
Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Schloß Dagstuhl — Leibniz-Zentrum für Informatik

cousot@di.ens.fr
di.ens.fr/~cousot

Formal Methods — Just a Euro-Science?

Patrick Cousot
pcousot@cs.nyu.edu
cs.nyu.edu/~pcousot

November 30, 2010 December 3, 2010—

Radhia Cousot
rcousot@di.ens.fr
di.ens.fr/~rcousot

Dagstuhl Perspectives Workshop

Abstract interpretation:
from origin to perspectives

1

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot
2

Abstract interpretation:
origin (abridged)

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot
3

• Radhia Rezig: works on precedence parsing (R.W. Floyd, N.
Wirth and H. Weber, etc.) for Algol 68

➡ Pre-processing (by static analysis and transformation)
of the grammar before building the bottom-up parser

• Patrick Cousot: works on context-free grammar parsing
(J. Earley and F. De Remer)

➡ Pre-processing (by static analysis and transformation)
of the grammar before building the top-down parser

• Radhia Rezig. Application de la méthode de précédence totale à l’analyse d’Algol 68, Master thesis, Université Joseph Fourier,
Grenoble, France, September 1972.

• Patrick Cousot. Un analyseur syntaxique pour grammaires hors contexte ascendant sélectif et général. In Congrès AFCET 72,
Brochure 1, pages 106-130, Grenoble, France, 6-9 November 1972.

Before starting (1972-73): formal syntax

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

• Patrick Cousot: works on the operational semantics of
programming languages and the derivation of
implementations from the formal definition

➡ Static analysis of the formal definition and
transformation to get the implementation by “pre-
evaluation” (similar to the more recent “partial
evaluation”)

4

Before starting (1972-73): formal semantics

• Patrick Cousot. Définition interprétative et implantation de languages de programmation. Thèse de Docteur Ingénieur en
Informatique, Université Joseph Fourier, Grenoble, France, 14 Décembre 1974 (submitted in 1973 but defended after
finishing military service with J.D. Ichbiah at CII).

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot
5

Intervals ➞

Static analysis ➞

Intervals ➞

Assertions ➞

Vision
(1973):

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

1973: Dijkstra’s handmade proofs

• Radhia Rezig: attends Marktoberdorf summer
school, July 25–Aug. 4, 1973

➡ Dijkstra shows program proofs (inventing elegant
backward invariants)

➡ Radhia has the idea of automatically inferring the
invariants by a backward calculus to determine
intervals

6

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

1974: origin
• Radhia Rezig shows her interval analysis

ideas to Patrick Cousot

➡ Patrick very critical on going backwards
from [-∞, +∞] and claims that going
forward would be much better

➡ Patrick also very skeptical on forward
termination for loops

• Radhia comes back with the idea of
extrapolating bounds to ±∞ for the
forward analysis

• We discover widening = induction in the
abstract and that the idea is very general

7

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot
8

Notes of Radhia Rezig
on forward iteration
from ☐ = ⊥(1) versus

backward iteration from
[-∞, +∞] (2)

(1) i.e. forward least fixed point
(2) i.e. backward greatest fixed point

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

The first reports and publication(1975–76)

9

3H3U3HC3U30 ruoddvu

s/6T er$E^oN5Z 'trtl

JCISrp3 €TqPeU Pue JOSfp3 {f,rrlBd

s'fl{vluv c0 sgrrul@ud sdrt
3I}Ti\ilTIIO JO NOIJ\DICITEA f,IIVIS

The first abstract
interpreter with

widening
(as of 23 Sep. 1975)

The first research
report

(Nov. 1975)

The first
publication

(ISOP II, Apr. 76)

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot
10

The IRIA–SESORI contract (1975-76)
➡ The project evaluator points to us the literature on constant

propagation in data flow analysis. It appears that it is related to
some of ours ideas, but a.o.

‣ We are not syntactic (as in boolean DFA)
‣ We have no need of some hypotheses (e.g. distributivity not

even satisfied by constant propagation!)
‣ We have no restriction to finite lattices (or ACC)
‣ We have no need of an a-posteriori proof of correctness (e.g.

with respect to the MOP as in DFA)
‣ ...

➡ New general ideas
‣ The formal notions of abstraction/approximation
‣ The formal notion of abstract induction (widening) to handle

infiniteness and/or complexity
‣ The systematic correct design with respect to a formal

semantics
‣ ...

