Contract Precondition
Inference from
Intermittent Assertions
on Collections®

Patrick Cousot Radhia Cousot Francesco Logozzo

() Tech. Rept. no. MSR-TR-2010-117, Sep. 2010, submitted.

Motivation

The problem of contract precondition inference

e [nfer a contract precondition from the language and
programmer assertions

e Generate code to check that precondition

Usefullness

e Anticipate errors (e.g. change to trace execution
mode before actual error does occur)

e Use contract for separate static analysis of modules

Example

void Al1NotNull(Ptr[] A) {
/*x 1: %/ dint i = 0;
while /* 3: */
(assert(A '= null); i < A.length) {

~
*
N
*

~N

/*x 4. %/ assert((A '= null) && (A[i] !'= null));
/* 5: x/ A[i].f = new Object();

/* 6: %/ i++;

/* T: %/ }

/* 8: */ }

infer the precondition

A # null AVi € [0,A.length) : Ali] # null

Problem specification

First alternative: eliminating potential errors

e The precondition should eliminate any initial
state from which a nondeterministic execution
may lead to a bad state (violating an assertion)

bad state o o
o o
o o o o
o bad run o good run
bad run bad run

bad state bad state

Defects of potential error elimination

® A priori correctness point of view

e \We should not make any hypothesis on the
programmer’s intention

.//

KO

Second alternative: eliminating definite errors

e The precondition should eliminate any initial
state from which all nondeterministic executions
must lead to a bad state (violating an assertion)

bad state

0 0
o o
.// .//
o bad run o good run
OK
bad run bad run

bad state bad state

Advantage of eliminating only definite errors

e \We check states from which all executions can
only go wrong as specified by the asserts

bad state o o
o« o
o o
././ bad run ././ good run
OK
bad run bad run

bad state bad state

On non-termination

e Up to now, no human or machine could prove
(or disprove) the conjecture that the following
program always terminates

vold Collatz(int n) {
requires (n >= 1);
while (n != 1) {
1f (odd (n)) {

n = 3*n+1
} else {
n=n)/2

¥

On non-termination (cont'd)

e Consider

Collatz(p);
assert(false);

e The precondition is

e assert(false) if Collatz always terminates

e assert(p >= 1) if Collatz may not terminate

® or even better

assert(NecessaryConditionForCollatzNotToTerminate(p))

A compromise on non-termination

e \We do not want to have to solve the program
termination problem

e We ignore non-terminating executions, if any

Infinite good run
bad state /

0 0

.// ///./‘/ bad state
.// bad run .// bad run
bad run bad run

bad state bad state

Problem formalization

Program small-step operational semantics

® Transition system
/o~
(X, 1, J)

/1N

Set of states Transition relation Initial states

T E p(X x X)) Je p(X)

e Blocking states

B2 {scX|Vs:-7(s,s)}

Traces

ﬁ
n
o E traces of length n

= 59...5,_1 of length |53] = n > 0

T U {g} finite traces

Program partial trace semantics

® Partial runs of length

® Non-empty finite partial runs

Program complete/maximal trace semantics

® Complete runs of length

® Non-empty finite complete runs

/~
® Non-empty finite complete runs from initial states J

?;é{§6?+|§0€j}

Fixpoint program trace semantics

P o= lfp, AT 31 UT 57
7t = ifp, AT -BLUF23T = gfpay AT - B UF23T
where

* sequential composition of traces is ss§ss
e S35 2155 |5scSNEtAss €8

e GivenS C X welet 6" 2 {5eX" | 5ye S, n>1

Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1—2), 47-103 (2002)

Collecting asserts

All language and programmer assertions are
collected by a syntactic pre-analysis of the code

-assert(b;) is attached to a control point c; € I', 7 € A
A = {{c;, b;) | j € A}

bj : well defined and visible side effect free

Evaluation of expressions

® Expressions include Boolean expressions
(over scalar variables or quantifcations over
collections)

e The value of e € [E in state s € X is [e]s

e \/alues include

e Booleanspz & {true, false}

e Collections (arrays, sets, hash tables, etc.),

® elc

Control

® Map w € XY — [of states of J into control points in I

(of finite cardinality)

Bad states and bad traces

e Erroneous/bad states

e Erroneous/bad traces

,° good run

o
./o/

bad runs

erroneous states

Formal specification of
the contract inference
problem

Contract precondition inference problem

Definition 4 Given a transition system (X, 7, J) and a specification A, the contract
precondition inference problem consists in computing Pp € p(2)) such that when
replacing the initial states J by Pp N'J, we have

%’;Am C 71 (no new run is introduced) (2)
77 — 7\ 7t C ¢ (all eliminated runs are bad runs) (3) O
j\PA J PA - A .

