
Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Computer Science PhD Day, Università Ca’ Foscari di Venezia

Aula Magna Silvio Trentin, Dorsoduro 3825/e, Venezia, Italy

Patrick Cousot Radhia Cousot
cims.nyu.edu/~pcousot/
www.di.ens.fr/~cousot/

www.di.ens.fr/~rcousot/

Termination Proof Inference by
Abstract Interpretation

1

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot2

Abstract
 The existing approaches to termination proof are scattered and largely not
comparable with each other.
 We introduce a unifying design principle for termination based on an abstract
interpretation of a complete infinitary trace semantics. We show that proof, verification
and analysis methods for termination all rely on two induction principles: (1) a variant
function or induction on data ensuring progress towards the end and (2) some form of
induction on the program structure.
 For (1), we show that the abstract interrpetation-based design principle applies
equally well to potential and definite termination. The trace-based termination
collecting semantics is given a fixpoint definition. Its abstraction yields a fixpoint
definition of the best variant function. By further abstraction of this best variant
function, we derive the Floyd/Turing termination proof method as well as new static
analysis methods to effectively compute approximations of this best variant function.
 For (2), we introduce a generalization of the syntactic notion of structural induction
(as found in Hoare logic) into a ``semantic structural induction'' based on the new
semantic concept of inductive trace cover covering execution traces by ``segments'', a
new basis for formulating program properties. Its abstractions allow for generalized
recursive proof, verification and static analysis methods by induction on both program
structure, control, and data. Examples of particular instances include Floyd's handling of
loop cut-points as well as nested loops, Burstall's intermittent assertion total
correctness proof method, and Podelski-Rybalchenko transition invariants.

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Three principles

3

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Program verification methods (formal
proof or static analysis methods) are
abstract interpretations of a semantics
of the programming language

Principle I

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.
with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

4

(*)

(**)

(*,**)

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Refinement to principle II

Safety as well as termination
verification methods are abstract
interpretations of a maximal trace
semantics of the programming
language

5

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Comments on principle II
• This is well-known for instances of safety (like

invariance) using prefix trace semantics

• This is true for full safety

• New for termination

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

6

(*)

(*)

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

New principle III

More expressive and powerful
verification methods are derived by
structuring the trace semantics (into
a hierarchy of segments)

7

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Comments on principle III
• Syntactic instances have been known for long

(different variant functions for nested loops,
Hoare logic for total correctness,...)

• Semantic instances have been ignored for long
(Burstall’s total correctness proof method
using intermittent assertions) and very
successful recently (Podelski-Rybalchenko)

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

8

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Maximal trace semantics

9

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Maximal trace semantics

• Program

infinite traces
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

finite traces
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

states
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

blocking states
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

transitions
in

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

10

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Fixpoint maximal trace semantics
• Complete lattice

• Computational ordering

• Fixpoint semantics

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

11

Patrick Cousot, Radhia Cousot: Inductive Definitions, Semantics and Abstract
Interpretation. POPL 1992: 83-94

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

(Trace) properties

12

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• A program property is the set of semantics which
have this property:

• Example:

• Strongest property of program :

Program properties
Fixpoint induction follows immediately as a sound ((=) and

complete (=)) proof method since for all S 2 A,
lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

0
0

1
1

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

13

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Trace property abstraction
• Trace property abstraction:

• Example:

• The strongest trace property of a trace semantics is this
trace semantics

• Safety/liveness (termination) are trace properties, not
general program properties

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

0
0

1
1

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

0
0

1
1

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

Fixpoint induction follows immediately as a sound ((=) and
complete (=)) proof method since for all S 2 A,

lfpva f v S () 9P 2 A : a v P ^ f (P) v P ^ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 hA, vi ���! ���↵

�
hB, �i between posets hA, vi and hB, �imeaning

that ↵ 2 A 7! B, � 2 B 7! A and 8x 2 A : 8y 2 B : ↵(x) � y ()
x v �(y). We write hA, vi ���!�! ����↵