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Maturation (1976 – 77): from an algorithmic
to an algebraic point of view

11

• Narrowing, duality
• Transition systems, traces
• Fixpoints, chaotic/asynchronous iterations, approximation
• Abstraction, formalized by Galois connections, closure

operators, Moore families, ...;
• Numeric and symbolic abstract domains, combinations of

abstract domains
• Recursive procedures, relational analyses, heap analysis
• etc.

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

POPL’77 FDPC’77 POPL’79

12

Topology, higher-
order fixpoints,

operational/
summary/... analysis

Galois connections,
closure operators,

Moore families, ideals,...

Cited by 3926 Cited by 148 Cited by 1033

On this page: dual,
conjugate and

inversion:lfp/gfp wp/sp
(i.e. pre/post) wp/sp)˜̃

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

And a bit of Mathematics...

13

PA.IFIC'?:lTii
::',''ffi HEMATI.S

CONSTRUCTIVE VERSIONS OF TARSKI'S
FIXED POINT THEOREMS

P,q.rnrcN Cousor l.No RlpnlA Cousor

Let F be a monotone operator on the complete lattice
Z into itself. Tarski's lattice theoretical fixed point theorern
states that the set of fixed points of l' is a nonempty cornplete
lattice for the ordering of Z. We give a constructive proof
of this theorern showing that the set of fixed points of .F is
the image of L by a lower and an upper preclosure operator.
These preclosure operators are the composition of lower and
upper closure operators which are defined by means of limits
of stationary transfinite iteration sequences for ,F. In the
same wey we give a constructive characterization of the set
of common fixed points of a family of commuting operators.
Finally we examine some consequences of additional semi-
continuity hypotheses.

1 . I n t roduc t i on . Le tL (s : , L ,T ,U , | - l) beanonempty comp le te
Lutt'ice with parti,al ordering g, least upper bound, u , greatest
lower bound, ft. The i,nf,munL I of tr is f-l L, the supremum T of
L is UL. (Birkhoff 's standard referenee book I3l provides the
necessary background materiai.) Set inclusion, union and intersection
are respectively denoted by e , U and f-l .

Let tr be a monotone operator on L(e, L, T, U, f l) into itself
(i .e. , YX, Y e L, {X =Y) - {F(X) e l r(y)}) .

The fundamental theorem of Tarski [19] states that the set fp(F)
o f f , red"po i ,n ts o f f ' (i .e . , fp (F) : {Xe L :X: f ' (X) }) i s a nonempty
complete iattice with ordering e . The proof of this theorem is
based on the definition of the least fixed point tfp(F) of lI by Lfp(F) :
n{Xe L:F(X) g X}. The least upper bouncl of S c fe@) in fp(F)
is the least fixed point of the restriction of f'to the complete lattice
{X e L: (u S1 q 11. An application of the duality principte completes
the proof.

This deflnition is not constructive and many appiications of
Tarski's theorem (specially in computer science (Cousot [5]) and
numerical analysis (Amann Iz])) use the alternative characterization
of lfp(F) as U {tr"(-r): i e N}. This iteration scheme which originates
from Kleene [tO]'s first recursion theorem and which was used by
Tarski [fl] for complete morphisms, has the drawback to require
the additional assumption that F is semi-conti,nuous (F(US) : U,F'(S)
for every 'increas'ing nonempty ch,ai,tt, S, see e.g., Kolodner [ff]).

I

ASYNCHRONOUS ITERATIVE METHODS
FOR SOLVING A FIXED POINT SYSTEM OF MONOTONE

EQUATIONS IN A COMPLETI LATTICE

Patr i ck Cousot

R . R . B 8 lanl- omlrno L Y I I

l
l

RAFPORT DE REGT-!ERCHE

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

• For POPL’77, we submit (on Aug. 12, 1976) copies of
a two-hands written manuscript of 100 pages. The
paper is accepted !

14

On submitting...

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

On convincing ...

• During PC’s thesis defense, it was suggested that
abstraction/approximation is useless since computers
are fin i te and execut ions are t imed-out
(consequently, the second part of the thesis on
fixpoint approximation/widening/narrowing/... is
superfluous!)

• On the contrary, in 1978, during a seminar at
Harvard

(1), G. Birkhoff appears interested, according
to his questions & feedback, in the effective
computational aspects of lattice fixpoint theory

15

(1) invited by Ed. Clarke.