So no finite maximal good run is ever eliminated:

Lemma 5 (3) implies 73 N & C F]JSA .

Choosing Pp = J so that 3\ Pa = () hence %’;\ Py = 0 is .a trivial solution

The strongest solution

Theorem 6 The strongest®) solution to the precondition inference problem in Def. 4

Bopa 2 {s|Tssertn-Eanl.

bad state o °

el "

././ bad run ././ good run
OK

bad run bad run

bad staté bad statée

() P is said to be stronger than @) and Q) weaker than P if and only if P C Q.

(4) O

Good and bad states

e Good states : start at least one good run

Pa 2 {s]Isg e 7 N=Ep).

e Bad states : start only bad runs
Tp 2 —Pa = {s|Vsse7t:55¢cEp)}

Ba

. erroneous state

Trace predicate transformers

e Trace predicate transformers'’
wip[T] £ AQ - {s|Vss cT : SSEQ}

—

wlp~HQ] & AP-{ssEEJF‘ (seP)=(ss€Q)}

® Galois connection

> o wipT Q]
(p(X7T), C) —=— — (p(2), 2)
AT o WIp[T]Q

e Bad initial states (aII runs from these states are bad)

= {s VS§E?+ :ss € €pt

(*) Denoted as, but different from, and enjoying properties similar to Dijkstra’s syntactic WLP predicate transformer

A very brief recap of
abstract interpretation

Galois connections

concretization \)/y
(L, <) =
/ / %

concrete concrete
o T Jbstraction apstract — abstract
domain implication domain implication

<— best abstraction

Vee Liye L:alz) Ty sz < y(y)

s (L, C)

Duality

<z7 ;> < ? <Lv >>

Example: complement isomorphism

e (L, <) is a complete Boolean lattice with unique complement —

(L, <) == (L, >) (since -z <y <z >).

L

o self-dual

Fixpoint abstraction

Lemma 7 If (L, <, L) is a complete lattice or a cpo, ' € L — L is increasing, (L,

C) is a poset, a € L — L is continuous (6)’(7), F € L — L commutes (resp. semi-

commutes) with F that is a« o F = F o « (resp. o o F T F o) then a(lfpiF)
C + < C +

pra(L) F (resp. a(lfp | F) C pra(l) F).

(6) « is continuous if and only if it preserves existing lubs of increasing chains.

(") The continuity hypothesis for o can be restricted to the iterates of the least fixpoint of F.

Fixpoint abstraction (contd)

Lemma 7 If (L, <, 1) is a complete lattice or a cpo, F € L — L 1is increasing, (L,
C) is a poset, a € L — L is continuous (6)’(7), F € L — L commutes (resp. semi-
commutes) with F that is o o F = F o « (resp. a o F T F o) then a(lfpfF) =

C = < C =
pra(l) F (resp. a(lfp | F) C lfpa(l) F).
Applying Lem. 7 to (L, <) —= _:_> (L, =), we get

Corollary 8 (David Park) If F € L — L is increasing on a complete Boolean
lattice (L, <, L, =) then ﬂlfpfF — gfprﬁ o Flo—,

(6) « is continuous if and only if it preserves existing lubs of increasing chains.
(") The continuity hypothesis for o can be restricted to the iterates of the least fixpoint of F.

Fixpoint abstraction (contd)

Lemma 7 If (L, <, 1) is a complete lattice or a cpo, F € L — L 1is increasing, (L,
C) is a poset, a € L — L is continuous (6)’(7), F € L — L commutes (resp. semi-
commutes) with F that is o o F = F o « (resp. a o F T F o) then a(lfpfF) =

C - < C =
pra(l) F (resp. a(lfp | F) C lfpa(l) F).
Applying Lem. 7 to (L, <) —= _:_> (L, =), we get Cor. 8 and by duality Cor. 9 below.
Corollary 8 (David Park) If F € L — L is increasing on a complete Boolean
lattice (L, <, L, =) then ~IfpS F=gfpS =0 Fo-.

