that computer with a period (the time between two consecutive clock ticks)

remaining inside a known interval [µC; νC], with 0 < µC � νC. In the quasi-synchronous framework introduced

formally by Caspi et al.,
58

two clocks supposed to tick synchronously are allowed to desynchronize in the

following way: at most two consecutive ticks of one of the clock may happen between two consecutive ticks

of the other clock. This hypothesis is quite weak, and we usually work with a clock whose parameter is such

that 2×µC � νC, which implies quasi-synchrony compared to a perfect clock whose period is between µC and

νC. When µC is close to νC, our hypothesis is stronger and we expect to be able to prove more properties.

Furthermore, each communication channel ch has an interval [αch;βch] as parameter such that the delays

between the emission of a value and its reception must always belong to this interval. The communications

over a given channel are still considered serial, which means that if a value a is sent over channel ch before

a value b, then a is received before b.
In this realistic framework, idealistic cases usually considered can still be modelled. It is then assumed

that all clocks C, C’, . . . are perfect: µC = νC = µC’ = νC’ = . . . and that communications are instantaneous,

i.e., 0 = αch = βch = αch’ = βch’ for all the channels ch, ch’, . . . in the system.

26 of 38

American Institute of Aeronautics and Astronautics

But these computations are performed according to two clocks C and C
�
. It may be that these clocks are

synchronous. This case is depicted in the lower left part of Fig. 2. The two alternating boolean outputs of

the two systems being always equal, the comparison always results in no alarm (OK statement).

But maybe the clocks C and C
�
are slightly desynchronized by a small delay ε. This case is depicted in the

lower right part of Fig.2. The two alternating boolean outputs of the two systems are then almost always

equal, but they differ near every clock tick. Then, the comparison being made precisely on those tick, it

always results into an alarm (“!=” statement). However, this alarm is probably unnecessary in that case,

since the desynchronization delay is very small. This desynchronization delay is in practice unavoidable, since

clocks are physical objects and cannot be perfect. This implementation of an alarm is therefore flawed. Such

errors cannot be always discovered by hand. Their detection has to be done automatically and statically.

NOTNOT

READ
C

READ

C’

C’

C

COMPARE

System 1 System 2

!= != !=!= !=

0 2 3 4 51

C’
true

false

C

true

false

C

true

false

Real
time

C

0 2 3 4 51

C’
true

false

System 2

COMPARE

C

true

false

C

true

false

Real
time

C

OK OK OKOK OK

System 1
ε ε εε ε

Figure 2. Example of two similar imperfectly-synchronous systems with an alarm watching differences in their outputs.

IV.B. Syntax and semantics

We assume that each part of the synchronous software compiled for one precise computer will execute

according to the clock C of that computer with a period (the time between two consecutive clock ticks)

remaining inside a known interval [µC; νC], with 0 < µC � νC. In the quasi-synchronous framework introduced

formally by Caspi et al.,
58

two clocks supposed to tick synchronously are allowed to desynchronize in the

following way: at most two consecutive ticks of one of the clock may happen between two consecutive ticks

of the other clock. This hypothesis is quite weak, and we usually work with a clock whose parameter is such

that 2×µC � νC, which implies quasi-synchrony compared to a perfect clock whose period is between µC and

νC. When µC is close to νC, our hypothesis is stronger and we expect to be able to prove more properties.

Furthermore, each communication channel ch has an interval [αch;βch] as parameter such that the delays

between the emission of a value and its reception must always belong to this interval. The communications

over a given channel are still considered serial, which means that if a value a is sent over channel ch before

a value b, then a is received before b.
In this realistic framework, idealistic cases usually considered can still be modelled. It is then assumed

that all clocks C, C’, . . . are perfect: µC = νC = µC’ = νC’ = . . . and that communications are instantaneous,

i.e., 0 = αch = βch = αch’ = βch’ for all the channels ch, ch’, . . . in the system.

26 of 38

American Institute of Aeronautics and Astronautics

• negate previous input
(on clocks C and C’)

• compare inputs

flawed
alarms

blackboard inputs

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Semantics and abstractions

• Continuous semantics (value s(t) of signals s at any
time t)

• Clock ticks and serial communications do happen in
known time intervals [l, h], l ≤ h

• Examples of abstractions:

•

•

• change counting

(signal changes less (more) than k times in time
interval [a, b])

68

were in fact designed in a continuous world (through differential equations) in an environment (made of
space and time) that is a continuous object. In addition, using a continuous-time semantics enables the use
of very well-known mathematical theories about continuous numbers which are not so frequently used in
static analysis.

IV.D. Temporal abstract domains

IV.D.1. Abstract constraints

A first domain of abstract constraints59 abstracts ℘(R → V) as conjunctive sets of universal and existential
constraints. A universal constraint over a signal s ∈ R → V is defined by a time interval [a; b] and a value x,
and denoted ∀t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value x during
the whole time interval [a; b]. An existential constraint over a signal s is defined by a time interval [a; b] and a
value x, and denoted ∃t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value
x at least once during the time interval [a; b]. For example, ∃t ∈ [0; 1] : s(t) = true ∧ ∃t ∈ [0; 1] : s(t) = false
is the abstraction of functions in R → B that change their boolean value at least once between t = 0 and
t = 1.

The operators defined for usual operations in abstract domains (∪,∩) as well as the backward abstract
operators corresponding to synchronous language primitives (− >, pre, blackboard reading, etc.) are quite
precise in this domain.

IV.D.2. Changes counting domain

A second domain of change counting60 was designed in order to deal automatically with reasoning on the
stability and the variability of systems. The abstract properties (� k, a � �b) and (� k, a � �b), for a, b ∈ R+

and k ∈ N, respectively mean that behaviors do not change their value more (respectively less) than k times
during the time interval [a; b].

This domain is more precise for forward operators and defines a very precise reduced product with the
abstract constraint domain.

An example of reduction is (with times a < b < c < d < e < f) when abstract an property u =
(� 1, a � �e) interacts with the abstract properties v = ∃t ∈ [b; c] : s(t) = x and w = ∀t ∈ [d; f] : s(t) = x.
Then, if there is at least one value change between c and d, then there are actually at least two changes.
Indeed, at some time t ∈ [c; d), the value has to be some y �= x, since at time d it has to be x (by w) and it
changes at least once in [c, d]. Then, at some point t� ∈ [b; c], the value has to be x (by v) which makes two
value changes: one between t� and t, and one between t and d. This is excluded by the stability property
u. As a consequence, there is no value change between c and d and, since the value at time d is x and
does not change, the value has to remain equal to x during whole time interval, which can be translated
into ∀t ∈ [c; d] : s(t) = x. This constraint merges with the constraint ∀t ∈ [d; f] : s(t) = x and yields
∀t ∈ [c; f] : s(t) = x.

IV.E. Application to redundant systems

It is often the case that similar (if not identical) systems run in parallel so that, in case one system has
a hardware failure, it is detected, either by the other similar systems or by a dedicated unit, and only
redundant units keep performing the computation. The continuous-time semantics presented in this section
has been precisely designed to prove the properties of such systems.