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Deductive semantics is a property preserving abstraction of the relational semantics
(in PC’s thesis, 21 march 1978 also § 3 of POPL’79)

16

te
l-0

02
88

65
7,

 v
er

si
on

 1
 -

18
 J

un
 2

00
8

...

i.e. pre i.e. post transformer

fixpoint
backward reachability
forward reachability

iterative fixpoint
computation

fixpoint reflexive
transitive closure

Fixpoint abstraction
under commutativity
with abstraction h

concrete
transformer

abstract
transformer

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

The principles (1977–79) are lasting !
• Define the semantics (operational, denotational, axiomatic, ...) of

the programming language (as a ... / trace semantics / transition
system / transformers / ...)

• Define the strongest property of interest (also called the
collecting semantics)

• Express this collecting semantics in fixpoint form
• Define the abstraction/concretization compositionally (by

composition of elementary abstractions and abstraction
constructors/functors)

• Design the abstract proof / analysis semantics by calculus using
[structural] abstraction i.e. abstract domain + abstract fixpoint

• Define the widening/narrowing
• Implement the abstract domain and fixpoint computation by

elimination or iteration with convergence acceleration, if needed
17

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Very first industrial implementation
• Interval analysis was implemented in the AdaWorld

compiler for IBM PC 80286 by J.D. Ichbiah and his
Alsys SA corporation team in 1980–87.

18

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot
19

Relevance of formal methods is an old question!

➡ Mathematical theory of
data-flow analysis,
J.D. Ullman (P. Cousot,
K. Kennedy, B. Rosen,
R. Tarjan)

➡ The use and benefit of
formal description
techniques, E. Neuhold
(E. Blum, B. Boehm,
P. Cousot, J. De Bakker,
S. Igarashi, M. Nivat,
S. Owicki, R. Tennent) (1)... a bit optimistic :-)

(1)

Panels from the IFIP congress 77:

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Progress is slow... e.g. parallelism

• a.o. THÉSÉE is in progress
20

Shared memoryCSP

Cited by 33 Cited by 21

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Abstract interpretation:
Past

21

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Diffusion...

22

Programme Registration

The 30YAI Project

30 years ago, in March
1978, Patrick
Cousot defended his
PhD thesis (Docteur es
Sciences
Mathématiques), which
started the era of
abstract interpretation.
30YAI celebrates this
event by inviting some
of the most
representative
scientists in the field,

showing the relevance,
perspectives and challenges of
abstract interpretation in
programming languages and
systems.

Abstract interpretation is a
theory of sound approximation
of mathematical structures, in
particular those involved in the
behavior of computer systems.
 It allows the systematic
derivation of sound methods
and algorithms for
approximating undecidable or
highly complex problems in
various areas of computer
science like for instance in
static program analysis, system
verification, model checking,
program transformation,
process calculi, security,
software watermarking, type inference, theorem
proving, constraint solving, parsing and comparative
semantics, systems biology.

Organizers:
Roberto Giacobazzi Dave Schmidt

30 Years of Abstract Interpretation http://30yai.di.univr.it/

1 of 1 11/25/10 6:18 PM

• from http://30yai.di.univr.it/ :

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot
23

From http://jonnyengland.wordpress.com/2007/12/30/abstract-interpretation/

... popularization ...

...

jonny goes to england
London & co

Abstract Interpretation
with 2 comments

(source ilachinski.com)

I realized I don’t write a lot about what I’m actually doing day in day out for work. This is partly
because it is thought as “hard to describe” to non-computer science people. Today, I want to describe
a method which is widely used in the software verification community in an easy way.

The technique is called Abstract Interpretation (AI from now on) and has been first described by
Cousot in 1976/77 [1]. Now, to describe AI I’ll directly start with an example also partly taken from
[1]:

Imagine you are presented with the following calculation .

Now I’m asking you to tell me the result of this multiplication without the help of a calculator.
Obviously, unless you are a scary person, you don’t know the result because it is too complex to
calculate in your head. However, when I change the question and ask you to tell me the sign of the
result of this multiplication you will tell me instantly that the result is positive. How did you know
that? Most probably you used your old highschool knowledge that the multiplication of positive
numbers yields a positive result. So you used, without actually realising it, an abstraction of the
multiplication operator to get the correct answer. This is a kind of abstract interpretation.

