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Motivation

Computer scientists have made great
contributions to failures of complex systems

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding)  (unit error)

® Onboard checking the presence of bugs is great!
® Proving their absence is even better!!!
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Static analysis

Static analysis

® Static analysis consists in automatically answering

questions about the runtime executions of programs

Static means « at compile time », by examining the
program text only, without executions on computers

® Automatic means by a computer, without human

intervention during the analysis

Program —> Static
analyzer —> Answer
Question program
Computer

Static analysis is undecidable

® Undecidability essentially means that any static
analyzer/verifier cannot answer “yes” or “no” to a
question about all input programs

® |t will not terminate or will terminate with answer
« | don’t know » on infinitely many input programs

Facing undecidability

Degugging: test a few ... many cases — costly,
unsafe, not a verification!

Deductive methods: ask for human help (e.g. to make
guesses or guide a theorem prover) — complex,
error-prone & very costly

Model checking: explore finite models of programs —
combinatorial explosion & models may be different
from programs

Abstract interpretation: make sound approximations of
program executions — always terminate but some
potential bug warinings may be false alarms (when
the abstraction is incomplete)
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Abstract interpretation
® Started in the 70’s and well-developped since then

® Originally for inferring program invariants (with first
applications to compilation, optimization, program
transformation, to help hand-made proofs, etc)

® Based on the idea that undecidability and complexity

AbStraCt inte rp retation of automated program analysis can be fought by

approximation
® Applications evolved from static analysis to verification

® Does scale up!

|) Define the programming language semantics

Formalize the concrete execution of programs (e.g. transition system)

y_qT\/:/ (cy)
An informal introduction to \;:AL’X Ve

abstract interpretation :

Trajectory Space/time trajectory
in state space




II) Define the program properties of interest

Formalize what you are interested to know about program behaviors

A

V) Choose the appropriate abstraction

Abstract away all information on program behaviors irrelevant to the proof

Abstraction of the trajectories

v

lll) Define which specification must be checked

Formalize what you are interested to prove about program behaviors

Forbiden zone

V) Mechanically verify in the abstract

The proof is fully automatic

Forbidden zone

Abstraction of the trajectories




Soundness of the abstract verification

Never forget any possible case so the abstract proof is correct in the concrete

Forbidden zone

Abstraction of the trajectories

Unsound validation: bounded model-checking

Simulate the beginning of all executions

Forbidden zone

Bounded model-checking

Unsound validation: testing

Try a few cases

Forbidden zone — Error !l

Test of a few trajectories

Unsound validation: static analysis

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Erroneous trajectory abstraction
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Incompleteness True error

When abstract proofs may fail while concrete proofs would succeed The abstract alarm may correspond to a concrete error

Forbidden zone Alarm 1! Forbidden zone Alarm !I!

Error or false alarm ?

By soundness an alarm must be raised for this overapproximation!
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False alarm Principle of an abstract interpreter
The abstract alarm may correspond to no concrete error (false negative)

Read the input program

. Al i Optionally read the question (can be implicit e.g.
Forbidden zone S absence of runtime errors or inserted in the
program e.g. assert)

Compute the abstraction of the program execution

Output the result:
® Answer to the question (yes, no, | don’t know)

False alarm ® Optionally, provide information on program
execution (e.g. over-approximation of the range
of variation of numerical variables, shape of data
structures, etc)

23 May 3, 2010 CCMACS visit to Rockwell-Collins, Cedar Rapids, lowa 24




What to do about false alarms?
® Automatic refinement: inefficient and may not
terminate (Godel)
® Domain-specific abstraction:

® Adapt the abstraction to the programming
paradigms typically used in given domain-specific
applications

® e.g. synchronous control/command: no recursion, no
dynamic memory allocation, maximum execution
time, etc.
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Target language and applications
® C programming language

® Without recursion, 1longjump, dynamic
memory allocation, conflicting side effects,
backward jumps, system calls (stubs)

® With all its horrors (union, pointer
arithmetics, etc)

® Reasonably extending the standard (e.g. size &
endianess of integers, IEEE 754-1985 floats, etc)

® Synchronous control/command

® e.g. generated from Scade/Lustre, Simulink, or a
proprietary system
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ASTREE
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The class of considered periodic
synchronous programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever
- read volatile input variables,
- compute output and state variables,
- write to output variables;
__ASTREE_wait_for_clock ();
end loop

Task scheduling is static:

— Requirements: the only interrupts are clock ticks;

— HExecution time of loop body less than a clock tick,
as verified by the aiT' WCET Analyzers
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The semantics of C implementations
is very hard to define

What is the effect of out-of-bounds array indexing?

% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647,
printf("n = %i, T[n] = %i\n", n, T[n]);
+

Yields different results on different machines:

n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits
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Example of error with predictable output:

modular arithmetics

% cat -n modulo-c.c
1 #include <stdio.h>
2 int main () {
3 int x,y; positive
4 x = -2147483647 / -1; _
5y =((x) -1) /-1, hegve
6 printf("x = %i, y = %hi\n",x,y);
7}
8

% gcc modulo-c.c
% ./a.out
x = 2147483647, y = -2147483648
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Implicit specification

® Absence of runtime errors: overflows, division by
zero, buffer overflow, null & dangling pointers,
alignment errors, ...

® Semantics of runtime errors:

|. Terminating execution: stop (e.g. floating-point
exceptions when traps are activated)

2. Predictable outcome: go on with worst case
(e.g. signed integer overflows result in some
integer, some options: e.g. modulo arithmetics)

3. Unpredictable outcome: stop on error (e.g.
memory corruption), go on with non-erroneous
cases
Rapids, lov 30

Analysis by ASTREE

% cat -n modulo.c
1 int main O {
2 int x,y;
3 x = -2147483647 / -1,
4y =((-x) -1/ -1;
5 __ASTREE_log_vars((x,y));
6 }
7
% astree -exec-fn main -unroll 0 modulo.c\
|& egrep -A 1 "(<integers) | (WARN)"
modulo.c:4.4-18:: [call#main@l:]: WARN: signed int arithmetic range
{2147483648} not included in [-2147483648, 2147483647]
<integers (intv+cong+bitfield+set): y in [-2147483648, 2147483647] /\ Top
x in {2147483647} /\ {2147483647} >

ASTREE signals the overflow and goes on with an
unknown integer (as required by the C standard)
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Example of error with predictable output:
float arithmetics

% astree -exec-fn main

overflow.c |& grep "WARN"

double X, Y5 overflow.c:3.4-23:: [call#mainil:]:
WARN: double arithmetic range

x = 1.0e+256 * 1.0e+256; 1 79769¢+308, inf] not ;

y = 1.0e+256 * -1.0e+256; included in [-1.79769e+308,

__ASTREE_log_vars((x,y)); 1.79769e+308]

} overflow.c:4.4-24::[call#mainl:]:

WARN: double arithmetic range

[-inf, -1.79769e+308] not

included in [-1.79769e+308,

1.79769e+308]

cat -n overflow.c
void main () {

o O W N -

gcc overflow.c
./a.out
= inf, y = -inf
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Soundness

® |n absence of error of type 3. (without unpredictable
consequences) — fully sound

® |n presence of errors of type 3. (with unpredictable
consequences), ASTREE may miss further errors
occuring dfter this first error due to the unpredictable
behavior — sound up to the first error with

unpredictable consequences

Example of error with unpredictable
output: buffer overflow

% cat -n unpreditable-a.c
const int false = O;
int main () { int n, T[1], x;
n=1;
x = T[n];
__ASTREE_assert((false));
6 }
% astree -exec-fn main unpreditable-a.c |& grep "WARN"
unpreditable-a.c:4.4-8:: [call#main@2:]: WARN: invalid dereference: dereferencing
4 byte(s) at offset(s) [4;4] may overflow the variable T of byte-size 4
h

O W N

No alarm on assert (false) because execution is assumed to stop after a definite

runtime error with unpredictable results (4.

4) Equivalent semantics if no alarm.
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Rounding is not an error but is problematic!