Another classic embedded unit aims at treating sensor values. Sensor values are indeed very unstable and
usually get stabilized by a synchronous system. The temporal abstract domains we introduced are precise
as well on the code for those systems.

A prototype static analyzer has been developed implementing the two temporal abstract domains pre-
sented as well as other, less central domains. This prototype is independent from Astrée (Sect. III) and
Thésée (Sect. VI).

The prototype analyzer was able to prove some temporal specification of redundant systems with a voting
system deciding between them. Furthermore, when some property did not hold, looking at the remaining
abstract set sometimes led to actual erroneous traces in altered implementations.

An example analysis involved the code used in industry as a test for such systems where clocks may
desynchronize and communication might be delayed. No hypothesis was given on the inputs of the studied

28 of 38

American Institute of Aeronautics and Astronautics

were in fact designed in a continuous world (through differential equations) in an environment (made of
space and time) that is a continuous object. In addition, using a continuous-time semantics enables the use
of very well-known mathematical theories about continuous numbers which are not so frequently used in
static analysis.

IV.D. Temporal abstract domains

IV.D.1. Abstract constraints

A first domain of abstract constraints59 abstracts ℘(R → V) as conjunctive sets of universal and existential
constraints. A universal constraint over a signal s ∈ R → V is defined by a time interval [a; b] and a value x,
and denoted ∀t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value x during
the whole time interval [a; b]. An existential constraint over a signal s is defined by a time interval [a; b] and a
value x, and denoted ∃t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value
x at least once during the time interval [a; b]. For example, ∃t ∈ [0; 1] : s(t) = true ∧ ∃t ∈ [0; 1] : s(t) = false
is the abstraction of functions in R → B that change their boolean value at least once between t = 0 and
t = 1.

The operators defined for usual operations in abstract domains (∪,∩) as well as the backward abstract
operators corresponding to synchronous language primitives (− >, pre, blackboard reading, etc.) are quite
precise in this domain.

IV.D.2. Changes counting domain

A second domain of change counting60 was designed in order to deal automatically with reasoning on the
stability and the variability of systems. The abstract properties (� k, a � �b) and (� k, a � �b), for a, b ∈ R+

and k ∈ N, respectively mean that behaviors do not change their value more (respectively less) than k times
during the time interval [a; b].

This domain is more precise for forward operators and defines a very precise reduced product with the
abstract constraint domain.

An example of reduction is (with times a < b < c < d < e < f) when abstract an property u =
(� 1, a � �e) interacts with the abstract properties v = ∃t ∈ [b; c] : s(t) = x and w = ∀t ∈ [d; f] : s(t) = x.
Then, if there is at least one value change between c and d, then there are actually at least two changes.
Indeed, at some time t ∈ [c; d), the value has to be some y �= x, since at time d it has to be x (by w) and it
changes at least once in [c, d]. Then, at some point t� ∈ [b; c], the value has to be x (by v) which makes two
value changes: one between t� and t, and one between t and d. This is excluded by the stability property
u. As a consequence, there is no value change between c and d and, since the value at time d is x and
does not change, the value has to remain equal to x during whole time interval, which can be translated
into ∀t ∈ [c; d] : s(t) = x. This constraint merges with the constraint ∀t ∈ [d; f] : s(t) = x and yields
∀t ∈ [c; f] : s(t) = x.

IV.E. Application to redundant systems

It is often the case that similar (if not identical) systems run in parallel so that, in case one system has
a hardware failure, it is detected, either by the other similar systems or by a dedicated unit, and only
redundant units keep performing the computation. The continuous-time semantics presented in this section
has been precisely designed to prove the properties of such systems.

Another classic embedded unit aims at treating sensor values. Sensor values are indeed very unstable and
usually get stabilized by a synchronous system. The temporal abstract domains we introduced are precise
as well on the code for those systems.

A prototype static analyzer has been developed implementing the two temporal abstract domains pre-
sented as well as other, less central domains. This prototype is independent from Astrée (Sect. III) and
Thésée (Sect. VI).

The prototype analyzer was able to prove some temporal specification of redundant systems with a voting
system deciding between them. Furthermore, when some property did not hold, looking at the remaining
abstract set sometimes led to actual erroneous traces in altered implementations.

An example analysis involved the code used in industry as a test for such systems where clocks may
desynchronize and communication might be delayed. No hypothesis was given on the inputs of the studied

28 of 38

American Institute of Aeronautics and Astronautics

were in fact designed in a continuous world (through differential equations) in an environment (made of
space and time) that is a continuous object. In addition, using a continuous-time semantics enables the use
of very well-known mathematical theories about continuous numbers which are not so frequently used in
static analysis.

IV.D. Temporal abstract domains

IV.D.1. Abstract constraints

A first domain of abstract constraints59 abstracts ℘(R → V) as conjunctive sets of universal and existential
constraints. A universal constraint over a signal s ∈ R → V is defined by a time interval [a; b] and a value x,
and denoted ∀t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value x during
the whole time interval [a; b]. An existential constraint over a signal s is defined by a time interval [a; b] and a
value x, and denoted ∃t ∈ [a; b] : s(t) = x. Its concretization is the set of signals in R → V that take the value
x at least once during the time interval [a; b]. For example, ∃t ∈ [0; 1] : s(t) = true ∧ ∃t ∈ [0; 1] : s(t) = false
is the abstraction of functions in R → B that change their boolean value at least once between t = 0 and
t = 1.

The operators defined for usual operations in abstract domains (∪,∩) as well as the backward abstract
operators corresponding to synchronous language primitives (− >, pre, blackboard reading, etc.) are quite
precise in this domain.

IV.D.2. Changes counting domain

A second domain of change counting60 was designed in order to deal automatically with reasoning on the
stability and the variability of systems. The abstract properties (� k, a � �b) and (� k, a � �b), for a, b ∈ R+

and k ∈ N, respectively mean that behaviors do not change their value more (respectively less) than k times
during the time interval [a; b].

This domain is more precise for forward operators and defines a very precise reduced product with the
abstract constraint domain.

An example of reduction is (with times a < b < c < d < e < f) when abstract an property u =
(� 1, a � �e) interacts with the abstract properties v = ∃t ∈ [b; c] : s(t) = x and w = ∀t ∈ [d; f] : s(t) = x.
Then, if there is at least one value change between c and d, then there are actually at least two changes.
Indeed, at some time t ∈ [c; d), the value has to be some y �= x, since at time d it has to be x (by w) and it
changes at least once in [c, d]. Then, at some point t� ∈ [b; c], the value has to be x (by v) which makes two
value changes: one between t� and t, and one between t and d. This is excluded by the stability property
u. As a consequence, there is no value change between c and d and, since the value at time d is x and
does not change, the value has to remain equal to x during whole time interval, which can be translated
into ∀t ∈ [c; d] : s(t) = x. This constraint merges with the constraint ∀t ∈ [d; f] : s(t) = x and yields
∀t ∈ [c; f] : s(t) = x.

IV.E. Application to redundant systems

It is often the case that similar (if not identical) systems run in parallel so that, in case one system has
a hardware failure, it is detected, either by the other similar systems or by a dedicated unit, and only
redundant units keep performing the computation. The continuous-time semantics presented in this section
has been precisely designed to prove the properties of such systems.