What we learned so far is: Abstract interpretation is replacing the actual domain of the answer (in our

Abstract Interpretation « jonny goes to england http://jonnyengland.wordpress.com/2007/12/30/abstract-interpret...

1 of 7 11/25/10 10:10 PM

jonny goes to england
London & co

Abstract Interpretation
with 2 comments

(source ilachinski.com)

I realized I don’t write a lot about what I’m actually doing day in day out for work. This is partly
because it is thought as “hard to describe” to non-computer science people. Today, I want to describe
a method which is widely used in the software verification community in an easy way.

The technique is called Abstract Interpretation (AI from now on) and has been first described by
Cousot in 1976/77 [1]. Now, to describe AI I’ll directly start with an example also partly taken from
[1]:

Imagine you are presented with the following calculation .

Now I’m asking you to tell me the result of this multiplication without the help of a calculator.
Obviously, unless you are a scary person, you don’t know the result because it is too complex to
calculate in your head. However, when I change the question and ask you to tell me the sign of the
result of this multiplication you will tell me instantly that the result is positive. How did you know
that? Most probably you used your old highschool knowledge that the multiplication of positive
numbers yields a positive result. So you used, without actually realising it, an abstraction of the
multiplication operator to get the correct answer. This is a kind of abstract interpretation.

What we learned so far is: Abstract interpretation is replacing the actual domain of the answer (in our

Abstract Interpretation « jonny goes to england http://jonnyengland.wordpress.com/2007/12/30/abstract-interpret...

1 of 7 11/25/10 10:10 PM

jonny goes to england
London & co

Abstract Interpretation
with 2 comments

(source ilachinski.com)

I realized I don’t write a lot about what I’m actually doing day in day out for work. This is partly
because it is thought as “hard to describe” to non-computer science people. Today, I want to describe
a method which is widely used in the software verification community in an easy way.

The technique is called Abstract Interpretation (AI from now on) and has been first described by
Cousot in 1976/77 [1]. Now, to describe AI I’ll directly start with an example also partly taken from
[1]:

Imagine you are presented with the following calculation .

Now I’m asking you to tell me the result of this multiplication without the help of a calculator.
Obviously, unless you are a scary person, you don’t know the result because it is too complex to
calculate in your head. However, when I change the question and ask you to tell me the sign of the
result of this multiplication you will tell me instantly that the result is positive. How did you know
that? Most probably you used your old highschool knowledge that the multiplication of positive
numbers yields a positive result. So you used, without actually realising it, an abstraction of the
multiplication operator to get the correct answer. This is a kind of abstract interpretation.

What we learned so far is: Abstract interpretation is replacing the actual domain of the answer (in our

Abstract Interpretation « jonny goes to england http://jonnyengland.wordpress.com/2007/12/30/abstract-interpret...

1 of 7 11/25/10 10:10 PM

jonny goes to england
London & co

Abstract Interpretation
with 2 comments

(source ilachinski.com)

I realized I don’t write a lot about what I’m actually doing day in day out for work. This is partly
because it is thought as “hard to describe” to non-computer science people. Today, I want to describe
a method which is widely used in the software verification community in an easy way.

The technique is called Abstract Interpretation (AI from now on) and has been first described by
Cousot in 1976/77 [1]. Now, to describe AI I’ll directly start with an example also partly taken from
[1]:

Imagine you are presented with the following calculation .

Now I’m asking you to tell me the result of this multiplication without the help of a calculator.
Obviously, unless you are a scary person, you don’t know the result because it is too complex to
calculate in your head. However, when I change the question and ask you to tell me the sign of the
result of this multiplication you will tell me instantly that the result is positive. How did you know
that? Most probably you used your old highschool knowledge that the multiplication of positive
numbers yields a positive result. So you used, without actually realising it, an abstraction of the
multiplication operator to get the correct answer. This is a kind of abstract interpretation.

What we learned so far is: Abstract interpretation is replacing the actual domain of the answer (in our

Abstract Interpretation « jonny goes to england http://jonnyengland.wordpress.com/2007/12/30/abstract-interpret...

