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Abstract

The existing approaches to termination proof are scattered and largely not
comparable with each other.

We introduce a unifying design principle for termination based on an abstract
interpretation of a complete infinitary trace semantics.¥We show that proof, verification
and analysis methods for termination all rely on two induction principles: (1) a variant
function or induction on data ensuring progress towards the end and (2) some form of
induction on the program structure.

For (1), we show that the abstract interrpetation-based design principle applies
equally well to potential and definite termination. The trace-based termination
collecting semantics is given a fixpoint definition. Its abstraction yields a fixpoint
definition of the best variant function. By further abstraction of this best variant
function, we derive the Floyd/Turing termination proof method as well as new static
analysis methods to effectively compute approximations of this best variant function.

For (2), we introduce a generalization of the syntactic notion of structural induction
(as found in Hoare logic) into a "“semantic structural induction” based on the new
semantic concept of inductive trace cover covering execution traces by "segments", a
new basis for formulating program properties. Its abstractions allow for generalized
recursive proof, verification and static analysis methods by induction on both program
structure, control, and data. Examples of particular instances include Floyd's handling of
loop cut-points as well as nested loops, Burstall's intermittent assertion total
correctness proof method, and Podelski-Rybalchenko transition invariants.



Three principles
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Principle |

Program verification methods (formal
proof or static analysis methods) are
abstract interpretations of a semantics
of the programming language

(*)  P.Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238—
252, 1977.

**)  P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269-282, 1979.
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Refinement to principle |l

Safety as well as termination
verification methods are abstract
interpretations of a maximal trace
semantics of the programming
language



Comments on principle |l

® This is well-known for instances of safety (like
invariance) using prefix trace semantics”

® This is true for full safety

® New for termination

(*)  P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269-282, 1979.
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New principle |l

More expressive and powerful
verification methods are derived by
structuring the trace semantics (into
a hierarchy of segments)



Comments on principle |l

® Syntactic instances have been known for long
(different variant functions for nested loops,
Hoare logic for total correctness,...)

® Semantic instances have been ignored for long
(Burstall's total correctness proof method
using intermittent assertions) and very
successful recently (Podelski-Rybalchenko)

C. Hoare. An axiomatic basis for computer programming. Communications of
the Association for Computing Machinery, 12(10):576-580, 1969.

Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.
Acta Inf., 3:243-263, 1974.

R. Burstall. Program proving as hand simulation with a little induction. Informa-
tion Processing, 308-312. North-Holland, 1974.

A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32-41, 2004.



Maximal trace semantics
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Maximal trace semantics

® Program P > T IIP]] c p(Z%)
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Fixpoint maximal trace semantics
® Complete lattice

<@(Z*Oo)9 E’ ZOO, 2*9 I—|9 |_I>

® Computational ordering
(M) =T CTHANTP2TY) TH 2Tt
(TYUT) =TT UTHUTCNTY) 792703

® Fixpoint semantics
+00 oo
TO[P] = Mpse ¢[P]
= Ifps ‘¢ *[P] U gfpse ‘¢ =[P]

¢ [PIT £ B [Plut[P]5T

Patrick Cousot, Radhia Cousot: Inductive Definitions, Semantics and Abstract

Interpretation. POPL 1992: 83-94
I



(Trace) properties
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Program properties

® A program property P is the set of semantics which
have this property:

Pep(pE™)

® Example:

—

P= =0 =)

_

® Strongest property of program P:

{rt|P]}

P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269-282, 1979.




Trace property abstraction

® Trace property abstraction:

w(P) 2 (P (ppE ™). O = (pE™), O

® Example: (

P= (=0 )]

__
B

o300 —>e | DS results can
o—>o--po—pes() o—>e--po—pe| be different

_

DR always same
result

@e(P)

® The strongest trace property of a trace semantics is this
trace semantics ag({T**[P]}) = 7"*[P]

® Safety/liveness (termination) are trace properties, not

general program properties
| 14
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The Termination
Problem
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The termination proof problem

® Termination abstraction:
d(TYETNT
® Termination proof:

@' (7 [P])) = v*|P]

® Jermination proofs are not very useful since
programs do not always terminate
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Example

® Arithmetic mean of integers xandy

while (x <> y) {
= X = 1;
y + 1

X
y

® Does not always terminate e.g.

<xy> = <[,0>—<0,|>—><-1,2>—><-2,3>—> ..