Another classic embedded unit aims at treating sensor values. Sensor values are indeed very unstable and
usually get stabilized by a synchronous system. The temporal abstract domains we introduced are precise
as well on the code for those systems.

A prototype static analyzer has been developed implementing the two temporal abstract domains pre-
sented as well as other, less central domains. This prototype is independent from Astrée (Sect. III) and
Thésée (Sect. VI).

The prototype analyzer was able to prove some temporal specification of redundant systems with a voting
system deciding between them. Furthermore, when some property did not hold, looking at the remaining
abstract set sometimes led to actual erroneous traces in altered implementations.

An example analysis involved the code used in industry as a test for such systems where clocks may
desynchronize and communication might be delayed. No hypothesis was given on the inputs of the studied

28 of 38

American Institute of Aeronautics and Astronautics

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of static analysis

69

Real code Analysis Analysis

Static analysis of communicating imperfectly clocked

redundant units

REDUNDANT UNIT #2

 ! " [;] # $

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Integral bounding

ConstraintsConstraints

[;]

VOTER

 % &[;]
 ' (

ConstraintsACTUATORS ACTUATORS

SENSORS

REDUNDANT UNIT #1

[;]

Specification : no alarm raised with a normal input

2/3)0)
input stability < ∆ : Between 2

3 × ∆ input stability > ∆ : the analyzer
counter-example and ∆ : ? proves the specification

Julien Bertrane, ENS Paris Static analysis of imperfectly-clocked synchronous systems using continuous-time abstract domains 45/49

Real code Analysis Analysis

Static analysis of communicating imperfectly clocked

redundant units

REDUNDANT UNIT #2

 ! " [;] # $

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Integral bounding

ConstraintsConstraints

[;]

VOTER

 % &[;]
 ' (

ConstraintsACTUATORS ACTUATORS

SENSORS

REDUNDANT UNIT #1

[;]

Specification : no alarm raised with a normal input

2/3)0)
input stability < ∆ : Between 2

3 × ∆ input stability > ∆ : the analyzer
counter-example and ∆ : ? proves the specification

Julien Bertrane, ENS Paris Static analysis of imperfectly-clocked synchronous systems using continuous-time abstract domains 45/49

For how long
should the input
b e s t a b i l i z e d
before deciding
on disagreement?

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Formal verification of static analyzers

70

• Intensive work on formalizing the theory of abstract
interpretation in Coq

• Proofs essentially done by hand

• Presently verify the correctness of the
implementation of abstract domains (e.g. intervals,
octagons, ...)

• Then consider combinations of abstract domains

• Ultimately might be able to consider the whole static
analyzer

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

THÉSÉE: Verification of
embedded real-time parallel

C programs

71 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Parallel programs

72

• Bounded number of processes with shared memory,
events, semaphores, message queues, blackboards,…

• Processes created at initialization only

• Real time operating system (ARINC 653) with fixed
priorities (highest priority runs first)

• Scheduled on a single processor

Verified properties

• Absence of runtime errors

• Absence of unprotected data races

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Semantics

• No memory consistency model for C

• Optimizing compilers consider sequential processes
out of their execution context

• We assume:
• sequential consistency in absence of data race
• for data races, values are limited by possible

interleavings between synchronization points

73

init: flag1 = flag2 = 0

process 1: process 2:

flag1 = 1; flag2 = 1;

if (!flag2) if (!flag1)

{ {
/* critical section */ /* critical section */

In the Java memory model, both processes can enter their critical section simultaneously. The rationale

is that, due to process-wide program optimisation without knowledge of other processes, a compiler might

assume that, e.g., in process 1, the write to flag1 and the read from flag2 are independent and can be

reordered, and the same for process 2, flag2 and flag1 respectively. As a consequence, each process can

read the other process’ flag before setting its own flag. Multi-processors with out-of-order execution or not

fully synchronized caches can also cause similar behaviors, even in the absence of compiler optimizations.

There is currently no memory consistency model for C; however, we need to choose one in order to

define our concrete semantics. It is safe to assume that, as C++, C will guarantee sequential consistency

for programs without data-race. We also draw from the Java model75 to give a semantics to unprotected

accesses, so that we can analyze the behavior of a program after a data-race. More precisely, assume that

a run of a process p performs a sequence of synchronisation operations at times t1 < . . . < tn, and a run

of another process p� performs two synchronisation operations at time t�1 < t�2; denote i and j such that

ti ≤ t�1 < ti+1 and tj ≤ t�2 < tj+1; then, a read from a variable v in p� between t�1 and t�2 can return either:

1) any value written to v by p between ti and tj+1 (unsynchronized access), or 2) the last value written to

v by p before ti if any or its initial value if none (synchronized access), or 3) the last value written to v by

p� if either the value was written after t�1 or there is no write from p to v before ti. This can be formalized

in fixpoint form76,77 and requires the D state components to store sets of values written to global variables

by processes (instead of a simple map). This semantics is sound to analyze data-race-free programs, and it

is also sound for programs with data-races under reasonable hypotheses75 on the optimizations used by the

compiler and the hardware consistency model enforced by the processor(s).

VI.B.2. Scheduling and synchronisation

The U state component in our concrete semantics models the scheduler state, which in turns defines which

process can run and which must wait. Firstly, it maintains the state of synchronisation objects, e.g., for each

mutex (there are finitely many), whether it is unlocked or locked by a process (and which one). Secondly, it

remembers, for each process, whether it is waiting for a resource internal to the system (e.g., trying to lock

an already locked mutex), for an external event (e.g., a message from the environment or a timeout), or is

runnable (i.e., either actually running or preempted by another process). As we assume that the scheduler

obeys a strict real-time semantics and there is a single processor, only one process can be scheduled in a

given state: the runnable process with highest priority. All higher priority processes are waiting at a system

call, while lower priority processes can be either waiting at a system call, or be runnable and preempted at

any program point.

The execution of a synchronisation primitive by the running process updates the scheduling state U . For

instance, trying to lock an already locked mutex causes the process to enter a wait state, while unlocking a

locked mutex causes either the mutex to be unlocked (if no process is waiting for it), or the mutex ownership

to pass to the highest priority process waiting for it (which then becomes runnable, and possibly preempts

the current process). Moreover, U might change due to external events, which we assume can take place at

any time. For instance, a process performing a timed wait enters a non-deterministic wait phase but can

become runnable at any time (as we do not model physical time), and possible preempt a lower priority

running process.

VI.C. Abstraction

Our prototype analyzer of parallel embedded realtime software, named Thésée, is based on Astrée
(Sect. III). It has a similar structure, reuses most of its abstractions (e.g., general-purpose numerical ab-

stractions for Di, trace partitioning with respect to Ci, etc.) and adds some more.

32 of 38

American Institute of Aeronautics and Astronautics

 write to flag1/2 and
read of flag2/1 are
independent so can be
reordered → error!