Corollary 9 If (L, C, T) is a complete lattice or a dcpo, F € L — L is INCreasing,
vye€L— L zs co- contmuaus ®) F e L — L commutes with F that isyo F = F o~

then fy(gfp =VE = gfpv(T) F.

(6) « is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for o can be restricted to the iterates of the least fixpoint of F.
(8) ~ is co-continuous if and only if it preserves existing glbs of decreasing chains.

Fixpoint strongest
contrat precondition
(collecting semantics)

Fixpoint strongest contract precondition

Theorem 10 P, = gfp% AP-&p U (=B Npret]P) and Pa = prq% AP «=€Cp N
(B U pre[t]P) where pret]Q = {s | 3s’ € Q : (s, s') €t} and pre[t]Q = —pre[t](—Q) =

{s|Vs:(s, s')et=15 €Q}.

L]

Fixpoint strongest contract precondition (proof)

Theorem 10 Pp = gfp 5 AP+ €a U (=B N preft]P) and Pa = Ifp,; AP -=€Ea N

(B U pre[t]P) where pre[t]Q = {s | 3s' € Q : (s, s') € t} and pre[t]Q = —pre[t](—Q) =
{s|Vs:(s, s')et=15 €Q}. 0

Proof sketch:
o 7T = pr(/% AT -BlU72sT
wlip 71 [Q]

o (p(ZF), C) ——= (p(X), D)
AT «wip[T]Q

o Wip[B'UT?3T](Ea) = EAU (BN pre[t](Wip[T](€ a)))

o Pa = wip[FH](Ea) = wipllfp; AT - B U7 5T)(Ea)
— pri AP-CpU(—BNpre[t]P) = &fps AP+ €U (=B N pieft] P)

e Pa = ~Pa = Ifp; AP-~Ex N (B Upre[t]P) (Park)

Model-checking

e Computers are finite
e Compute Fa =Ifo; AP ~€aN(B U prelt]P) jteratively

® Might not scale up (pure conjecture, not implemented)

Bounded model-checking

—

ar(T) & {50 Fmin(r. 51 ' seT}

is unsound both for ‘¥ A and ﬁA

Contract precondition
inference by abstract
Interpretation

(1) Backward
expression propagation

General idea

® Replace state-based reasonings by symbolic
reasonings

® |dea: try to move the condition code in assertions at
the beginning of the program/method/...

e This is possible under the sufficient conditions:

1. the value of the visible side effect free Boolean expression on scalar or collec-
tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert
on all paths that can be taken from the program entry.

Dataflow analysis

° P(c,b) holds at program point ¢ when Boolean expression
b will definitely be checked in an assert(b) on all paths from ¢ without being

changed up to this check.

= true

A O
o ‘/P(c b) =
\)(\Q\(\a ./ 3
./'

P(C, b) = true

Dataflow analysis (contd)

o P — gfpﬁB[[T]] Be(FxAb——Q B)—‘>(Fl><Ab’—>B)
P(c,b) = B[7][(P)(c,0)
cel, be Ay Abé{b\ﬂcﬂc,‘b}é/A}
o B[7r](P)(c,b) = true when (c, b) € A (assert(b) at ¢)
B[7]|(P)(c,b) = false when dseB:mws=cA{c, b) & A (exit at c)
B[7](P)(c,b) = /\ unchanged[7](c, ¢, b) A P(c',b) (otherwise)

¢’ esuccf[T](c)
o the set succ[7](c) of successors of the program point ¢ € I' satisfies

succ[[7](c) D { eIl'|3s,s :ms=cAT(s,8')ANws" =}

° unchanged|7](c, ', b) im-
plies than a transition by 7 from program point ¢ to program point ¢’ can never
change the value of Boolean expression b

unchanged[7](c,c',b) = Vs,s" : (ms=cAT(s,8) A7ws’' =) = ([b]s = [b]s).

Soundness of the dataflow analysis (cont'd)
° Define

[I>

Ra = Abe{(s, s') | (mws’, b) € A A[b]s=[b]s'}
Ra 2 Ab-{5e Xt |3i<|5|: (3, §)cRad)}

and the abstraction

ap(T)(c,b) 2 VZeT :w5)=c=5€Ra(d)
Tp(P) £ {§|Vbe Ay : P(w50,b) = 5 € Ra(b)}

l

such that (¥, C) &= (I' x A, — B, <.