�
hB, �i when the abstraction ↵ is

surjective (hence the concretization � is injective), hA, vi ����! ����↵
�
hB,

�i when ↵ is injective (hence � is surjective), and hA, vi ���!�! ����↵
�
hB,

�i when ↵ is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos hA, vi with a v f (a) and
an abstraction hA, vi ���! ���↵

�
hB, �i, the su�cient commutation

condition ↵ � f = f � ↵ (respectively semi-commutation condition
↵ � f �̇ f � ↵)8 implies the fixpoint abstraction ↵(lfpva f) =
lfp�↵(a) f (resp. fixpoint approximation ↵(lfpva f) � lfp�↵(a) f) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when ↵ is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ⌃JPK. The transition relation
⌧JPK 2 }(⌃JPK ⇥ ⌃JPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system h⌃JPK, ⌧JPKi. When restricting to initial states
IJPK 2 }(⌃JPK), we write h⌃JPK, IJPK, ⌧JPKi. The termination/block-
ing states are �⌧JPK , �

s 2 ⌃JPK | 8s0 2 ⌃JPK : hs, s0i < ⌧JPK . For
brevity we write X for XJPK e.g. h⌃, ⌧i, h⌃, I, ⌧i, or �⌧.

4. Trace semantics
4.1 Traces
We let ⌃n (⌃0 , ;), ⌃+ = S

n2N ⌃
n, ⌃⇤ , ⌃+ [{"}, ⌃1, ⌃+1 ,

⌃+ [⌃1, and ⌃⇤1 , ⌃⇤ [⌃1 be the set of all finite traces of length
n 2 N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states ⌃ where " is the empty
trace.

We define the following operations on traces, writing |�| for the
length of the trace � 2 ⌃+1, �[n,m], 0 6 n 6 m for the subtrace
�n, �n+1, . . . , �min(m,|�|�1) of �, and ��0 for the concatenation of
�,�0 2 ⌃⇤1 (with �" = "� = � and ��0 = � when � 2 ⌃1).

We define the following operations on sets of traces writing S
for the set of traces {� 2 ⌃1 | �0 2 S } made of one state of S 2 }(⌃)
(for example, the termination states �⌧ , {s 2 ⌃ | 8s0 2 ⌃ : hs,
s0i < ⌧} can also be understood as traces of length one {� 2 ⌃1 |
8s 2 ⌃ : h�0, si < ⌧}), t for the set of traces {� 2 ⌃2 | h�0,
�1i 2 t} made of two consecutive states of the relation t 2 }(⌃ ⇥ ⌃),
T+ , T \ ⌃+ for the selection of the non-empty finite traces of
T 2 }(⌃⇤1), T1 , T \ ⌃1 for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , 8x :
f (x) v g(x).

T , TT 0 , {��0 | � 2 T ^ �0 2 T 0} for the concatenation of sets of
traces, and T # T 0 , {�s�0 | s 2 ⌃ ^ �s 2 T ^ s�0 2 T 0} for the
sequencing of sets of traces T,T 0 2 }(⌃⇤1).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics ⇥+1JPK 2 }(⌃+1JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system h⌃, ⌧i is ⌧+̈1JPK such
that9

⌧ n̈JPK ,
n

� 2 ⌃n
�

�

� 8i 2 [0, n � 1) : h�i, �i+1i 2 ⌧JPK o

, n > 0

⌧1JPK ,
n

� 2 ⌃1
�

�

� 8i 2 N : h�i, �i+1i 2 ⌧JPK o

⌧+̈JPK ,
[

n>0

⌧ n̈JPK, ⌧+̈1JPK , ⌧+̈JPK [⌧1JPK .
The complete or maximal trace semantics ⌧nJPK , ↵M(⌧ n̈JPK),
⌧+JPK = ↵M(⌧+̈JPK) and ⌧+1JPK , ↵M(⌧+̈1JPK) are obtained by

the abstraction h}(⌃+1), ✓i ����!�! ������
↵M

�M

h}(⌃+1), ✓i where

↵M(T) ,
[

n2N

n

� 2 T \ ⌃n
�

�

� �n�1 2 �⌧JPK o

[T1

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

⌧+̈JPK = lfp✓; �
 � +̈
⌧ JPK = lfp✓;

�!
� +̈⌧ JPK, ⌧1JPK = gfp✓⌃1 �

 � 1
⌧ JPK

⌧+̈1JPK = lfp✓; �
 � +̈
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +̈1
⌧ JPK

�
 � +̈
⌧ JPKT , ⌃1 [⌧JPK # T �!