1 of 7 11/25/10 10:10 PM

case the set of integers) with an abstract domain, in our case the sign domain which has only two
elements . Also, it is replacing the normal operations with abstract operations. Our
abstract multiplication operation has the following properties on the sign domain:

Now all that is missing is an abstraction function from the concrete domain to the abstract domain.
This is defined as follows

Using these definitions we can easily solve the problem from above:

Now you could define more abstract operators on the sign domain and you would end up with a full
abstract interpreter for basic mathematical operations. Cool, isn’t it?

To sum up, this technique is simplifying a problem by abstracting away information you don’t need
to solve the problem (e.g. only getting the sign of a computation). The nice thing then is that the
more abstract version is easier to calculate and the abstract result is saying something about the
concrete result!

Of course, the sign domain is very primitive and has only limited use. Real abstract interpreter
support many different abstract domains but the idea is always the same.

—-

[1] Cousot, P. and Cousot, R. 1977. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (Los Angeles, California, January
17 – 19, 1977). POPL ’77. ACM, New York, NY, 238-252. DOI= http://doi.acm.org/10.1145
/512950.512973

http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml

Ads by Google

Abstract Interpretation « jonny goes to england http://jonnyengland.wordpress.com/2007/12/30/abstract-interpret...

2 of 7 11/25/10 10:10 PM

Like Be the first to like this post.

Written by jonny

December 30, 2007 at 2:15 pm

Posted in english, technical

« Boxing Day
Using google to check flight schedules »

2 Responses

Subscribe to comments with RSS.

Wow, the paper is from 1977.

Daniel Lorch

December 30, 2007 at 8:17 pm

Reply

1.

This was a very, very good post. Now I grokked what you really are up to! Please keep
updating as time goes by.

The idea is very beautiful, almost mythological in the core: one does abstractions and more
abstractions in the level of ideas, then creates a rule to collapse the whole structure to the
concrete world – to make it “real”, one utters the words which do the linking from the divine
realm of angels, infinity and brightness to the domain of humans, limitedness and dirt. (Yeah I
guess I’ve read too much Joseph Campbell lately…

2.

Abstract Interpretation « jonny goes to england http://jonnyengland.wordpress.com/2007/12/30/abstract-interpret...

3 of 7 11/25/10 10:10 PM

Like Be the first to like this post.

Written by jonny

December 30, 2007 at 2:15 pm

Posted in english, technical

« Boxing Day
Using google to check flight schedules »

2 Responses

Subscribe to comments with RSS.

Wow, the paper is from 1977.

Daniel Lorch

December 30, 2007 at 8:17 pm

Reply

1.

This was a very, very good post. Now I grokked what you really are up to! Please keep
updating as time goes by.

The idea is very beautiful, almost mythological in the core: one does abstractions and more
abstractions in the level of ideas, then creates a rule to collapse the whole structure to the
concrete world – to make it “real”, one utters the words which do the linking from the divine
realm of angels, infinity and brightness to the domain of humans, limitedness and dirt. (Yeah I
guess I’ve read too much Joseph Campbell lately…

2.

Abstract Interpretation « jonny goes to england http://jonnyengland.wordpress.com/2007/12/30/abstract-interpret...

3 of 7 11/25/10 10:10 PM

Like Be the first to like this post.

Written by jonny

December 30, 2007 at 2:15 pm

Posted in english, technical

« Boxing Day
Using google to check flight schedules »

2 Responses

Subscribe to comments with RSS.

Wow, the paper is from 1977.

Daniel Lorch

December 30, 2007 at 8:17 pm

Reply

1.

This was a very, very good post. Now I grokked what you really are up to! Please keep
updating as time goes by.

The idea is very beautiful, almost mythological in the core: one does abstractions and more
abstractions in the level of ideas, then creates a rule to collapse the whole structure to the
concrete world – to make it “real”, one utters the words which do the linking from the divine
realm of angels, infinity and brightness to the domain of humans, limitedness and dirt. (Yeah I
guess I’ve read too much Joseph Campbell lately…

2.

Abstract Interpretation « jonny goes to england http://jonnyengland.wordpress.com/2007/12/30/abstract-interpret...