/* float-error.c */ /* double-error.c */

int main (O { int main () {
float x, y, z, r; double x; float y, z, r;
x = 1.000000019e+38; /* x = 1ldexp(1.,50)+1dexp(1l.,26); */
y = x + 1.0e21; x = 1125899973951488.0;
z =x - 1.0e21; y=x+1;
r=y - z; z=x - 1;
printf ("%f\n", r); r=y-z

} printf ("%f\n", 1);

% gcc float-error.c ¥

% ./a.out % gcc double-error.c

0.000000 % ./a.out

134217728.000000

(z+a)—(z—a)#2a




Rounding is not an error but is problematic!

/* float-error.c */
int main () {
float x, y, z, r;
X 1.000000019e+38;
y = x + 1.0e21;
z =x - 1.0e21;
r=y -z
printf ("%f\n", 1);
b
% gcc float-error.c
% ./a.out
0.000000

(z4+a)—(z—a)#2a

/* double-error.c */

int main () {

double x; float y, z, r;

/* x = ldexp(1l.,50)+1dexp(1.,26); */

x = 1125899973951487.0;
y=x+1;

z=x-1;

r=y -z

printf ("%f\n", r);

}

% gcc double-error.c

% ./a.out

0.000000

37

(1)

(2)

Explanation of the huge rounding error

Floats
Reals

Doubles
Reals
Floats

&Hﬁx+1

It
‘/Roulldjng\‘
| | ] |
T

I2 I
| e N

1< |

134217728.0
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Analysis by ASTREE

% cat -n double-error.c
int main () {

x = 1125899973951488.0;
y=x+1;
Z x - 1;
r=y -z
ASTREE_log_vars((r));

wmnn

¥

% gcc double-error.c
% ./a.out
134217728.000000

O O 00 NO O WD

[

double x; float y, z, r;;
/* x = ldexp(1.,50)+1dexp(1.,26); */

% astree -exec-fn main -print-float-digits 10 double-error.c |& grep "r in
direct = <float-interval: r in [-134217728, 134217728] >

13 ASTREE makes a worst-case assumption on the rounding (400, —o0, 0, nearest) hence the possibility to

get -134217728.
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Example of accumulation of rounding errors

% cat -n rounding-c.c
#include <stdio.h>

1
2
3
4
5
6
7
8

int main () {

int i; double x; x = 0.0;
for (i=1; i<=1000000000; i++) {
x =x+ 1.0/10.0;

¥

printf("x = %f\n", x);

+

% gcc rounding-c.c

b

./a.out

x = 99999998.745418

b

since (0.1)10 = (0.0001100110011001100. . .)s

40




Analysis by ASTREE

% cat -n rounding.c
int main () {
double x; x = 0.0;
while (1) {
x=x+ 1.0/10.0;
__ASTREE_log_vars((x));
__ASTREE_wait_for_clock((Q));
}
¥
% cat rounding.config
__ASTREE_max_clock((1000000000)) ;
% astree -exec-fn main -config-sem rounding.config -unroll 0 rounding.c\
& egrep "(x in) | (\Ix\|) | (WARN)" | tail -2
direct = <float-interval: x in [0.1, 200000040.938] >
Ix| <= 1.%((0. + 0.1/(1.-1))*(1.)"clock - 0.1/(1.-1)) + 0.1
<= 200000040.938

O N O O WN
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Examples of abstractions in
ASTREE
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Scaling is not an error but can be problematic

% cat -n scale.c % gcc scale.c
1 int main () { % ./a.out

2 float x; x = 0.70000001; x = 0.699999988079071
3 while (1) {

4 x=x/ 8.0,

5 x =x * 3.0;

6 __ASTREE_log_vars((x));

7  __ASTREE_wait_for_clock(());
8 }

9

b

% cat scale.config
__ASTREE_max_clock ((1000000000)) ;

% astree -exec-fn main -config-sem scale.config -unroll 0 scale.c\
& grep "x in" | tail -1

direct = <float-interval: x in [0.69999986887, 0.700000047684] >

b

1 Rockwel 42 ,
Abstractions

Yy Yy o o lLhh o o
/ [ ] e o [ ] L]
/‘ ] e o [ ] [ ]

®a 4 5 & x [ ] e o [ ] o 'J;
° ° e o [ ] L[]
[ ] e o L] L]

Collecting semantics: Intervals: Simple congruences:

partial traces x € [a,]] x = a[b]

Y

Y

Octagons: Ellipses: Exponentials:
tx+y<a x? 4+ by? — axy < d —a’ < y(t) < a”
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Example of general purpose abstraction: octagons

e Invariants of the form +=x+y < c, with O(IN?) memory and O(IN?) time cost.