� +̈⌧ JPKT , ⌃1 [T # ⌧JPK
�
 � 1
⌧ JPKT , ⌧JPK # T �

 � +̈1
⌧ JPKT , ⌃1 t ⌧JPK # T

where h}(⌃⇤1), v, ⌃1, ⌃⇤, t, ui is a complete lattice for the
computational order (T1 v T2) , (T+1 ✓ T+2) ^ (T11 ◆ T12) and
(T1 t T2) , (T+1 [T+2) [(T11 \ T12). The fixpoint complete trace
semantics of a program P is calculated by abstraction with ↵M .
⌧+1JPK = lfp✓; �

 � +
⌧ JPK [gfp✓⌃1 �

 � 1
⌧ JPK = lfpv⌃1 �

 � +1
⌧ JPK where

�
 � +
⌧ JPKT , �⌧JPK [⌧JPK # T, and � � +1⌧ JPKT , �⌧JPK t ⌧JPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in }(⌃+1) are sets of sets of traces in
}(}(⌃+1)).

The collecting semantics
�

⇥+1JPK 2 }(}(⌃+1)) is the strongest
program property10 of a program with trace semantics ⇥+1JPK.

The trace property abstraction of program properties is h}(}(⌃+1)),
✓i ����! ����↵⇥

�⇥ h}(⌃+1), ✓i such that

↵⇥(P) ,
[

P and �⇥(Q) , }(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
↵⇥

�{⇥+1JPK}� = ⇥+1JPK 2 }(⌃+1).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
�{�}

�

�

�

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ; when m < n, while [n,
m) , {n, n + 1, . . . ,m � 1} is left closed and right opened, ; when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =) B is interpreted as A ✓ B).

14

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

always same
result

results can
be different

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

The Termination
Problem

15

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK

• Termination abstraction:

•Termination proof:

• Termination proofs are not very useful since
programs do not always terminate

The termination proof problem

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK

16

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Example
• Arithmetic mean of integers x and y

• Does not always terminate e.g.

 <x,y> = <1,0> <0,1> <-1,2> <-2,3> ...

17

⌧mtJPK , ↵mt(⌧+1JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [(⌧JPK # T \ ¬(⌧JPK # ¬T))

where the term ¬(⌧JPK #¬T) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [(⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.

⌧mtJPK , ↵mt(⌧+1JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [(⌧JPK # T \ ¬(⌧JPK # ¬T))

where the term ¬(⌧JPK #¬T) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [(⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.

⌧mtJPK , ↵mt(⌧+1JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [(⌧JPK # T \ ¬(⌧JPK # ¬T))

where the term ¬(⌧JPK #¬T) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [(⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.

⌧mtJPK , ↵mt(⌧+1JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [(⌧JPK # T \ ¬(⌧JPK # ¬T))

where the term ¬(⌧JPK #¬T) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [(⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.

while (x <> y) {
 x := x - 1;
 y := y + 1
}

Patrick Cousot: Proving Program Invariance and Termination by Parametric Abstraction,
Lagrangian Relaxation and Semidefinite Programming. VMCAI 2005: 1-24

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• Determine a necessary condition for program
termination and prove it sufficient

• Example:

• (1) Under which necessary conditions

does terminate?