D

Ql

e Theorem 12 ap(7TT) < préB[[T]] = gfpiB[[T]] = P

[]

Proof =+ = h‘p®g AT «-BLUT2¢T and fixpoint abstraction (Lem. 8)

Calculational design of the dataflow analysis

-a), we have 7T = prmg AT «B1 U723 T so, by Lem. 8, it is

sufficient to prove the semi-commutativity property

Proor By (1

@ p(BIUFT) = @p(B1)A dp(F25T) < Blr](ap(T)).

=V5eB':infy=c=3ecRalh) {def. @p§
=VseB:mws=c= (s, s) € Ra(b) {def. B and R (D)§
=VseB:ms=c=(c,bye A {def. Ra

= true {when (c, b) € Af

= false {when 3s € B:mws=cA(c, b) ¢ A

= B[r](@p(T)(c,b) (def. B[7]S§
— ap(*5T)(e,b)

= V5e7 Ty =c= 5 e Ralb) {def. @p§

= Vs,s,5: (7(s,s)ANs'S €T Ams =c) = ss'5 € Ra(b) {def. § and 72§

= Vs,8,5: (7(s,8)ANs'F €T Ams =c) = (3j < |s5'5] : (s, (s5'5);) € Ra(b))

{def. %AS

= Vs,8,5: (7(s,s) N5’ € T Amws = ¢) = (3] < |s8'5]| : (m(s5'5);, b) €

AN ﬂb]s = [[b]](ss 5);) {def. RS

= Vs,8,5: (7(s,8)Ns'F €T Ams =c¢) = ((ms, b) € AV (3j < |§'5| : (w(s'5);,

b) € A A [b]s = [[b]](§)) {separating the case j = 0§

= (e, by e AVVs, 8,5 (1(s,s)NsF €T Ams = c¢) = (3j < |5'5] : (w(s'5);,

by € AN [b]s = [[b]]('8);) {def. =3

= (¢, b) € AV Vs, s : sYAms =c¢) = (Vs'§eT:35 < |s5]: (n(s'5);,

by € AN[b]s = [b](s'5);) {def. =§

)Ams =c) = ([b]s = [b]s' AVs'S" € T : (Hj <

|8'57| : (m(s'57);, b)
= (c,b) € AVVs,s": (1
ws' = (35 < |§'5'|:

A/\ [[b]]s = [b](s'5");)) {transitivity of = and s = 5§
([o]s = [o]s'AVs'S" € T : w(s'5")g =
[o](s'5");))

U(s'5")o = &'

sAms =c) =

(7(s
< (c,b) € AVVs, s : ((s
S
(s,
(m(s'5");, b) € AN[o](s'5")0 =

< (e, b) € AVVd € succ[[rﬂ() (s, s

< {c, b) € AvVC € succ[r](c) :

= BIrl(@n(T))(c,b)

(c, b) € AVVs,s' i (1(s,s') ANws = ¢) = ([b]s = [b]s' AV € T : 75y =
ws' = (3j <|5|: (w5}, b) € AN[b]5) = [b]5;)) {letting § = §'5"§

<c by € AVVC Vs, s 1 (T(s,s') Ams = cAms’ =) = ([b]s = [b]s' AVF €
T :75,=¢ = (35 <|7]: (m5;, b) € AN[b]5o = [b]5;)) {letting ¢/ = ms'§
= (c, by € AVVC : Vs, s i (7(s,s') Ams =chms' =) = (Vs,s" : (s =
eNT(s, 8")Aws' = ¢) = ([b]s = [o]s)AVE € T : wdo = ¢ = (35 < |3] : (75,

by € AN [b]so = [b]5;) § {since A = (A= BAC) implies A= (BAC)S
= (e, by € AVV 1 (3s,8" : 7(s, ') Ams =chms' =) = (Vs,s" : (ws =
([o]s = [b])AVS € T : 75y = ¢ = (3] < |5] : (x5},
b) € AA[b]5y = [b]5;) ((3x:A)= Biff Vo : (A= B)}
(¢, b) € AV : (3s,8 : 7(s,s') Amws =chms =) = (Vs,8 : (mws =
cAT(s,8)ATs' =¢) = ([o]s = [b]s')AVS € T : w5y = ¢ = (35 < |5] : (50,
5;) € Ra(b))) {def. Rp £ Xb+{(s, ') | (ms', b) € AN [b]s = [b]s'}§
(¢, b) € AV : (35,8 : 7(s,s') Ams =chms =) = (Vs,8 : (ws =
cAT(s,8)Ams' =)= ([b]ls = [b]s) AVE €T : w5y = ¢ = 5 € Ra(d))
{def. R (b)§