® Example:
Whilf (1) { ® At %, the interval domain gives
E ~ 2_2’ L < max(max A, (max Z)+(max V)).
if (R>V) ® |n fact, we have L. < A.
{ * L =2+ } . .
* e To discover this, we must know at % that
} R=A-ZandR > V.

e Here, R = A-Z cannot be discovered, but we get L-Z < max R which is sufficient.

e We use many octagons on small packs of variables instead of a large one using

all variables to cut costs. ,
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Example of general purpose abstraction:
decision trees

/* boolean.c */

typedef enum {F=0,T=1} BOOL; (B

BOOL B; V E
void main () { (B) (B')
unsigned int X, Y; T,@fj“*li____Il/“"”~_F
while (1) { T YT\“ "
.
B=(X==0); . I_Y !.,x I .y
if (1B) { The boolean relation abstract
Y=1/X% domain is parameterized by the
’ height of the decision tree (an
y analyzer option) and the
} abstract domain at the leaves
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Filters
29 Order Digital Filter:

aXp 1+ BXn 2+ Yn

I,

— The concrete computation is bounded, which
must be proved in the abstract.

O=[=]

— Computes X, —{
—k R
R

— There is no stable interval or octagon.

— The simplest stable surface is an ellipsoid.

L

)
-

X U F(X)

unstable interval stable ellipsoid

execution trace
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Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); %

E[1] = E[0]; E[0] = X; S[1] = s[0]; S[0] = P;

/% S[0], S[1] in [-1327.02698354, 1327.02698354] */
t
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X =0.9 %« X + 35;

filter (); INIT = FALSE; }
} »
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Example of domain-specific abstraction: exponentials
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {
R = 0;
while (TRUE) {
__ASTREE_log_vars((R));
if (I) {R=R+1; }
else { R =0; %}
T = (R >= 100);
__ASTREE_wait_for_clock(());
1}
% cat count.config
__ASTREE_volatile_input ((I [0,1]));
__ASTREE_max_clock((3600000)) ;
% astree -exec-fn main -config-sem count.config count.c|grep ’|R|’

IRI <= 0. + clock *1. <= 3600001. H
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+ potential overflow!

Arithmetic-geometric abstraction

— Abstract domain: (]R,Jr)5

— Concretization:
v € (RT)° — p(N — R)

7(M)a')b) a'/)b/) =
{f 19k EN:|f(B)] < (Az-az+bo (Az-az + b)) (1))

i.e. any function bounded by the arithmetic-geometric
progression.

Example of domain-specific abstraction: exponentials

% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev( ) % cat retro.config

{ X=E; __ASTREE_volatile_input((E [-15.0, 15.0]));
if (FIRST) { P = X; 2 __ASTREE_volatile_input((SWITCH [0,1]));
else __ASTREE_max_clock((3600000)) ;

{P= (P - ((((2.0«P) - A -B)

<= .+ 5. -
* 4.491048¢-03)); }: [P (15 5.87747175411e-39

/ 1.19209290217e-07) * (1 +
1.19209290217e-07) “clock - 5.87747175411e-39
/ 1.19209290217e-07 <= 23.0393526881

B =A;
if (SWITCH) {A = P;}
else {A = X;}

}
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An erroneous common belief on static analyzers

“The properties that can be proved by static analyzers are often
simple” [2]
Like in mathematics:

— May be simple to state (no overflow)

— But harder to discover (S[O], S[1] in [-1327.02698354, 1327.02698354]

— And difficult to prove (since it requires finding a non trivial
non-linear invariant for second order filters with complex
roots [Fer04], which can hardly be found by exhaustive enu-
meration)

— Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.
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Industrial applications

53

Examples of applications
® Verification of the absence of runtime-errors in

® Fly-by-wire flight control systems

® Flight warning system
(on-going work)
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Industrialization

® 8 years of research (CNRS/ENS/INRIA):

www.astree.ens.fr

® [ndustrialization by Absint (since Jan.2010):

www.absint.com/astree/  Teo- = A o e T T
el — = = )
ey = E i i i
Abslin a B = u;:,-“4
Angewandie informatic P PT: =
==
~ = — éf:,,ﬁ, Spm—
S e S
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Example of case study: the
ATV docking control
software

O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, E. Goubault, D. Lesens, L.
Mauborgne, A. Miné, S. Putot, X. Rival, M. Turin.