• (2) Prove these conditions to be sufficient

while (x <> y) {
 x := x - 1;
 y := y + 1
}

The termination inference problem

18

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

The Termination
Inference Problem

19

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Potential termination
• For non-deterministic programs, we may be

interested in potential termination

may
terminate

20

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Definite termination abstraction
• or in definite termination

• Potential and definite termination coincide for
deterministic programs. Only definite termination in
this presentation.

must
terminate

21

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Definite termination trace abstraction
• Prefix Abstraction

• Definite termination abstraction

� 2 ⌃+1 2 }(}(⌃+1)) 11. The corresponding trace property abstrac-
tion is ↵⇥(

�{�}
�

�

� � 2 ⌃+1

) = ⌃+1 2 }(⌃+1) which would allow
any non-deterministic behavior so that determinism in the concrete
domain }(}(⌃+1)) is completely lost in the abstract domain }(⌃+1).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
h}(⌃+1), ✓, ;, ⌃+1, [, \, ¬i where the partial order ✓ is logical
implication and the complement is ¬X , ⌃+1 \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).
6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13

pf(�) , �

�0 2 ⌃+1
�

�

� 9�00 2 ⌃⇤1 : � = �0�00

pf(T) ,
[

�

pf(�)
�

�

� � 2 T

.

The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (8T : " < pf(T)).

The limit abstraction of a set of traces is the topological closure

lm(T) , T [�

� 2 ⌃1 | 8n 2 N : �[0, n] 2 T

.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm � pf = pf � lm � pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ⇢ 2 A 7! A on a poset hA, 6i are abstrac-
tions14 hA, 6i ����!�! �����

⇢

1A h⇢[A], 6i.
6.2 Safety trace properties
The safety trace properties are

SF , sf[}(⌃+1)] =
�

sf(P) | P 2}(⌃+1)

=
�

P 2}(⌃+1) | sf(P) = P

.

We have the Galois isomorphism

hSF, ✓i ����!�! �����
pf+

lm hpf+[}(⌃+)], ✓i

where pf+(T) = pf(T)+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.
6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

⌧sfJPK , sf(⌧+̈1JPK) ' pf+ � sf(⌧+̈1JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics h⌃, ⌧i is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x 2 X | x < Y} is the set di↵erence.
13 A topological closure on a poset hA, 6, _i with partial-order 6 and lub
_, if any, is a map ⇢ 2 A 7! A which is extensive 8x 2 A : x 6 ⇢(x),
idempotent 8x 2 A : ⇢(⇢(x)) = ⇢(x), and finite lub-preserving 8x, y 2 A :
⇢(x_y) = ⇢(x)_⇢(y). This implies that ⇢ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x 2 A to itself 1A(x) = x (resp. 1A , {hx, xi | x 2 A}).

⌧sfJPK = lfp✓;
�!
� sf
⌧ JPK = lfp✓; �

 � sf
⌧ JPK where

�!
� sf
⌧ JPKT , ⌃1 [T # ⌧JPK forward trace transformer

�
 � sf
⌧ JPKT , ⌃1 [⌧JPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S 2 SF,
⌧sfJPK ✓ S () 9P 2 SF : ⌃1 ✓ P ^ ⌧JPK # P ✓ P ^ P ✓ S

() 9P 2 SF : ⌃1 ✓ P ^ P # ⌧JPK ✓ P ^ P ✓ S .
Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction hSF, ✓i ����!�! �����
↵R

�R

h}(⌃ ⇥ ⌃), ✓i such that

↵R(T) , � h�0, �n�1i | n > 0 ^ � 2 ⌃n \ T

(1)
�R(R) , �

� 2 ⌃n | n > 0 ^ h�0, �n�1i 2 R

abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction ↵R � sf is therefore equal to the relational

reachability abstraction h}(⌃+1), ✓i �����!�! ������
↵R⇤

�R⇤

h}(⌃ ⇥ ⌃), ✓i such

that
↵R⇤ (T) , � h�0, �ii | 9n : 0 6 i < n ^ � 2 ⌃n \ T

�R⇤ (R) , �

� 2 ⌃n | n > 0 ^ 8i 2 [0, n) : h�0, �ii 2 R

abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

⌧RJPK , ↵R(⌧+1JPK)

⌧R⇤JPK , ↵R(⌧+̈1JPK) = ↵R⇤ (⌧+1JPK) = ↵R(⌧sfJPK) = ↵R⇤ (⌧sfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics ⌧sfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
h⌃, ⌧i

⌧R⇤JPK = lfp✓;
�!
� R⇤
⌧ JPK = lfp✓; �

 � R⇤
⌧ JPK

where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P 2 SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X 2 }(A) by a relation r 2 }(A ⇥ B) is
r[X] , {y | 9x 2 X : hx, yi 2 r} also written post[r]X.