([e]s =

eAT(s, 8 \Ams’ =) =

(ms=cAT(s,8)Ams =) =
[bls)AVS €T : w3y = = § € Ra (b))

{def. succ[T](c) D {¢ € I"| 3s,s" : 7(s, ¢
(e, b) € A\/V_c" € succr](c) : (‘v’s,s_i D (mws = cAT(sls') Ams' =)= {
[o]s) Adp(T)(c,b)) {def. @p(T)(c,b) 2V5 €T : w59 =c=5€ Ra(b)S
unchanged[7](c, ¢, b) A @p(T) (<, b) {def.
s (s =cenT(s, 8")Aws’ = ') = ([b]s = [b]s')§
{def. B[7]§ O

YJATs =cAws =}

(Ib]s =

unchanged[7](c,¢’,b) = Vs, &’

Just to show that
is is machine-
checkable

Backward expression propagation-based
precondition generation

e Precondition generation. The syntactic precondition generated at entry control
point i € I, 2 {i € '|3s €T :ws =i} is (assuming &&) £ true)

p, £ && b

beAy, P(i,b)

The set of states for which the syntactic precondition P; is evaluated to true at
program point ¢ € [is

P, & {scX|ms=iA[P]s}
and so for all program entry points (in case there is more than one)

Py 2 (seX|3i€Tr:s€P)

e Theorem 13 ‘P NT C P5. (]

Example

void Al1NotNull(Ptr[] A) {

/¥ 1: x/ dint i = 0;
/* 2: %/ while /* 3: */
(assert(A != null); i < A.length) {
/x 4: x/ assert((A '= null) && (A[i] '= null));
/* 5: x/ A[i].f = new Object();
/* 6: x/ i++;
/* T: x/ '}
/* 8: %/ }
the assertion A !'= null is checked on all paths and
A is not changed (only its elements are), so the data flow analysis is able to move the
assertion as a precondition. O

e The dataflow analysis is a sound abstraction of the
trace semantics but too imprecise

(Il) Forward symbolic
execution

Just the idea:

e Perform a symbolic execution [19]
® Move asserts symbolically to the program entry

Example 15 For the program

/* 1: x=x0 & y=y0 */ if (x ==0) {

/* 2: x0=0 & x=x0 & y=y0 */ X++;

/* 3: x0=0 & x=x0+1 & y=y0 */ assert (x==y) ;
+

the precondition at program point 1: is (! (x==0) | | (x+1==y)).

e Fixpoint approximation thanks to the formalization
of symbolic execution as an abstract interpretation
[8, Sect. 3.4.5] (a widening enforces convergence)

[8] Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-
rateurs monotones sur un treillis, analyse sémantique de programmes (in French). These

_ _d’Etat es sciences mathématiques, Université scientifique et médicale de Grenoble (1978)

[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385-394 (1976)

(I1l) Backward symbolic
execution

Abstract domain B/=

3 :visible side-effect and error free Boolean

expressions on scalar variables

b = b’ implies that Vs € X' : [b]s = [b]s. abstract

implication
b=b 2b= b Ab & b abstract equivalence
b € [b]/= encoding of equivalence class by a representant
< 3/57 :>> abstract domain of Boolean expressions

(Trivial) example:

true

false

Abstract domain

. B 2 {b, ~b, | b, e BAb, € BAb, A b,}

interpretation of b, ~ b, . when the path condition b, holds, an execution
path will be followed to some assert(b) and checking b, at the beginning of

the path is the same as checking this b later in the path when reaching the
assertion.