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Abstractions

• Based on Astrée for the sequential processes

• Takes scheduling into account

• OS entry points (semaphores, logbooks, sampling
and queuing ports, buffers, blackboards, …) are all
stubbed (using Astrée stubbing directives)

• Interference between processes: flow-insensitive
abstraction of the writes to shared memory and
inter-process communications

74

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Example of static analysis of a complex
parallel application

• Degraded mode (5 processes, 100 000 LOCS)

• 1h40 on 64-bit 2.66 GHz Intel server

• 98 alarms

• Full mode (15 processes, 1 600 000 LOCS)

• 50 h

• 12 000 alarms !!! more work to be done !!! (e.g.
analysis of complex data structures, logs, etc)

75 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Conclusion

76

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Cost-effective verification

77

• The rumor has it that:

• Manuel validation (testing) is costly, unsafe, not a
verification!

• Formal proofs by theorem provers are
extremely laborious hence costly

• Model-checkers do not scale up

• Why not try abstract interpretation?

• Domain-specific static analysis scales and can
deliver no false alarm

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Characteristics of ASTRÉE (cont’d)

78

Characteristics of the Astrée Analyzer (Cont’d)

Sound: – Astrée is a bug eradicator: finds all bugs

in a well-defined class (runtime errors)
– Astrée is not a bug hunter: finding some bugs in a
well-defined class (e.g. by bug pattern detection like
FindBugsŮ, PREfast or PMD)
– Astrée is exhaustive: covers the whole state space (6=
MAGIC, CBMC)
– Astrée is comprehensive: never omits potential er-
rors (6= UNO, CMC from coverity.com) or sort most
probable ones to avoid overwhelming messages (6= Splint)

Rencontres INRIA–Industrie, 11/10/2007 — 73 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 201079

Characteristics of ASTRÉE (cont’d)Characteristics of the Astrée Analyzer (Cont’d)

Static: compile time analysis (6= run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs (6= PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (6= ESC Java,
ESC Java 2), or PREfast (annotate functions with
intended use)

Rencontres INRIA–Industrie, 11/10/2007 — 74 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 201080

Characteristics of ASTRÉE (cont’d)Characteristics of the Astrée Analyzer (Cont’d)

Multiabstraction: uses many numerical/symbolic abstract
domains (6= symbolic constraints in Bane or the
canonical abstraction of TVLA)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (6= model checking based
analyzers such as Bandera, Bogor, Java PathFinder,
Spin, VeriSoft)

Efficient: always terminate (6= counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

Rencontres INRIA–Industrie, 11/10/2007 — 75 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 201081

Characteristics of the Astrée Analyzer (Cont’d)

Extensible/Specializable: can easily incorporate new abstrac-
tions (and reduction with already existing abstract
domains) (6= general-purpose analyzers PolySpace
Verifier)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

Rencontres INRIA–Industrie, 11/10/2007 — 76 — ľ P. Cousot

Characteristics of ASTRÉE (cont’d)

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 201082

Characteristics of ASTRÉE (cont’d)Characteristics of the Astrée Analyzer (Cont’d)

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: very few or no false alarm when adapted to an
application domain !̀ it is a VERIFIER!

Rencontres INRIA–Industrie, 11/10/2007 — 77 — ľ P. Cousot

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

References

83 CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

If you have only time to have a look at one
recent reference

84

• J. Bertrane, P. Cousot, R. Cousot, J. Feret,
L.!Mauborgne, A. Miné, X. Rival

Static analysis and verification of aerospace software by
abstract interpretation

AAIA Infotech@Aerospace 2010, Atlanta, 20—22
April 2010, Georgia, AIAA 2010-3385

http://pdf.aiaa.org/preview/2010/CDReadyMIAA10_2358/PV2010_3385.pdf

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Basic introductions to abstract abstract
interpretation

85

ASTRÉE : Analyse statique de code C critique remps réel synchrone embarqué (pdf)

Introductory Bibliographic References on Abstract
Interpretation

Patrick Cousot.
Interprétation abstraite.
Technique et Science Informatique, Vol. 19, Nb 1-2-3. Janvier 2000, Hermès, Paris, France. pp.
155—164.

1.

Patrick Cousot.
Abstract Interpretation Based Formal Methods and Future Challenges.
In Informatics, 10 Years Back - 10 Years Ahead, R. Wilhelm (Ed.), Lecture Notes in Computer
Science 2000, pp. 138—156, 2001.

2.

Patrick Cousot & Radhia Cousot.
Basic Concepts of Abstract Interpretation.
In Building the Information Society, R. Jacquard (Ed.), Kluwer Academic Publishers, pp. 359—366,
2004.

3.

Abstract Interpretation foundations of ASTRÉE

Patrick Cousot & Radhia Cousot.
Static Determination of Dynamic Properties of Programs.
In Proceedings of the second international symposium on Programming, B. Robinet (Ed), Paris,
France, pages 106—130, 13—15 April 1976, Dunod, Paris.

4.

Patrick Cousot & Radhia Cousot.
Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238—252, Los Angeles, California, 1977. ACM Press, New York.

5.

Patrick Cousot & Radhia Cousot.
Static determination of dynamic properties of recursive procedures.
In IFIP Conference on Formal Description of Programming Concepts, E.J. Neuhold, (Ed.), pages
237—277, St-Andrews, N.B., Canada, 1977. North-Holland Publishing Company (1978).

6.

Patrick Cousot & Radhia Cousot.
Systematic Design of Program Analysis Frameworks.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 269—282, San Antonio, Texas, 1979. ACM Press, New York.

7.

Patrick Cousot & Radhia Cousot.
Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511—547, August 1992.

8.

Patrick Cousot & Radhia Cousot.
Comparing the Galois connection and widening/narrowing approaches to abstract interpretation.
Programming Language Implementation and Logic Programming, Proceedings of the Fourth
International Symposium, PLILP'92, Leuven, Belgium, 13—17 August 1992, Volume 631 of Lecture
Notes in Computer Science, pages 269—295. © Springer-Verlag, Berlin, Germany, 1992.

9.

Patrick Cousot.10.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

8 of 12 4/30/10 11:29 AM

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Basic references on abstract interpretation (cont’d)

86

ASTRÉE : Analyse statique de code C critique remps réel synchrone embarqué (pdf)

Introductory Bibliographic References on Abstract
Interpretation

Patrick Cousot.
Interprétation abstraite.
Technique et Science Informatique, Vol. 19, Nb 1-2-3. Janvier 2000, Hermès, Paris, France. pp.
155—164.

1.

Patrick Cousot.
Abstract Interpretation Based Formal Methods and Future Challenges.
In Informatics, 10 Years Back - 10 Years Ahead, R. Wilhelm (Ed.), Lecture Notes in Computer
Science 2000, pp. 138—156, 2001.

2.

Patrick Cousot & Radhia Cousot.
Basic Concepts of Abstract Interpretation.
In Building the Information Society, R. Jacquard (Ed.), Kluwer Academic Publishers, pp. 359—366,
2004.

3.

Abstract Interpretation foundations of ASTRÉE

Patrick Cousot & Radhia Cousot.
Static Determination of Dynamic Properties of Programs.
In Proceedings of the second international symposium on Programming, B. Robinet (Ed), Paris,
France, pages 106—130, 13—15 April 1976, Dunod, Paris.