�!
� R⇤
⌧ JPK(R) , 1⌃ [R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T) , T [{�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T)}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[l:loop [] e:skip]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

e
lb

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T) , T \ ⌃+, �mt(S) , S [⌃1 and �
0mt(S) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T) = {ab, aba,
ba, bb} and ↵Mt(T) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [{0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.

22

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• The semantics/set of traces definitely terminates if
and only if

Definite termination

�!
� R⇤
⌧ JPK(R) , 1⌃ [R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T) , T [{�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T)}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[l:loop [] e:skip]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

e
lb

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T) , T \ ⌃+, �mt(S) , S [⌃1 and �
0mt(S) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T) = {ab, aba,
ba, bb} and ↵Mt(T) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [{0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.

�!
� R⇤
⌧ JPK(R) , 1⌃ [R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T) , T [{�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T)}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[l:loop [] e:skip]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

e
lb

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T) , T \ ⌃+, �mt(S) , S [⌃1 and �
0mt(S) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T) = {ab, aba,
ba, bb} and ↵Mt(T) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [{0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.

�!
� R⇤
⌧ JPK(R) , 1⌃ [R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T) , T [{�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T)}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[l:loop [] e:skip]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

e
lb

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T) , T \ ⌃+, �mt(S) , S [⌃1 and �
0mt(S) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T) = {ab, aba,
ba, bb} and ↵Mt(T) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [{0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.

23

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Finite abstractions do not work
• « Abstract and model-check » is impossible for

termination and unsound for non-termination of
unbounded programs

• Unbounded executions:

• Finite homomorphic abstraction:

• Termination: impossible (lasso)

• Non-termination (lasso): unsound

24

(*)

(*) Excluding trivial solutions, see: Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Definite termination
domain

25

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Reachability analysis
• A forward invariance analysis infers states potentially

reachable from initial states (by over-approximating an
abstract fixpoint)

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.
26

(*)

(*)

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Accessibility analysis
• A backward invariance analysis infers states potentially /

definitely accessing final states (by over-approximating
an abstract fixpoint xxxxx)x)

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

27

(*)

(*)

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Combined reachability/accessibility analyses

• An iterated forward/backward invariance analysis
infers reachable states potentially/definitely accessing
final states (by over-approximating)

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

28

(*)

(*) P. Cousot & R. Cousot. Abstract interpretation and application to logic
programs. J. Log. Program. 13 (2 & 3): 103–179 (1992)

(*)

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Example (cont'd)
• Arithmetic mean of two integers and

• Necessarily for proper termination

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

29

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• Arithmetic mean of two integers and (cont’d)

• The difference must initially be even for pro-
per termination

Example (cont'd)

30

auxiliary counter ↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � yHint: imagine k is the number of remaining steps to be

done in the loop

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• Arithmetic mean of two integers and (cont’d)

• The difference must initially be even for pro-
per termination

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

Example (cont'd)

31

auxiliary counter

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• k provides the value of the variant function in the
sense of Turing/Floyd

• The constraints on k (hence the variant function)
are computed backwards

 a backward analysis should be able to infer the
variant function

Observations

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

32

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

A

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

The Turing-Floyd
termination proof

method

33

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

A

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• Maximal trace concrete backward trace semantics

Definite termination abstract backward trace
semantics

Weakest pre-condition abstract backward state
semantics (termination domain)

Variant function abstract ordinal backward semantics

�!
� R⇤
⌧ JPK(R) , 1⌃ [R � ⌧JPK forward transformer

�
 � R⇤
⌧ JPK(R) , 1⌃ [⌧JPK � R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S 2 }(⌃ ⇥ ⌃) [23], respectively
generalizing [40, 49] and [37, 48].