. Example odd(x) ~»y >= 0

if (odd(x)) {
y++;
assert(y > 0);
} else {

assert(y < 0); }

.bpvbajb;f\»b;ébgibp/\baib/. order

Intuitive meaning of b, ~ b,

Dy

>0—>0 _ >»0—0—0—e assert(b) = false
»—>0—>8-—>0 >0—0—0—0® assert(h) = false
»—0—>0 —> >0—>0—>0 assert(b) = true
>0—>0—>0- >4 >0—0—0—>0 | assert(h) = true
>6—> j >0—>0 assert(b’) = true
>0—>0 ba—» >0—>0—>0
00000000
00000000
C

Abstract domains

and ' — g

B”)

e cach b, ~ b, corresponding to a different path to an assertion

« a set of conditions b, ~ b, attached to each program point

e Example 16 The program on the left has abstract properties given on the right.

/* 1:
/*x 2:
/*x 3:

/* 4:
/* 5:

o Infinitely many paths: widening

*/
*/
*/

*/
*/

if (odd(x)) {

assert(y > 0);
} else {
assert(y < 0); }

{true ~ y < 0}

{odd(x) ~ y >= 0,—0dd(x) ~y < 0}
= {truefv>y >= O}
{truefv>y > O}

A simple widening to enforce convergence would limit the size of the elements of

=2

©(B"), which is sound since eliminating a pair b, ~ b, would just lead to ignore

some assertion in the precondition, which is always correct.

Concretization

» Concretization of b, ~> b, for a given program point ¢
ve € B — ({5 € £t | wio = c})
Yelby ~ by) & {§€ T | w8y =cA[by]50 = (3j < |5] : [ba]5o = [A(75;)]5;)}-
A(c) = /\(c,b)EAb

e Concretization of a set of b, ~» b, for a given program point ¢
_ =2 L3 .
Ve € p(B) — p({5 € X7 |75y =c})

7.(C) = ﬂ Ve (bp ~ ba)
bp~bs € C

o Concretization for all program points c

:y = (p R @(EQ)) (5 ¥ is decreasing

U{SE’}/C) | ™S9 = ¢}

cel’

/
C: X:=e; C:...
/

c: assert(b); c':...

c: 1f b then

! I
Ct““Ct .

else
/ 7;
Cf:...Cf:

fi; c ...

¢ :while ¢’: b do
/ !/
Cb:...Cb:

od; ..

> fl> 1> {l> > [l>

> 1> > [l>

o O M
Il
o®

skip
skip

skip

skip

succ(c) = {c}
succ(c) = {c}
succ(c) :é:{cé,c}}
succ(cy) = {c'}
succ(c}):é:{c/}
succ(c) = {c'}

succ(c’) & {cp, <"}
NN A /
succ(cy) = {c'}

Command, successor and predecessor of a program point

pred(c’) = {c, ¢y}
pred(cy) = {c'}
pred(c”) £ {c'}

Backward symbolic execution
_— o > e €
We compute iteratively the under-approximation p C |fp - B

Backward path condition and checked expression propagation. The system
of backward equations p = B(p) is (recall that |J0 = 0)
B(p)c =) B(emd(c,c’),b~ V') U{true~b | (c, b) € A}

c’/Esucc(c), b~b'Ep(c’)
cel

where (writing e[z := €] for the substitution of €’ for = in e)
B(skip, b, ~ b,) b, ~> b, }

B(x:=e,b, ~ b,) plx:=¢e|~Dbylx:=e|} if bylx:=e]cBADb,[x:=e] € B

']
{
{b

Abp|x :=e] > b.|x 1= €]
) otherwise
{p
0

4
A

&& b, ~ b, } if b&& b, € BAb&&b,H b,
otherwise

B(b,b, ~ bg)

Soundness of the backward symbolic execution

Theorem 18 If p C pr B then 7+ C 4(p). O

Observe that B can be E>-overapproximated (e.g. to allow for simplifications of
the Boolean expressions).

PROOF Apply Cor. 10 to 71 = gprJr AT « B U T (1-b). [

Example

Example 22 The analysis of the following program

/* 1: x/ while (x != 0) {
/*x 2: x/ assert(x > 0);
/* 3: *x/ X==;

/*x 4: x/ } /x b: %/

leads to the following iterates at program point 1:
p’(1) = 0 Initialization
Pl (1) = {x#0~ x>0}

p’(1) = p'(1) since (x Z0Ax>0Ax—1#0)~ (x—1>0)

=x>1l~x>1

[

Backward symbolic execution-based precondition generation

Given an analysis p C Ifp = B, the syntactic pre-
condition generated at entry control point i € I, = {i € I' | Is € J : ws = i}
1S

p, £ i 810(',82 (_)(!(bp) | (bg)) (again, assuming && () = true)
p™7Pa CP(2

Example

I(x '=0) || (x> 0)

/* 1: x/ while (x != 0) {
/* 2: x/ assert(x > 0);
/* 3: *x/ X==;

/* 4: x/ } /* 5: x/

(IV) Forward analysis
for collections

General idea

The previous analyzes for scalar variables can be
applied elementwise to collections
—> much too costly

Apply segmentwise to collections!