Patrick Cousot: Proving Program Invariance and Termination by Parametric Abstraction,
Lagrangian Relaxation and Semidefinite Programming. VMCAI 2005: 1-24



The termination inference problem

® Determine a necessary condition for program
termination and prove it sufficient

® Example:

® (|) Under which necessary conditions

while (x <> y) {
X - 1;
y + 1

X

Yy
}

does terminate?

® (2) Prove these conditions to be sufficient

18
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The Termination
Inference Problem



Potential termination

® For non-deterministic programs, we may be
interested in potential termination

may

terminate -

e,

S a
~
~§
~

20
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Definite termination abstraction

® or in definite termination

Mmust
terminate .

n
~

S a

~

® Potential and definite termination coincide for
deterministic programs. Only definite termination in
this presentation.

21
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Definite termination trace abstraction
® Prefix Abstraction

pf(o) {0/ e &% | d0”" e X o =0'0"}

pf(T) £ | Jipfto) | ceT}.

® Definite termination abstraction

oM(T) = {oeT"|plo)NpfT) = 0)
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Definite termination

® The semantics/set of traces 1 definitely terminates if
and only if

(l’Mt(T) T

23

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P.Cousot & R. Cousot



Finite abstractions do not work

® « Abstract and model-check » is impossible” for
termination and unsound for non-termination of

unbounded programs

® Unbounded executions:

o*—>0
*—>e

> o

*—> e

>®

*—> e

>®

>®

>»o—>0

o*—> e

>®

>®

> o—>0—>0—>0e

>®

>®

> o—> 00— 00— 0—>0—>0e - - -0—>0

® Finite homomorphic abstraction:

onnm

® Termination: impossible (lasso)

® Non-termination (lasso): unsound

(*) Excluding trivial solutions, see: Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25
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Definite termination
domain

25
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Reachability analysis

® A forward invariance analysis infers states potentially
reachable from initial states (by over-approximating an
abstract fixpoint 1fp F')"

(*) P.Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238—

252, 1977. 26
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Accessibility analysis

® A backward invariance analysis infers states potentially /
definitely accessing final states (by over-approximating
an abstract fixpoint 1fp 5 )"

O I—PV
(*) P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269-282, 1979.

27
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Combined reachability/accessibility analyses

® An iterated forward/backward invariance analysis
infers reachable states potentially/definitely accessing
final states (by over-approximating 1fp F'[11fp B) “

X0 =17

X2l — ifpAY . XM E(Y)

(*) P. Cousot. Méthodes itératives de construction et d’approximation de points fi- (*) P. Cousot & R. Cousot. Abstract inte application to logic
xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes. progr m -J. Log. Program. 13 (2 & 3) 103 179 (1992)

These d’Etat &s sciences math., USMG, Grenoble, 1978. 28
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Example

® Arithmetic mean of two integers X and Y

{x>=y}
while (x <> y){
{x>=y+2}
X = x - 1;
{x>=y+1}
y =y +1
{x>=y}
ks
{x=y}

® Necessarily X = y for proper termination

29

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P.Cousot & R. Cousot



Example (cont'd)

® Arithmetic mean of two integers x and y (contd)

while (x <> y) {

k :=k - 1; ...
V — _ 1 \’\ .
T ~auxiliary counter k
y =y +1 :
iy
assume (k = Q) <« 2

Hint: imagine k is the number of remaining steps to be
done in the loop

30
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Example (cont'd)

® Arithmetic mean of two integers x and y (contd)

{x=y+2k,x>=y}
while (x <> ) {
{x=y+2k,x>=y+2}

k =k - 1;4- ........... .
{x=y+2k+2,x>=y+2} ™
{xiyék}fljx;yﬂ} “auxiliary counter K
y =y +1
{x=y+2k, x>=y}
{x=y,k=0} /
assume (k = Q) <« ;
{x=y,k=0}

® The difference x — y must initially be even for pro-
per termination

31
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Observations

® k provides the value of the variant function in the
sense of Turing/Floyd

® The constraints on k (hence the variant function)
are computed backwards

—> a backward analysis should be able to infer the
variant function

R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,
19-32. Amer. Math. Soc., 1967.

A. Turing. Checking a large routine. Con. on High Speed Automatic Calculating
Machines, Math. Lab., Cambridge, UK, 67-69, 1949.