4.

Patrick Cousot & Radhia Cousot.
Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238—252, Los Angeles, California, 1977. ACM Press, New York.

5.

Patrick Cousot & Radhia Cousot.
Static determination of dynamic properties of recursive procedures.
In IFIP Conference on Formal Description of Programming Concepts, E.J. Neuhold, (Ed.), pages
237—277, St-Andrews, N.B., Canada, 1977. North-Holland Publishing Company (1978).

6.

Patrick Cousot & Radhia Cousot.
Systematic Design of Program Analysis Frameworks.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 269—282, San Antonio, Texas, 1979. ACM Press, New York.

7.

Patrick Cousot & Radhia Cousot.
Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511—547, August 1992.

8.

Patrick Cousot & Radhia Cousot.
Comparing the Galois connection and widening/narrowing approaches to abstract interpretation.
Programming Language Implementation and Logic Programming, Proceedings of the Fourth
International Symposium, PLILP'92, Leuven, Belgium, 13—17 August 1992, Volume 631 of Lecture
Notes in Computer Science, pages 269—295. © Springer-Verlag, Berlin, Germany, 1992.

9.

Patrick Cousot.10.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

8 of 12 4/30/10 11:29 AM

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

Basic references on abstract interpretation (cont’d)

87

ASTRÉE : Analyse statique de code C critique remps réel synchrone embarqué (pdf)

Introductory Bibliographic References on Abstract
Interpretation

Patrick Cousot.
Interprétation abstraite.
Technique et Science Informatique, Vol. 19, Nb 1-2-3. Janvier 2000, Hermès, Paris, France. pp.
155—164.

1.

Patrick Cousot.
Abstract Interpretation Based Formal Methods and Future Challenges.
In Informatics, 10 Years Back - 10 Years Ahead, R. Wilhelm (Ed.), Lecture Notes in Computer
Science 2000, pp. 138—156, 2001.

2.

Patrick Cousot & Radhia Cousot.
Basic Concepts of Abstract Interpretation.
In Building the Information Society, R. Jacquard (Ed.), Kluwer Academic Publishers, pp. 359—366,
2004.

3.

Abstract Interpretation foundations of ASTRÉE

Patrick Cousot & Radhia Cousot.
Static Determination of Dynamic Properties of Programs.
In Proceedings of the second international symposium on Programming, B. Robinet (Ed), Paris,
France, pages 106—130, 13—15 April 1976, Dunod, Paris.

4.

Patrick Cousot & Radhia Cousot.
Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238—252, Los Angeles, California, 1977. ACM Press, New York.

5.

Patrick Cousot & Radhia Cousot.
Static determination of dynamic properties of recursive procedures.
In IFIP Conference on Formal Description of Programming Concepts, E.J. Neuhold, (Ed.), pages
237—277, St-Andrews, N.B., Canada, 1977. North-Holland Publishing Company (1978).

6.

Patrick Cousot & Radhia Cousot.
Systematic Design of Program Analysis Frameworks.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 269—282, San Antonio, Texas, 1979. ACM Press, New York.

7.

Patrick Cousot & Radhia Cousot.
Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511—547, August 1992.

8.

Patrick Cousot & Radhia Cousot.
Comparing the Galois connection and widening/narrowing approaches to abstract interpretation.
Programming Language Implementation and Logic Programming, Proceedings of the Fourth
International Symposium, PLILP'92, Leuven, Belgium, 13—17 August 1992, Volume 631 of Lecture
Notes in Computer Science, pages 269—295. © Springer-Verlag, Berlin, Germany, 1992.

9.

Patrick Cousot.10.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

8 of 12 4/30/10 11:29 AM

The Calculational Design of a Generic Abstract Interpreter.
In Broy, M., and Steinbrüggen, R. (eds.): Calculational System Design. NATO ASI Series F.
Amsterdam: IOS Press, 1999.

Bibliographic References on ASTRÉE

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux & Xavier Rival.
Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical
Real-Time Embedded Software, invited chapter.
In The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, T. Mogensen and D.A. Schmidt and I.H. Sudborough (Editors). Volume 2566 of Lecture
Notes in Computer Science, pp. 85—108, © Springer.

11.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, & Xavier Rival.
A Static Analyzer for Large Safety-Critical Software.
In PLDI 2003 — ACM SIGPLAN SIGSOFT Conference on Programming Language Design and
Implementation, 2003 Federated Computing Research Conference, June 7—14, 2003, San Diego,
California, USA, pp. 196—207, © ACM.

12.

Jérôme Feret.
Static analysis of digital filters.
In ESOP 2004 — European Symposium on Programming, D. Schmidt (editor), Mar. 27 —Apr. 4,
2004, Barcelona, ES, Volume 2986 of Lecture Notes in Computer Science, pp. 33—48, © Springer.

13.

Laurent Mauborgne.
ASTRÉE: verification of absence of run-time error.
In Building the Information Society, R. Jacquard (Ed.), Kluwer Academic Publishers, pp. 385—392,
2004.

14.

Antoine Miné.
Relational abstract domains for the detection of floating-point run-time errors.
In ESOP 2004 — European Symposium on Programming, D. Schmidt (editor), Mar. 27 — Apr. 4,
2004, Barcelona, Volume 2986 of Lecture Notes in Computer Science, pp. 3—17, © Springer.

15.

Antoine Miné.
Weakly relational numerical abstract domains.
Thèse de l'École polytechnique, 6 December 2004.

16.

Jérôme Feret.
The arithmetic-geometric progression abstract domain.
In VMCAI 2005 — Verification, Model Checking and Abstract Interpretation, R. Cousot (editor),
Volume 3385 of Lecture Notes in Computer Science, pp. 42—58, 17—19 January 2005, Paris, ©
Springer.

17.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux
& Xavier Rival.
The ASTRÉE analyser.
In ESOP 2005 — The European Symposium on Programming, M. Sagiv (editor), Volume 3444 of
Lecture Notes in Computer Science, pp. 21—30, 2—10 April 2005, Edinburgh, © Springer.

18.

Laurent Mauborgne & Xavier Rival.19.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

9 of 12 4/30/10 11:29 AM

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

References on ASTRÉE (cont’d)

88

The Calculational Design of a Generic Abstract Interpreter.
In Broy, M., and Steinbrüggen, R. (eds.): Calculational System Design. NATO ASI Series F.
Amsterdam: IOS Press, 1999.

Bibliographic References on ASTRÉE

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux & Xavier Rival.
Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical
Real-Time Embedded Software, invited chapter.
In The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, T. Mogensen and D.A. Schmidt and I.H. Sudborough (Editors). Volume 2566 of Lecture
Notes in Computer Science, pp. 85—108, © Springer.

11.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, & Xavier Rival.
A Static Analyzer for Large Safety-Critical Software.
In PLDI 2003 — ACM SIGPLAN SIGSOFT Conference on Programming Language Design and
Implementation, 2003 Federated Computing Research Conference, June 7—14, 2003, San Diego,
California, USA, pp. 196—207, © ACM.

12.