Forward or backward symbolic execution might
be costly, an efficient solution is needed
—> segmented forward dataflow analysis

Recall on segmentation (from last year talk")

® Example A: 0,100] | [-100,100] |[-100,-1]
))) 0
0 a b n

A: <{0},[0,100],{a}?,[-100,100],{b}?,[-100,-1],{n}?>

e Formally, the abstract domain functor is

S(A) £ {(BxA) x (BxAx{ 2V x (Bx{,?})|k>0}u{l}

{e ... }Awn} 771
expressions lower abstract upper possible

on scalar variables bound of property of all bound of emptyness
(all have equal segment elementsin segment of segment

values) (included) segment (excluded)
?

e

() Tech. Rept. no. MSR-TR-2009-194, Sep. 2009, submitted.

Basic abstract domains for segments
e Modification analysis

M= {ed) eCedLC0.
¢ : all elements in the segment must be equal to
their initial value

0 : otherwise

e Checking analysis

C = {n,c} nCnCclCc

¢ :all elements A[2] in the segment must have
been checked in assert(b (A[z])) while equal to
their initial value (as determined by

the above modification analysis)
n :otherwise

Abstract domain for collections

Segment Segment
modification checking
analysis analysis

| |

Eel'—-XeX—8WM)xAX)— SC)
| | |

Program Collection Assertions on X

point variable

For each assertion in (c, b(X,1i)) € A(X) (where c is
a program point designating an assert(b) and b(X,i) is a side effect free Boolean
expression checking a property of element X[i] of collection X (9))

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert (A[i]<A[A. length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.

[

00 N Oy O &

Example : () program

void Al11NotNull(Ptr[] A) {
int 1 = 0;
while /* 3: x/

+

(assert(A != null); i < A.length) {

assert((A '= null) && (A[i] '= null));
A[i] .f = new Object();
1++;

[

00 N Oy O &

Example : (lla) analysis

void A11NotNull(Ptr[] A) {

. %/ int i = 0;
: %/ while /* 3: */

(assert(A != null); i < A.length) {
{0}0{i}e{A.length} - {O}c{iln{A.length}

. %/ assert((A '= null) && (A[i] '= null));
: %/ A[i].f = new Object();

. %/ i++;

. x/ }

: */ + {0}0{i,A.length}? - {0}c{i,A.length}?

Example : (IIb) modification analysis

void A11NotNull(Ptr[] A) {
: int 1 = 0;
2: %/ while /*x 3: %/

'—\
*
~

(assert(A != null); i < A.length) {

4:

*/ {0}0{i}e{A.length} - {O}c{iln{A.length}
4: %/ assert((A !'= null) && (A[i] '= null));
5: x/ A[i].f = new Object();
6: x/ i++;
T: %/ }
8: */ } {0}0{i,A.length}? - {0}c{i,A.length}?

4
(A[1] != null)is
checked while A[1]
unmodified since code
entry

Example : (lll) result

void A11NotNull(Ptr[] A) {

1: %/ int i = O;
2: %/ while /* 3: %/
(assert(A != null); i < A.length) {

4: */

{0}0{i}e{A.length} - {0}c{iln{A.length}
4: *x/ assert((A '= null) && (A[i] '= null));
5: x/ A[i].f = new Object();
6: x/ i++;
7. %/ }
8: */ } {0}0{i,A.length}? = {0}c{i,A.length}?
(A[i] != null) is all A[i] have been
checked while A[1] checked in (A[1] !=
unmodified since code null) while unmodified

entry since code entry

(a)

(b)
()

Details of the analysis

1: {0}e{A.length}? - {0In{A.length}?

no element yet modified (¢) and none checked (n), array may be empty
2: {0,i}e{A.length}? - {0,i}n{A.length}? i=0
3: L U ({0,i}e{A.1length}? - {0,i}n{A.length}?) join
= {0,i}e{A.length}? - {0,i}n{A.length}?
4: {0,iYe{A.length} - {0,itn{A.length}

last and only segment hence array not empty (since A.length > i = 0)
5: {0,iYe{A.length} - {0,i}c{1,i+1}In{A.length}?