⌧R⇤JPK ✓ S () 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ R � ⌧JPK ✓ R ^ R ✓ S
() 9R 2 }(⌃ ⇥ ⌃) : 1⌃ ✓ R ^ ⌧JPK � R ✓ R ^ R ✓ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ���!�! �����

↵I

�I

h}(⌃ ⇥ ⌃), ✓i where
↵I(R) , {hs, s0i | s 2 I ^ hs, s0i 2 R} (2)

and the final states F 2 }(⌃), h}(⌃ ⇥ ⌃), ✓i ����!�! �����
↵F

�F

h}(⌃ ⇥ ⌃), ✓i
where

↵F(R) , {hs, s0i | hs, s0i 2 R ^ s 2 F} . (3)

It is also possible to use an invariant so as to restrict to the reachable
states h}(⌃ ⇥ ⌃), ✓i ����!�! �����

↵r

�r

h}(⌃), ✓i where

↵r(R) , {s0 | hs, s0i 2 R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by h}(⌃ ⇥
⌃), ✓i ���!�! ����

e↵

e�
h}(⌃ ⇥ ⌃), ◆i where e↵(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics ⇥+1JPK of a program P must always be finite

⇥+1JPK ✓ ⌃+JPK definite termination

or that the trace semantics ⇥+1JPK may be finite (hence must not
always be infinite)

⇥+1JPK \ ⌃+JPK , ; potential termination.

The infinite extension abstraction

↵!(T) , T [{�1�2 2 ⌃1 | �1 2 ⌃+ ^ (9�02 2 ⌃1 : �1�
0
2 2 T _

8�02 2 ⌃⇤ : �1�
0
2 < T)}

is a topological closure and so h}(⌃+1), ✓i ����!�! �����
↵!

�!

h↵![}(⌃+1)],
✓i where �! is the identity. We have

⌧+1JPK ✓ ⌃+JPK () ↵!(⌧+1JPK) ✓ ⌃+JPK,
⌧+1JPK \ ⌃+JPK , ; () ↵!(⌧+1JPK) \ ⌃+JPK , ;

and so, if necessary, we only need to consider semantics closed by
↵!.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[l:loop [] e:skip]
with states {b, l, e}, transitions {hb, li, hb, ei, hl, li}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

e
lb

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is h}(⌃+1),

✓i �����!�! ������
↵mt

�mt

h}(⌃+), ✓i and h}(⌃+1), vi �����!�! ������
↵mt

�
0mt

h}(⌃+), ✓i where

↵mt(T) , T \ ⌃+, �mt(S) , S [⌃1 and �
0mt(S) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[l:loop [] e:skip] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

↵Mt(T) , {� 2 T+ | pf(�) \ pf(T1) = ;}
↵Mt 2 h}(⌃+1), vi ,!! h}(⌃+), ✓i is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, ba!} then ↵mt(T) = {ab, aba,
ba, bb} and ↵Mt(T) = {ab, aba} since pf(�) \ pf(ba!) = ; for
� = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r 2 hA, vi ,! hB, 6i where B ✓ A is increasing and idempotent.
We write r 2 hA, vi ,!! hB, 6i when it is onto.
18 Consider the v-increasing chain Tn , {0} [{0i! | i > n}, n > 0.
We have

F

n>0 ↵
Mt(Tn) = ; while

T

n>0{0i! | i > n} = ; so that
↵Mt(
F

n>0 Tn) = ↵Mt({a}) = {a}.

⌧mtJPK , ↵mt(⌧+1JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

⌧MtJPK , ↵Mt(⌧+1JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics h⌃JPK, ⌧JPKi and termination states �⌧JPK is

⌧mtJPK = lfp✓; �
 � mt
⌧ JPK potential termination

�
 � mt
⌧ JPKT , �⌧JPK [⌧JPK # T
⌧MtJPK = lfp✓; �

 � Mt
⌧ JPK definite termination

�
 � Mt
⌧ JPKT , �⌧JPK [(⌧JPK # T \ ¬(⌧JPK # ¬T))

where the term ¬(⌧JPK #¬T) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either ⌧mtJPK ✓ S or ⌧MtJPK ✓ S . Over-
approximations yield necessary but not su�cient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ✓ ⌧mtJPK or S ✓ ⌧MtJPK. Under-approximations
yield su�cient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I 2 }(⌃) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by
the weakest precondition abstraction h}(⌃+1), ✓i ����! ����

↵w

�w

h}(⌃), ✓i
of the termination trace semantics, such that

↵w(T) , {�0 | � 2 T } precondition abstraction.