32
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The Turing-Floyd

termination proof
metho

R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,
19-32. Amer. Math. Soc., 1967.

A. Turing. Checking a large routine. Con. on High Speed Automatic Calculating
Machines, Math. Lab., Cambridge, UK, 67-69, 1949.

33
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The hierarchy of termination semantics

® Maximal trace concrete backward trace semantics

l a/l\/lt

l cyrk

Variant function abstract ordinal backward semantics

34
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The ranking abstraction

a® € pEXI) (E H0)
a®(r)s £ 0 when Vs €eX:(s, s'Y¢r
A

a™(r)s Sup{ark(r)s' + 1 ‘ ds" e X : (s, s'YerA

Vs €X:(s, sYer — s € dom(a/rk(r))}

e o'"(r) extracts the well-founded part of relation r
® provides the rank of the elements s in its domain
® strictly decreasing with transitions of relation r

—> the most precise variant function

35



Fixpoint definition of the variant function

We now apply the abstract interpretation methodology:
® The maximal trace semantics has a fixpoint definition

® The variant function is an abstraction of the maximal
trace semantics

® With this abstraction, we construct a fixpoint
definition of the abstract variant semantics

— Fixpoint induction provides a termination proof
method

— Further abstractions and widenings provide a
static analysis method

36
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Example |

® Maximal trace semantics:

® Ranking fixpoint iterates:

0 1 0
@ el RN s

iterate | iterate 2 iterate 3 iterate 4
—

fixpoint

37
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Example |l

® Program
int x; while x> 0) { x =x - 2; }
Vo
® Fixpoint V= |fp(§ ¢ W[P]
PWIPl(mx £ (x <02 0ssup{v(x—2)+1|x—2edom(»)})
® |terates W = 0
v!I = Axe[-00,0]¢0
V' = Axe[-00,0]°0UAxe[1,2]1
v = Ax€[-00,0]0UAdxe[1,2]*1UAxe[3,4]2

V' = Ax€[-00,0]0UAxe[1,2X(n—=1)]e(x+1)=2

v = Ax€[-00,0]e0UAx€e[]l,+oo]e(x+1)=2.

38



Computational order on functions

A6

A

vy dom(v) C dom(¥') A Yx € dom(¥) : v(x) < vV'(x)

© P.Cousot & R. Cousot

39
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Example |l

® Program: { even(x-y), x ==y}
while (x <> y) {

X = X - 1;
y : =y + 1
}
{x=Yy }

® |terates (linear abstraction):
dk:vix,y) =k, x—-y-2k=0,k=>20
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Example |V

® In general a widening is needed to enforce
convergence

® Program: int x; while (x > ®) { x =x - 2; }

L] L] L] ° A

® |terates with widening: y Lo
vg:/lxe[—oo,+oo]-J_ //
Vi:/lx-([xe[—oo,O]?08x€[1,+oo]?J_D / )
V2 = Axe[-00,0]+0UAxe[1,2]+1Udx € [3,+00]eL v v(z) —
Vi=Adxs(x€[-00,01208xe[1,2] T 13xe[3,4]72 /

3 x€[5,+00] 7 L] L o "
vi=nV v} ~ T >
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Obijection |:Turing/Floyd's method goes
forward not backward!

. . . ol . ()
® An analysis can be inverted using auxiliary variables

int x; int x, x0;
' hil
before - while (c(x)) { o— KR fC_Z(X?) {
after e L, X = f(X) X0 := Xy
} x = f(x)
}
Backward variant v: Forward variant v:
V(Xbefore) - V(Xafter) + | V(Xo) - V(X) + |

— V(Xbefore) - V(f(Xbefore)) + | = V(XO) - V(f(Xo)) + |

(*) P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303—-342. Prentice-Hall, 1981.
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Objection Il: you need ordinals!”

® Example:. X := ?; while (x >= 0) do x := x - 1 od

® To avoid transfinite ordinals/well-founded orders® for
unbounded non-determinism, the computations need
to be structured!

(*) R.Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,
19-32. Amer. Math. Soc., 1967. 43
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Structuring trace
semantics with
segments



Floyd/Turing termination proof method

® Trivial postfix structuring of traces into segments

® Also used for termination of straight-line code (no
need for variant functions)

45
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Floyd with nested loops

® The trace semantics is recursively structured in
segments according to loop nesting

Prove termination of outer loop
assuming termination of body/
nested inner loops

(equivalent to lexicographic orderings)

46



Hoare logic

® The trace semantics is recursively structured in
segments according to the program syntax

® while (¢) { b; a }...

tree structure
P of the segmentation:

L

{P, PF, PL, PLE, PLD,
PLDB, PLDC}

C. Hoare. An axiomatic basis for computer programming. Communications of
the Association for Computing Machinery, 12(10):576-580, 1969.

Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.
Acta Inf., 3:243-263, 1974. 47
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Burstall’s proof method by
hand-simulation and a little induction

® Program

od

do odd(x) and x >3 — x ;=
oeven (X)and x >2 — X ;=

x+1
x/2

® Proof chart

[even(x) A x=2 A X =X]

[even(x) A X =2AX =x/2]

odd(x)Ax'=3

even(x)ax'=2

[odd(x)A x=3 A x"=x]

Handsimulation Handsimulation

+
[odd(x)Ax=3Ax"=x+1]

Theorem (since x/2 < x) Handsimulation

[odd(x) A x=3 A x'=(x +1)/2]
2

Theorem
(since(x+1)/2<x)

R. Burstall. Program proving as hand simulation with a little induction. Informa-
tion Processing, 308-312. North-Holland, 1974.

Venezia, 2012/03/12, Termination proof inference by abstract interpretation

P. Cousot and R. Cousot. Sometime = always + recursion = always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1-31, 1987.
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Well-founded tree structure of the trace segmentation
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Burstall’s proof method by
hand-simulation and a little induction

* |terative program but recursive proof structur
* Inductive trace cover by segments

e Examble:

A
HS, LlLl)’\:-l ..... 0 H5> L2L 7-1 0 HSS

NS S -

50
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Podelski-Rybalchenko

® Transition invariants are abstractions of trace segments
covering the trace semantics by their extremities

® Jermination based on Ramsey theorem on colored
edges of a complete graph, no recursive structure

A. Podelski and A. Rybalchenko. Transition invariants. LICS, 3241, 2004.
F. P. Ramsey. On a problem of formal logic. In Proc. London
Math. Soc., volume 30, pages 264285, 1930.

51
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Rely-guarantee

® Example of abstraction of segments into rely-
guarantee/contracts state properties:

<ReJy,

-

Guarantee>
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- - - ~ .
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Joey W. Coleman, Cliff B. Jones: A Structural Proof of the Soundness of Rely/guarantee Rules. J. Log. Comput. 17(4): 807-841 (2007)
Venezia, 2012/03/12, Termination proof inference by abstract interpretation
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Trace semantics segmentation

® Recursive trace segmentation

Definition 2. An inductive trace segment cover of a non-empty set

Y € p(X™) of traces is a set C € €(y) of sequences S of members
B of p(a"(y)) such that

1.1£SS" € CthenS € C (prefix-closure)

2.1 S €e CthendS’' : S = xS’ (root)

3.1f SBB € Cthen B » B’ (well-foundedness)

4. if SBB e CthenBC |+| B (cover). ]
SBB’'eC

® Proof by induction on the possibly infinite but well-
founded trace segmentation tree

® QOrthogonal to proofs on segment sets

53



onclusion

54
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Presentation based on our POPL2012 paper

® Patrick Cousot, Radhia Cousot: An abstract interpretation framework for

termination. POPL 2012: 245-258
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More in the paper
® The paper provides

® More topics (e.g. general safety by abstract
interpretation, abstract trace covers/proofs)

® More technical details (e.g. fixpoint definitions of
the various abstract termination semantics)

® More examples (e.g. a more detailed piecewise
linear termination abstraction)

56



Contributions

® Formalization of existing termination proof methods
as abstract interpretations

® Pave the way for new backward termination static
analysis methods (going beyond reduction of
termination to safety analyzes)

® The new concept of trace semantics is
not specific to termination and applies to all
specification/verification/analysis methods

57



Future work
® Abstract domains for termination
® Semantic techniques for segmentation inference
® Eventuality verification/static analysis

® (General) liveness® verification/static analysis

) Beyond LTL, as defined in

Bowen Alpern, Fred B. Schneider: Defining Liveness. Inf. Process. Lett. (IPL) 21(4):181-185
(1985)2EEBowen Alpern, Fred B. Schneider: Defining Liveness. Inf. Process. Lett. (IPL)
21(4):181-185 (1985)
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The end, thank you
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