Space software validation using Abstract Interpretation.

proc. 13"Data Systems in Aerospace, DASIA 2009, Istanbul, Turkey, 26-29 May 2009,
© Eurospace, Paris.
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The ASTRIUM ST case study MSU SW

® The MSU SWV contains mainly:

I. Navigation and control
algorithms

2. A (very simplified) mission
management

® Single task cyclic synchronous
software

® |[nitially in ADA — Scade 5/6
exact model = C (38K LOCS)

‘“ = The C code of the case study may contain errors! ”’ [ :-) ]

Qesa &0 ;ob M e
> L Ecoe Space

POLVTECHNIQUE
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Alarms raised by ASTREE

= Complex control flow

= Quaternion computation (normalisation)

= Runge Kutta integration (4t order integration scheme) False alarms
= Kalman filters (8t order linear filter)

= Controller estimation

*Bugs } True alarms
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Preparatory work
® Definition of stubs for the library (reusable)
® Choice of code generation options for SCADE

® Definition of a few environment properties (a few input
ranges)

e Setting ASTREE parameters

® Analysis takes < 4mn
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Analysis of the alarms

® Correct bugs (in Scade compiler V6 and in the analyzed
program)

® Add numerical protections on environment (forgotten
hypotheses)

® Add numerical protections in computations (in a first
phase)

=> 0 false alarms
Very efficient tool compared to Polyspace Verifier
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Resolution of the alarms

* Manual first phase:

* Complex control flow  } Improvement of the model
= Quaternion computation
= Runge Kutta integration
= Kalman filters

= Controller estimation
=Bugs } Corrected

~ 30 numerical protections

= 0 false alarm

* Automatic second phase:

Design and implementation of a few abstract
domains (quaternions, Runge Kutta integration,
Kalman filters) avoiding the unecessary

protections = 0 false alarm
S visit to Rockwell-Collins, Cedar Rapids, lowa 6l

Example of new abstract domain: quaternions

® Quaternions ¢ = (u, 1,7, k) are a number system

extending complex numbers and applied to
mechanics in three-dimensional space

ASTREE did not handle precisely enough the
normalization ||q|| £ \/u? + 2 + j2 + k2

An new abstract domain added to ASTREE solved
this problem

The abstract properties are (X1, X2, X3, X4, )

where are 4 variables and is an
interval meaning

Vxi+xi+x3+x3 € 1
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On-going work
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Verification of
target programs

64




Verification of compiled programs

® The valid source may be proved correct while the

certified compiler is incorrect so the target program
may go wrong

® Possible approaches:

® Verification at the target level

® Source to target proof translation and proof
check on the target

* Translation validation (local verification of

equivalence of run-time error free source and
target)

® Formally certified compilers
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Imperfect synchrony

® Example of (buggy) communicating synchronous systems:

[P PR | — eseeereen- blackboard inputs

® negate previous input
(on clocks C and C’)
el B ® compare inputs

System 1 System 2

® Synchronized and dysynchronized executions:

time

fysten 2 T‘" I B B T | Ec'm
=l 1 - H H !
- o ‘ oo <-- flawed

\A
k alarms

Verification of
imperfectly clocked
synchronous systems
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Semantics and abstractions

® Continuous semantics (value s(t) of signals s at any
time t)

® Clock ticks and serial communications do happen in
known time intervals [/, h],/ < h

® Examples of abstractions:
o Vte |ajb]:s(t) =u.
e Jte|a;b]:s(t) =u.
® change counting (< k,a » <«b) and (> k,a » <b)

(signal changes less (more) than k times in time
interval [a, b])
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Example of static analysis

- e = For how long
T hending Yeandtay § ] should the input
REDUNDANT UNIE 41 REDUNDANT UNIT #2 be stabilized
before deciding
on disagreement!?