Jérôme Feret.
Static analysis of digital filters.
In ESOP 2004 — European Symposium on Programming, D. Schmidt (editor), Mar. 27 —Apr. 4,
2004, Barcelona, ES, Volume 2986 of Lecture Notes in Computer Science, pp. 33—48, © Springer.

13.

Laurent Mauborgne.
ASTRÉE: verification of absence of run-time error.
In Building the Information Society, R. Jacquard (Ed.), Kluwer Academic Publishers, pp. 385—392,
2004.

14.

Antoine Miné.
Relational abstract domains for the detection of floating-point run-time errors.
In ESOP 2004 — European Symposium on Programming, D. Schmidt (editor), Mar. 27 — Apr. 4,
2004, Barcelona, Volume 2986 of Lecture Notes in Computer Science, pp. 3—17, © Springer.

15.

Antoine Miné.
Weakly relational numerical abstract domains.
Thèse de l'École polytechnique, 6 December 2004.

16.

Jérôme Feret.
The arithmetic-geometric progression abstract domain.
In VMCAI 2005 — Verification, Model Checking and Abstract Interpretation, R. Cousot (editor),
Volume 3385 of Lecture Notes in Computer Science, pp. 42—58, 17—19 January 2005, Paris, ©
Springer.

17.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux
& Xavier Rival.
The ASTRÉE analyser.
In ESOP 2005 — The European Symposium on Programming, M. Sagiv (editor), Volume 3444 of
Lecture Notes in Computer Science, pp. 21—30, 2—10 April 2005, Edinburgh, © Springer.

18.

Laurent Mauborgne & Xavier Rival.19.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

9 of 12 4/30/10 11:29 AM

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 201089

References on ASTRÉE (cont’d)

The Calculational Design of a Generic Abstract Interpreter.
In Broy, M., and Steinbrüggen, R. (eds.): Calculational System Design. NATO ASI Series F.
Amsterdam: IOS Press, 1999.

Bibliographic References on ASTRÉE

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux & Xavier Rival.
Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical
Real-Time Embedded Software, invited chapter.
In The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, T. Mogensen and D.A. Schmidt and I.H. Sudborough (Editors). Volume 2566 of Lecture
Notes in Computer Science, pp. 85—108, © Springer.

11.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, & Xavier Rival.
A Static Analyzer for Large Safety-Critical Software.
In PLDI 2003 — ACM SIGPLAN SIGSOFT Conference on Programming Language Design and
Implementation, 2003 Federated Computing Research Conference, June 7—14, 2003, San Diego,
California, USA, pp. 196—207, © ACM.

12.

Jérôme Feret.
Static analysis of digital filters.
In ESOP 2004 — European Symposium on Programming, D. Schmidt (editor), Mar. 27 —Apr. 4,
2004, Barcelona, ES, Volume 2986 of Lecture Notes in Computer Science, pp. 33—48, © Springer.

13.

Laurent Mauborgne.
ASTRÉE: verification of absence of run-time error.
In Building the Information Society, R. Jacquard (Ed.), Kluwer Academic Publishers, pp. 385—392,
2004.

14.

Antoine Miné.
Relational abstract domains for the detection of floating-point run-time errors.
In ESOP 2004 — European Symposium on Programming, D. Schmidt (editor), Mar. 27 — Apr. 4,
2004, Barcelona, Volume 2986 of Lecture Notes in Computer Science, pp. 3—17, © Springer.

15.

Antoine Miné.
Weakly relational numerical abstract domains.
Thèse de l'École polytechnique, 6 December 2004.

16.

Jérôme Feret.
The arithmetic-geometric progression abstract domain.
In VMCAI 2005 — Verification, Model Checking and Abstract Interpretation, R. Cousot (editor),
Volume 3385 of Lecture Notes in Computer Science, pp. 42—58, 17—19 January 2005, Paris, ©
Springer.

17.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux
& Xavier Rival.
The ASTRÉE analyser.
In ESOP 2005 — The European Symposium on Programming, M. Sagiv (editor), Volume 3444 of
Lecture Notes in Computer Science, pp. 21—30, 2—10 April 2005, Edinburgh, © Springer.

18.

Laurent Mauborgne & Xavier Rival.19.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

9 of 12 4/30/10 11:29 AM CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 201090

References on ASTRÉE (cont’d)

The Calculational Design of a Generic Abstract Interpreter.
In Broy, M., and Steinbrüggen, R. (eds.): Calculational System Design. NATO ASI Series F.
Amsterdam: IOS Press, 1999.

Bibliographic References on ASTRÉE

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux & Xavier Rival.
Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical
Real-Time Embedded Software, invited chapter.
In The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, T. Mogensen and D.A. Schmidt and I.H. Sudborough (Editors). Volume 2566 of Lecture
Notes in Computer Science, pp. 85—108, © Springer.

11.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, & Xavier Rival.
A Static Analyzer for Large Safety-Critical Software.
In PLDI 2003 — ACM SIGPLAN SIGSOFT Conference on Programming Language Design and
Implementation, 2003 Federated Computing Research Conference, June 7—14, 2003, San Diego,
California, USA, pp. 196—207, © ACM.

12.

Jérôme Feret.
Static analysis of digital filters.
In ESOP 2004 — European Symposium on Programming, D. Schmidt (editor), Mar. 27 —Apr. 4,
2004, Barcelona, ES, Volume 2986 of Lecture Notes in Computer Science, pp. 33—48, © Springer.

13.

Laurent Mauborgne.
ASTRÉE: verification of absence of run-time error.
In Building the Information Society, R. Jacquard (Ed.), Kluwer Academic Publishers, pp. 385—392,
2004.

14.

Antoine Miné.
Relational abstract domains for the detection of floating-point run-time errors.
In ESOP 2004 — European Symposium on Programming, D. Schmidt (editor), Mar. 27 — Apr. 4,
2004, Barcelona, Volume 2986 of Lecture Notes in Computer Science, pp. 3—17, © Springer.

15.

Antoine Miné.
Weakly relational numerical abstract domains.
Thèse de l'École polytechnique, 6 December 2004.

16.

Jérôme Feret.
The arithmetic-geometric progression abstract domain.
In VMCAI 2005 — Verification, Model Checking and Abstract Interpretation, R. Cousot (editor),
Volume 3385 of Lecture Notes in Computer Science, pp. 42—58, 17—19 January 2005, Paris, ©
Springer.

17.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux
& Xavier Rival.
The ASTRÉE analyser.
In ESOP 2005 — The European Symposium on Programming, M. Sagiv (editor), Volume 3444 of
Lecture Notes in Computer Science, pp. 21—30, 2—10 April 2005, Edinburgh, © Springer.

18.

Laurent Mauborgne & Xavier Rival.19.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

9 of 12 4/30/10 11:29 AM

Trace Partitioning in Abstract Interpretation Based Static Analyzer.
In ESOP 2005 — ; The European Symposium on Programming, M. Sagiv (editor), Volume 3444 of
Lecture Notes in Computer Science, pp. 5—20, 2—10 April 2005, Edinburgh, © Springer.