9.2 Termination domain semantics
⌧wmtJPK , ↵w(⌧mtJPK) potential termination
⌧wMtJPK , ↵w(⌧MtJPK) definite termination.

Using Dijkstra’s notations [37], ⌧wmtJPK = wlpJPKtrue and ⌧wMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y 2 }(A) by a relation r 2 }(A ⇥ B) is r�1[Y] , {x |
9y 2 Y : hx, yi 2 r} also written pre[r]Y while ¬r�1[¬Y] , {x | 8y : y 2
Y =) hx, yi 2 r} is gpre[r]Y .

⌧wmtJPK = lfp✓;
�!
� wmt
⌧ JPK weakest liberal termin. precond.

�!
� wmt
⌧ JPK(R) , �⌧JPK [⌧JPK�1[R]

⌧wMtJPK = lfp✓;
�!
� wMt
⌧ JPK weakest termination precondition

�!
� wMt
⌧ JPK(R) , �⌧JPK [(⌧JPK�1[R] \ ¬⌧JPK�1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
⌧wmtJPK or ⌧wMtJPK. Then this necessary termination condition is
shown to be su�cient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to di↵erent
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
h⌃, ⌧i definitely terminates if and only if the program transition
relation is well-founded21.

⌧+1JPK ✓ ⌃+JPK () h⌃, ⌧i is well-founded.

In practice one considers traces starting from initial states I 2 }(⌃),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system h⌃, ⌧i
definitely terminates for traces starting from initial states I 2 }(⌃)
if and only if the program transition relation restricted to reachable
states is well-founded.

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () h↵r(↵i(I)(⌧+1JPK)), ⌧i is well-founded

where the initialization abstraction h}(⌃+1), ✓i �����! �����
↵i(I)

�i(I)
h}(⌃+1),

✓i is
↵i 2 }(⌃) 7! (⌃+1 7! ⌃+1) initialization abstraction

↵i(I)T , �

� 2 T | �0 2 I

and the reachable states abstraction h}(⌃+1), ✓i ����! ����
↵r

�r

h}(⌃), ✓i
is
↵r(T) , �

s | 9� 2 ⌃⇤,�0 2 ⌃⇤1 : �s�0 2 T

reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation � 2 }(W ⇥W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. hW, �i is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation �. The set of
all well-founded relations in }(W ⇥W) is writtenWf(W ⇥W).
22 t⇤ is the reflexive transitive closure of a binary relation t.

10.2 Transition abstraction
If the program semantics ⇥+1JPK is not generated by a transition
system we might consider the transition abstraction h⌃, �!↵ (⇥+1JPK)i
where the transition abstraction h}(⌃+1), ✓i ���! ����!↵

�!�
h}(⌃ ⇥ ⌃), ✓i

is
�!↵ (T) , {hs, s0i | 9�,�0 : �ss0�0 2 T } transition abstraction

but the following counter-example shows that the condition is
su�cient but not necessary.

Counter-example 5. Let T , {ab, ba} be a trace semantics. The
corresponding transition relation ⌧ , �!↵ (T) = {ha, bi, hb, ai}
generates the infinite trace abababa . . . and so the transition relation
⌧ restricted to the reachable states {a, b} is not well-founded.

Another counter-example is fairness [35]. In the following, we
consider complete/maximal trace semantics T that are transition
closed (also generated by a transition system) that is �!↵ (T) = T or
equivalently T is closed by elimination of strict prefixes, closed by
extension by fusion, and closed by limits [35, Th. 2.6.8].

11. Variant semantics
It remains to design verification and static analysis methods to show
that hR, ⌧i is well-founded where

R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I]

over-approximates the reachable states. There are two important
remarks.