ACTUATORS ACTUATORS

Integral bounding

Specification : no alarm raised with a normal input

0 2/3A A
input stability < A : | Between 2 x A | input stability > A : the analyzer

3
counter-example and A @ ? proves the specification
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Formal verification of static analyzers

® Intensive work on formalizing the theory of abstract
interpretation in Coq

® Proofs essentially done by hand

® Presently verify the correctness of the
implementation of abstract domains (e.g. intervals,
octagons, ...)

® Then consider combinations of abstract domains

® Ultimately might be able to consider the whole static
analyzer
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THESEE: Verification of
embedded real-time parallel
C programs

71

Parallel programs

® Bounded number of processes with shared memory,
events, semaphores, message queues, blackboards,...

® Processes created at initialization only

® Real time operating system (ARINC 653) with fixed
priorities (highest priority runs first)

® Scheduled on a single processor

Verified properties

® Absence of runtime errors

® Absence of unprotected data races
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Semantics
® No memory consistency model for C

® Optimizing compilers consider sequential processes
out of their execution context

init: flagl = flag2 =0

process 1: process 2: )
flagl = 1; flag2 = 1; write to flagl/2 and
if (1flag2) if (1flagl) read of £1lag2/1 are
{ { independent so can be
/* critical section */ /* critical section */ reordered — error!

® We assume:
® sequential consistency in absence of data race
® for data races, values are limited by possible
interleavings between synchronization points

73

Abstractions
Based on Astrée for the sequential processes
Takes scheduling into account

OS entry points (semaphores, logbooks, sampling
and queuing ports, buffers, blackboards, ...) are all
stubbed (using Astrée stubbing directives)

Interference between processes: flow-insensitive
abstraction of the writes to shared memory and
inter-process communications

74

Example of static analysis of a complex
parallel application

® Degraded mode (5 processes, 100 000 LOCS)
® |h40 on 64-bit 2.66 GHz Intel server
® 98 alarms

® Full mode (15 processes, | 600 000 LOCYS)
® 50 h

® 12000 alarms !!! more work to be done !!! (e.g.
analysis of complex data structures, logs, etc)
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Conclusion
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Cost-effective verification
® The rumor has it that;

® Manuel validation (testing) is costly, unsafe, not a
verification!

® Formal proofs by theorem provers are
extremely laborious hence costly

® Model-checkers do not scale up
® Why not try abstract interpretation?

® Domain-specific static analysis scales and can
deliver no false alarm
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Characteristics of ASTREE (cont’d)

Sound: — ASTREE is a bug eradicator: finds all bugs

in a well-defined class (runtime errors)

— ASTREE is not a bug hunter: finding some bugs in a
well-defined class (e.g. by bug pattern detection like
FindBugs™, PREfast or PMD)

— ASTREE is exhaustive: covers the whole state space (#
MAGIC, CBMC)

— ASTREE is comprehensive: never omits potential er-
rors (# UNO, CMC from coverity.com) or sort most
probable ones to avoid overwhelming messages (# Splint)
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Characteristics of ASTREE (cont’d)

Static: compile time analysis (# run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs (# PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (# ESC Java,
ESC Java 2), or PREfast (annotate functions with
intended use)
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Characteristics of ASTREE (cont’d)

Multiabstraction: uses many numerical/symbolic abstract
domains (# symbolic constraints in Bane or the
canonical abstraction of TVLA)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (# model checking based
analyzers such as Bandera, Bogor, Java PathFinder,
Spin, VeriSoft)

Efficient: always terminate (# counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)
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Characteristics of ASTREE (cont’d)

Extensible/Specializable: can easily incorporate new abstrac-
tions (and reduction with already existing abstract
domains) (# general-purpose analyzers PolySpace
Verifier)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

8l
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Characteristics of ASTREE (cont’d)

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: very few or no false alarm when adapted to an
application domain — it is a VERIFIER!
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If you have only time to have a look at one
recent reference

* |. Bertrane, P. Cousot, R. Cousot, . Feret,
L. Mauborgne, A. Miné, X. Rival

Static analysis and verification of aerospace software by
abstract interpretation

AAIA Infotech@Aerospace 2010, Atlanta, 20—22
April 2010, Georgia, AIAA 2010-3385

http://pdf.aiaa.org/preview/2010/CDReadyMIAA10_2358/PV2010_3385.pdf
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