3 of 7 11/25/10 10:10 PM

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

... and perduring misunderstandings
• State-based versus [abstract] property-based reasoning

• Logical versus algebraic formalization
• Empirical versus calculational design
• Finite versus infinite abstraction

• Checking versus inference
• Bug finding versus verification

24

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Abstract interpretation:
Present

25

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Domains of applications

26

• Syntax
• Semantics
• Proofs
• Static analysis
• Data-flow analysis
• Model-checking
• Control-flow analysis
• Types
• Data structure/heap

analysis
• Abstract domains

(numerical & symbolic)
• Predicate abstraction
• Refinement

• Strong Preservation
• Program transformation
• Program optimization
• Parallelization
• WCET (cache, pipeline)
• Watermarking
• Information hiding
• Code obfuscation
• Malware detection
• Termination
• Computer security
• Computational biology
• ...

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Industrial diffusion

27

The ASTRÉE Static Analyzer

Centre National de la
Recherche Scientifique

École Normale
Supérieure

INRIA (since
Sep. 2007)

Participants:

Patrick Cousot (project leader), Radhia Cousot, Jérôme Feret, Antoine Miné,
Xavier Rival

Former participants:

Bruno Blanchet (Nov. 2001 — Nov. 2003), David Monniaux (Nov. 2001 —
Aug. 2007), Laurent Mauborgne (Nov. 2001 — Aug. 2010).

Contact(‡): http://www.astree.ens.fr/

ASTRÉE stands for Analyseur statique de logiciels temps-réel embarqués (real-time embedded
software static analyzer). The development of ASTRÉE started from scratch in Nov. 2001 at the
Laboratoire d'Informatique of the École Normale Supérieure (LIENS), initially supported by the ASTRÉE
project, the Centre National de la Recherche Scientifique, the École Normale Supérieure and, since
September 2007, by INRIA (Paris—Rocquencourt).

Objectives of ASTRÉE

ASTRÉE is a static program analyzer aiming at proving the absence of Run Time Errors (RTE)
in programs written in the C programming language. On personal computers, such errors, commonly
found in programs, usually result in unpleasant error messages and the termination of the application,
and sometimes in a system crash. In embedded applications, such errors may have graver
consequences.

ASTRÉE analyzes structured C programs, with complex memory usages, but without dynamic
memory allocation and recursion. This encompasses many embedded programs as found in earth
transportation, nuclear energy, medical instrumentation, aeronautic, and aerospace applications, in
particular synchronous control/command such as electric flight control [30], [31] or space vessels
maneuvers [32].

Industrial Applications of ASTRÉE

The main applications of ASTRÉE appeared two years after starting the project. Since then,
ASTRÉE has achieved the following unprecedented results on the static analysis of synchronous,
time-triggered, real-time, safety critical, embedded software written or automatically generated in the C
programming language:

In Nov. 2003, ASTRÉE was able to prove completely

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

1 of 12 11/25/10 6:22 PM

automatically the absence of any RTE in the primary
flight control software of the Airbus A340 fly-by-wire
system, a program of 132,000 lines of C analyzed in

1h20 on a 2.8 GHz 32-bit PC using 300 Mb of memory
(and 50mn on a 64-bit AMD Athlon™ 64 using 580 Mb
of memory).

From Jan. 2004 on, ASTRÉE was extended to analyze
the electric flight control codes then in development
and test for the A380 series. The operational
application by Airbus France at the end of 2004 was
just in time before the A380 maiden flight on
Wednesday, 27 April, 2005.

In April 2008, ASTRÉE was able to prove completely
automatically the absence of any RTE in a C version of
the automatic docking software of the Jules Vernes
Automated Transfer Vehicle (ATV) enabling ESA to
transport payloads to the International Space Station
[32].

Commercialization of ASTRÉE

Starting Dec. 2009, ASTRÉE is commercially available from AbsInt Angewandte Informatik
 (www.absint.de/astree/).

Theoretical Background of ASTRÉE

The design of ASTRÉE is based on abstract interpretation, a formal theory of discrete
approximation applied to the semantics of the C programming language. The informal presentation
Abstract Interpretation in a Nutshell aims at providing a short intuitive introduction to the theory. A
video introduces program verification by abstract interpretation (in French: « La vérification des
programmes par interprétation abstraite »). More advanced introductory references are [1], [2] and
[3].

Briefly, program verification — including finding possible run-time errors — is undecidable:
there's is no mechanical method that can always answer truthfully whether programs may or not exhibit
runtime properties — including absence of any run-time error —. This is a deep mathematical result
dating from the works of Church, Gödel and Turing in the 1930's. When faced with this mathematical
impossibility, the choice has been to design an abstract interpretation-based static analyzer that will
automatically:

signal all possible errors (ASTRÉE is always sound);

occasionally signal errors that cannot really happen (false alarms on spurious executions
e.g. when hypotheses on the execution environment are not taken into account).