Xavier Rival.
Understanding the Origin of Alarms in ASTRÉE.
In SAS'05 — The 12th International Static Analysis Symposium, Chris Hankin & Igor Siveroni
(editors), Volume 3672 of Lecture Notes in Computer Science, pp. 303—319, 7—9 September
2005, London, UK, © Springer.

20.

David Monniaux.
The Parallel Implementation of the Astree Static Analyzer.
In APLAS 2005 — The Third Asian Symposium on Programming Languages and Systems,
Kwangkeun Yi (editor), Volume 3780 of Lecture Notes in Computer Science, pp. 86—96, 2—5
November 2005, Tsukuba, Japan, © Springer.

21.

Xavier Rival.
Abstract Dependences for Alarm Diagnosis.
In APLAS 2005 — The Third Asian Symposium on Programming Languages and Systems,
Kwangkeun Yi (editor), Volume 3780 of Lecture Notes in Computer Science, pp. 347—363, 2—5
November 2005, Tsukuba, Japan, © Springer.

22.

Antoine Miné.
Symbolic Methods to Enhance the Precision of Numerical Abstract Domains.
In VMCAI 2006 — Seventh International Conference on Verification, Model Checking and Abstract
Interpretation, E. Allen Emerson & Kedar S. Namjoshi (editors), Volume 3855 of Lecture Notes in
Computer Science, pp. 348—363, 8—10 January 2006, Charleston, South Carolina, USA, ©
Springer.

23.

Antoine Miné.
Field-Sensitive Value Analysis of Embedded C Programs with Union Types and Pointer Arithmetics.
In Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference for Languages, Compilers, and
Tools for Embedded Systems (LCTES 2006), 14—16 June 2006, Ottawa, Ontario, Canada. ACM
Press, pp. 54—63.

24.

Patrick Cousot.
L'analyseur statique ASTRÉE , Grand Colloque TIC 2006, Session RNTL « Systèmes
embarqués », Centre de congrès, Lyon, 15 novembre 2006.

25.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
& Xavier Rival.

Combination of Abstractions in the ASTRÉE Static Analyzer. In 11th Annual Asian Computing
Science Conference (ASIAN'06), National Center of Sciences, Tokyo, Japan, December 6—8, 2006.
LNCS 4435, Springer, Berlin, pp. 272—300, 2008.

26.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
and Xavier Rival.
Varieties of Static Analyzers: A Comparison with ASTRÉE, invited paper.
First IEEE & IFIP International Symposium on ``Theoretical Aspects of Software Engineering'',
TASE'07, Shanghai, China, 6—8 June 2007, pp. 3—17.

27.

Patrick Cousot.
Proving the Absence of Run-Time Errors in Safety-Critical Avionics Code.

28.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

10 of 12 4/30/10 11:29 AM

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

References on ASTRÉE (cont’d)

91

Trace Partitioning in Abstract Interpretation Based Static Analyzer.
In ESOP 2005 — ; The European Symposium on Programming, M. Sagiv (editor), Volume 3444 of
Lecture Notes in Computer Science, pp. 5—20, 2—10 April 2005, Edinburgh, © Springer.

Xavier Rival.
Understanding the Origin of Alarms in ASTRÉE.
In SAS'05 — The 12th International Static Analysis Symposium, Chris Hankin & Igor Siveroni
(editors), Volume 3672 of Lecture Notes in Computer Science, pp. 303—319, 7—9 September
2005, London, UK, © Springer.

20.

David Monniaux.
The Parallel Implementation of the Astree Static Analyzer.
In APLAS 2005 — The Third Asian Symposium on Programming Languages and Systems,
Kwangkeun Yi (editor), Volume 3780 of Lecture Notes in Computer Science, pp. 86—96, 2—5
November 2005, Tsukuba, Japan, © Springer.

21.

Xavier Rival.
Abstract Dependences for Alarm Diagnosis.
In APLAS 2005 — The Third Asian Symposium on Programming Languages and Systems,
Kwangkeun Yi (editor), Volume 3780 of Lecture Notes in Computer Science, pp. 347—363, 2—5
November 2005, Tsukuba, Japan, © Springer.

22.

Antoine Miné.
Symbolic Methods to Enhance the Precision of Numerical Abstract Domains.
In VMCAI 2006 — Seventh International Conference on Verification, Model Checking and Abstract
Interpretation, E. Allen Emerson & Kedar S. Namjoshi (editors), Volume 3855 of Lecture Notes in
Computer Science, pp. 348—363, 8—10 January 2006, Charleston, South Carolina, USA, ©
Springer.

23.

Antoine Miné.
Field-Sensitive Value Analysis of Embedded C Programs with Union Types and Pointer Arithmetics.
In Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference for Languages, Compilers, and
Tools for Embedded Systems (LCTES 2006), 14—16 June 2006, Ottawa, Ontario, Canada. ACM
Press, pp. 54—63.

24.

Patrick Cousot.
L'analyseur statique ASTRÉE , Grand Colloque TIC 2006, Session RNTL « Systèmes
embarqués », Centre de congrès, Lyon, 15 novembre 2006.

25.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
& Xavier Rival.

Combination of Abstractions in the ASTRÉE Static Analyzer. In 11th Annual Asian Computing
Science Conference (ASIAN'06), National Center of Sciences, Tokyo, Japan, December 6—8, 2006.
LNCS 4435, Springer, Berlin, pp. 272—300, 2008.

26.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
and Xavier Rival.
Varieties of Static Analyzers: A Comparison with ASTRÉE, invited paper.
First IEEE & IFIP International Symposium on ``Theoretical Aspects of Software Engineering'',
TASE'07, Shanghai, China, 6—8 June 2007, pp. 3—17.

27.

Patrick Cousot.
Proving the Absence of Run-Time Errors in Safety-Critical Avionics Code.

28.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

10 of 12 4/30/10 11:29 AM

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

References on ASTRÉE (cont’d)

92

Trace Partitioning in Abstract Interpretation Based Static Analyzer.
In ESOP 2005 — ; The European Symposium on Programming, M. Sagiv (editor), Volume 3444 of
Lecture Notes in Computer Science, pp. 5—20, 2—10 April 2005, Edinburgh, © Springer.

Xavier Rival.
Understanding the Origin of Alarms in ASTRÉE.
In SAS'05 — The 12th International Static Analysis Symposium, Chris Hankin & Igor Siveroni
(editors), Volume 3672 of Lecture Notes in Computer Science, pp. 303—319, 7—9 September
2005, London, UK, © Springer.

20.

David Monniaux.
The Parallel Implementation of the Astree Static Analyzer.
In APLAS 2005 — The Third Asian Symposium on Programming Languages and Systems,
Kwangkeun Yi (editor), Volume 3780 of Lecture Notes in Computer Science, pp. 86—96, 2—5
November 2005, Tsukuba, Japan, © Springer.

21.

Xavier Rival.
Abstract Dependences for Alarm Diagnosis.
In APLAS 2005 — The Third Asian Symposium on Programming Languages and Systems,
Kwangkeun Yi (editor), Volume 3780 of Lecture Notes in Computer Science, pp. 347—363, 2—5
November 2005, Tsukuba, Japan, © Springer.