A[i] checked while unmodified

6: {0,iY0{1,i+1}e{A.length}? - {0,i}c{1,i+1}In{A.length}?
A[i] has been modified
7: {0,i-1}0{1,i}Ye{A.length}? - {0,i-1}c{1,iIn{A.length}?
invertible assignment igq = ipew — 1
3: {0,iYe{A.length}? U {0,i-1}0{1,i}e{A.length}? - join
{0,iIn{A.length}? Ul {0,i-1}c{1,iIn{A.length}?
= {0Ye{i}te{A.length}? LI {0}0{i}e{A.length}? - segment unification
{on{iIn{A.length}? Ll {0}c{i}n{A.length}?
= {0}0{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join elle =¢, e D =0, nUn=nnlUc=c¢
4: {0}0{i}Ye{A.length} - {0}c{i}n{A.length} last segment not empty

5: {0}0{i}te{A.length} - {O}c{i}tc{i+1}n{A.length}?
A[i] checked while unmodified
6: {0}0{i}o{i+1}e{A.length}? - {0}c{i}tc{i+1}n{A.length}?
A[i] has been modified
7: {0}0{i-1}0{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?
invertible assignment i) = inew — 1

(m) 3: {0}0{i}e{A.length}? U {0}0{i-1}0{i}e{A.length}? - join

{0¥c{iIn{A.length}? U {0}c{i-1}c{i}n{A.length}?
= {0}0{i}e{A.length}? U {0}0{i}e{A.length}? - segment unification
{0¥c{iIn{A.length}? U {O}c{i}n{A.length}?
= {0}0{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join, convergence

(m) 8: {0}0{i,A.length}? - {0}c{i,A.length}?

1 < A.length in segmentation and > in test negation so 1 = A.length.

Just to show
that the
analysis is
very fast!

Code generated for the precondition

e Result of the checking analysis (at any point
dominating the code exit) for an assert (b (X,1))
on collection X at a program point c

B1C1 B> [?2]02 e Cn_an[?n] ~ g(@)
o Let A C [1,n) be the set of indices k € A for which Cy = c.

e The precondition is

&& && &&% ForAll(1l,,h,i =>Db(X,i)) (4)
XeX (c,b(X,i))eA(X) keA
where Jey, € By, e), € Bii1 such that the value of ey (resp. ;) at program point £

is always equal to that of 1 (resp. hi) on program entry and is less that the size of
the collection on program entry.

Theorem 23 The precondition (4) based on a sound modification and checking static
analysis & is sound.

Related work

Related work

e Static contract checking

e Barnett, M., Fahndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)
precise points-to analysis. In: IWACQO’07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

e Barnett, M., Fahndrich, M., Logozzo, F.: Embedded contract languages. In: SAC’10.
pp. 2103-2110. ACM Press (2010)

e Abstract interpretation

e Fahndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal Verification of Object-Oriented software.

Springer-Verlag (2010)

e Cousot, P., Cousot, R., Logozzo, ‘F.: ’A parametfic segmentation functor for fully au-
tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

Related work (cont'd)

e Of course, (set-based, weakest) precondition for
correctness (and termination):

e Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453-457 (1975)

e Many analyzes to determine sufficient conditions for
the code to satisfy the assertions (and terminate)

e Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-
rateurs monotones sur un treillis, analyse sémantique de programmes (in French). These

d’Etat &s sciences mathématiques, Université scientifique et médicale de Grenoble (1978)

e Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303—342. Prentice-Hall

(1981)

e C(Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237-277. North-Holland (1977)

e Bourdoncle, F.: Abstract debugging of higher—order imperative languages. In: PLDI’93.
pp. 46-55. ACM Press (1993)

e etc, etc.

Conclusion

Precondition inference from assertions

e QOur point of view that only definite (and not
potential) assertion violations should be checked in
preconditions looks original

e The analyzes for scalar and collection variables have
been chosen to be simple

e for scalability of the analyzes

e for understandability of the automatic program
annotation

e Remains to be implemented

Thanks to all for this
very nice Vvisit