Of course, the goal is to be precise, that is to minimize the number of false alarms. The

The ASTRÉE Static Analyzer http://www.astree.ens.fr/

2 of 12 11/25/10 6:22 PM

Astrée Run-Time Error AnalyzerAstrée Run-Time Error Analyzer

© 2007 Xavier Rival

Astrée is a static program analyzer that proves the absence of run-time errors (RTE) in safety-critical embedded applications
written or automatically generated in C.

Astrée analyzes structured C programs with complex memory usages, but without recursion or dynamic memory allocation.
This targets embedded applications as found in earth transportation, nuclear energy, medical instrumentation, aeronautics and
space flight, in particular synchronous control/command such as electric flight control.

Which run-time properties are analyzed by Astrée?

Astrée analyses whether the C programming language is used correctly and whether there can be any run-time errors during
any execution in any environment. This covers:

Any use of C that has undefined behavior according to ISO/IEC 9899:1999, the international norm governing the C
programming language. Examples include division by zero or out-of-bounds array indexing.

Any use of C that violates hardware-specific aspects as defined by ISO/IEC 9899:1999, e.g. the size of integers and
arithmetic overflow.

Any potentially harmful or incorrect use of C that violates user-defined programming guidelines, such as no modular
arithmetic for integers (even if this might be the hardware choice).

Any violation of optional user-defined assertions to prove additional run-time properties (similar to assert diagnostics).

In addition to that, Astrée reports code that is guaranteed to be unreachable for all possible inputs and each program
execution under any circumstances.

Astrée can be customized and integrated into established tool-chains.

Success stories

Airbus

In November 2003, Astrée proved the absence of any real-time errors in the primary flight-
control software of one of Airbus’ models. The analysis was performed completely
automatically. The system’s 132,000 lines of C code were analyzed in only 80 minutes on a
2.8GHz 32-bit PC using 300MB of memory (and in only 50 minutes on an AMD Athlon 64
using 580MB of memory). In January 2004, Astrée was extended to analyze the electric
flight-control codes for another Airbus series.

Astrée Run-Time Error Analyzer http://www.absint.de/astree/

1 of 3 11/25/10 6:25 PM

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

... and many other abstract interpreters

28

AiT Fluctuat

3-Valued Logic Analysis Engine

SmallFoot

Space invador

StackAnalyzer

ClousotSardana

CONFIDENTIAL

Java UniversaL Interpretation and Abstraction

La sicurezza del SW si basa sulla sua affidabilità

(Gartner)

Wednesday, May 12, 2010

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

...and more theoretical work: safety is OK, liveness is
in progress and other properties are still unexplored

• Discrete symbolic data structures (e.g. heap)

• Under-approximation

• Liveness:

• Non-safety/liveness properties:

29

Trace semantics: Trace semantics property:

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Abstract interpretation:
Future

30

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

computer, economical and biological systems
• The future is very hard to predict, e.g. 1978:

• More properties:
• Security (not dynamically checkable)
• ...

• More systems and tools:
• Parallel and distributed systems,
• Cyber-physical (continuous+discrete)
• Biological, financial, ...

• Better practices:
• Verification from design to implementation

Prospective ideas...

31

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Conclusion

32

Formal Methods — Just a Euro-Science?, Schloß Dagstuhl, Nov. 30 – Dec. 3, 2010 © P. Cousot & R. Cousot

Formal methods – just a Euro-science?
• For abstract interpretation, may be at the beginning

• Immediately recognized and welcomed in the US compared
to Grenoble (e.g. invitations in 1977 at IBM by W. Miranker
(fixpoints) and P. Goldberg (program analysis), and IFIP
Congress by E. Neuhold (semantics) and J.D. Ullman
(DFA), etc.)

• Nevertheless, early take off was mainly European
(C. Hankin, M. Hermenegildo, J. Hughes, N. Jones,
J. Launchbury, G. Levi, A. Mycroft, R. Wilhelm, ...)

• Formal is often understood as opposed to experimental and
practical, both in Europe and the US

• This will not necessarily be the case everywhere in the
world where mathematical skills and training is considered
helpful for computer science (China, India, ...)

33