22.

Antoine Miné.
Symbolic Methods to Enhance the Precision of Numerical Abstract Domains.
In VMCAI 2006 — Seventh International Conference on Verification, Model Checking and Abstract
Interpretation, E. Allen Emerson & Kedar S. Namjoshi (editors), Volume 3855 of Lecture Notes in
Computer Science, pp. 348—363, 8—10 January 2006, Charleston, South Carolina, USA, ©
Springer.

23.

Antoine Miné.
Field-Sensitive Value Analysis of Embedded C Programs with Union Types and Pointer Arithmetics.
In Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference for Languages, Compilers, and
Tools for Embedded Systems (LCTES 2006), 14—16 June 2006, Ottawa, Ontario, Canada. ACM
Press, pp. 54—63.

24.

Patrick Cousot.
L'analyseur statique ASTRÉE , Grand Colloque TIC 2006, Session RNTL « Systèmes
embarqués », Centre de congrès, Lyon, 15 novembre 2006.

25.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
& Xavier Rival.

Combination of Abstractions in the ASTRÉE Static Analyzer. In 11th Annual Asian Computing
Science Conference (ASIAN'06), National Center of Sciences, Tokyo, Japan, December 6—8, 2006.
LNCS 4435, Springer, Berlin, pp. 272—300, 2008.

26.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
and Xavier Rival.
Varieties of Static Analyzers: A Comparison with ASTRÉE, invited paper.
First IEEE & IFIP International Symposium on ``Theoretical Aspects of Software Engineering'',
TASE'07, Shanghai, China, 6—8 June 2007, pp. 3—17.

27.

Patrick Cousot.
Proving the Absence of Run-Time Errors in Safety-Critical Avionics Code.

28.

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

10 of 12 4/30/10 11:29 AM

The development of the ASTRÉE Static Analyzer was supported in part by the French
exploratory project ASTRÉE of the Réseau National de recherche et d'innovation en
Technologies Logicielles (RNTL) (2002—2006). The final review of the ASTRÉE project

was on July 7th, 2006.

In EMSOFT 2007, Embedded Systems Week, Salzburg, Austria, September 30th, 2007, pp. 7—9,
ACM Press.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, and Xavier Rival.
Why does ASTRÉE scale up.
Formal Methods in System Design, Springer, to appear, 2010.

29.

Bibliographic References on the Industrial Use of ASTRÉE

David Delmas and Jean Souyris.
ASTRÉE: from Research to Industry.

Proc. 14th International Static Analysis Symposium, SAS 2007, G. Filé & H. Riis-Nielson (eds),
Kongens Lyngby, Denmark, 22-24 August 2007, LNCS 4634, pp. 437—451, © Springer, Berlin.

30.

Jean Souyris and David Delmas.
Experimental Assessment of ASTRÉE on Safety-Critical Avionics Software.
Proc. Int. Conf. Computer Safety, Reliability, and Security, SAFECOMP 2007, Francesca Saglietti
and Norbert Oster (Eds.), Nuremberg, Germany, September 18—21, 2007, Volume 4680 of
Lecture Notes in Computer Science, pp. 479—490, © Springer, Berlin.

31.

O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, E. Goubault, D. Lesens, L.
Mauborgne, A. Miné, S. Putot, X. Rival, M. Turin.
Space software validation using Abstract Interpretation.

Proc. 13thData Systems in Aerospace, DASIA 2009, Istanbul, Turkey, 26-29 May 2009,
© Eurospace, Paris.

32.

News on ASTRÉE in the press

Le Journal du CNRS, Nº 182, mars 2005, page 35, Le CNRS, l'A380 et l'aéronautique de demain.

Le Monde, Nº 18741, 27 avril 2005, page 18, L'avion qui "bat des ailes" a fédéré de nombreux
chercheurs.

Software ohne Fehl und Tadel by Karlhorst Klotz, Das M.I.T. Magazin für Innovation Technology,
21 June 2005.

Le Journal du CNRS, Nº 185, juin 2005, page 25, A380 : Le CNRS à la fête.

Le Journal du CNRS, Nº 185, juin 2005, pages 25-27, Sécurité : toujours plus !

Le Journal du CNRS, Nº 239, décembre 2009, page 14, Le CNRS décolle avec l'A380

Support of ASTRÉE

Pictures of ASTRÉE

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

11 of 12 4/30/10 11:29 AM

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

References on the industrial use of abstract interpretation

93

The development of the ASTRÉE Static Analyzer was supported in part by the French
exploratory project ASTRÉE of the Réseau National de recherche et d'innovation en
Technologies Logicielles (RNTL) (2002—2006). The final review of the ASTRÉE project

was on July 7th, 2006.

In EMSOFT 2007, Embedded Systems Week, Salzburg, Austria, September 30th, 2007, pp. 7—9,
ACM Press.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, and Xavier Rival.
Why does ASTRÉE scale up.
Formal Methods in System Design, Springer, to appear, 2010.

29.

Bibliographic References on the Industrial Use of ASTRÉE

David Delmas and Jean Souyris.
ASTRÉE: from Research to Industry.

Proc. 14th International Static Analysis Symposium, SAS 2007, G. Filé & H. Riis-Nielson (eds),
Kongens Lyngby, Denmark, 22-24 August 2007, LNCS 4634, pp. 437—451, © Springer, Berlin.

30.

Jean Souyris and David Delmas.
Experimental Assessment of ASTRÉE on Safety-Critical Avionics Software.
Proc. Int. Conf. Computer Safety, Reliability, and Security, SAFECOMP 2007, Francesca Saglietti
and Norbert Oster (Eds.), Nuremberg, Germany, September 18—21, 2007, Volume 4680 of
Lecture Notes in Computer Science, pp. 479—490, © Springer, Berlin.

31.

O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, E. Goubault, D. Lesens, L.
Mauborgne, A. Miné, S. Putot, X. Rival, M. Turin.
Space software validation using Abstract Interpretation.

Proc. 13thData Systems in Aerospace, DASIA 2009, Istanbul, Turkey, 26-29 May 2009,
© Eurospace, Paris.

32.

News on ASTRÉE in the press

Le Journal du CNRS, Nº 182, mars 2005, page 35, Le CNRS, l'A380 et l'aéronautique de demain.

Le Monde, Nº 18741, 27 avril 2005, page 18, L'avion qui "bat des ailes" a fédéré de nombreux
chercheurs.

Software ohne Fehl und Tadel by Karlhorst Klotz, Das M.I.T. Magazin für Innovation Technology,
21 June 2005.

Le Journal du CNRS, Nº 185, juin 2005, page 25, A380 : Le CNRS à la fête.

Le Journal du CNRS, Nº 185, juin 2005, pages 25-27, Sécurité : toujours plus !

Le Journal du CNRS, Nº 239, décembre 2009, page 14, Le CNRS décolle avec l'A380

Support of ASTRÉE

Pictures of ASTRÉE

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

11 of 12 4/30/10 11:29 AM

CMACS visit to Rockwell-Collins, Cedar Rapids, Iowa May 3, 2010

The End

94