1. If ⌧ ✓ r and hR, ri is well-founded then hR, ⌧i is well-founded.
2. hR, ⌧i is well-founded if and only if there exists a variant function
⌫ 2 ⌃ 67!W 23 into a well-founded set hW, �i which domain is
R 24.

So for the traces generated by a transition system, termination can
be proved by mapping invariant states to a well-founded relation
which is the principle of Floyd/Turing variant function method.

11.1 Variant function
A variant function ⌫ 2 ⌃ 67! W is a partial function from the
set of states into a well-founded set hW, �i where � is a well-
founded relation on the set W (and 4 is its non-strict version). With
appropriate hypotheses on states and the transition relation, the co-
domain of the variant function can be fixed a priori and the variant
function can be found by constraint solving e.g. [17, 54]. However,
these methods are not as general as Floyd/Turing’s method.

In mathematics, the ordinals provide a standard well-founded
set thanks to ranking functions mapping each element of a well-
founded set to its ordinal rank. So, up to a ranking function, the
well-founded set hW, �i can always be chosen as the class hO, <i
of ordinals. The intuition is that any execution � starting in a state
�0 2 dom(⌫) must terminate in “at most” ⌫(�0) execution steps
while an execution � starting in a state �0 < dom(⌫) might not
terminate. We have ⌧ ✓ {hs, s0i 2 ⌃2 | s 2 dom(⌫) ^ ⌫(s) � ⌫(s0)}
and this relation is well-founded on states, proving termination.

11.2 Variant abstraction
A variant function is an abstraction of a set of finite traces. It is a
partial function which domain is the set of terminating states. Its

23 A 67! B (resp. A 7! B) is the set of partial (resp. total) maps from set A
into set B. We write dom(f) for the domain of a partial function f 2 A 67! B
and codom(f) for its co-domain. If f 2 A 7! B then dom(f) = A.
24 For a proof, take hW, �i to be the ordinals hO, <i and ⌫ to be the ordinal
rank of elements of R for the well-founded relation ⌧.

value is an upper bound of the remaining number of “steps” to
termination. It may be transfinite for unbounded non-determinism
with unbounded execution trace lengths. Let us define

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O) ranking abstraction
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� s0 2 dom(↵rk(r)) ^ hs, s0i 2 r
o

25 .

↵rk(r)s extracts the well-founded part of relation r and provides the
rank of the elements s of its domain. ↵v(T) does the same for the
transition relation by abstracting the set T of finite traces

↵v 2 }(⌃+) 7! (⌃ 67!W) variant abstraction
↵v(T) , � s .↵rk(�!↵ (T))s .

It follows that the abstraction h}(⌃+1), vi ��������!�! ���������
↵v �↵mt

�
0mt � �v

h⌃ 67!W, vvi

holds for potential termination and h}(⌃+1), vi ! h⌃ 67!W, vvi
for definite termination. These abstractions state, by def. of v, that
adding finite execution traces or suppressing infinite traces can only,
by def. of vv, augment the termination domain and, maybe, increase
execution times. It follows that the computational variant order is

⌫ vv ⌫0 , dom(⌫) ✓ dom(⌫0) ^ 8x 2 dom(⌫) : ⌫(x) 4 ⌫0(x) .

11.3 Variant semantics
A variant function can always be found by abstraction of the
termination semantics into a variant semantics

⌧mvJPK , ↵v(⌧mtJPK) potential termination variant
⌧MvJPK , ↵v(⌧MtJPK) definite termination variant.

This yields new termination proof methods and static analysis
methods by abstraction of this fixpoint definition.

11.4 Fixpoint variant semantics
By fixpoint abstraction of the fixpoint termination trace semantics
of Sect. 8.4, we get the fixpoint characterization of the variant
semantics26 ,27

⌧mvJPK = lfpv
v

;̇ �
 � mv
⌧ JPK potential termination

�
 � mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK o)
⌧MvJPK = lfpv

v

;̇ �
 � Mv
⌧ JPK definite termination

�
 � Mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK ^
8s00 : hs, s00i 2 ⌧JPK =) s00 2 dom(⌫)

o

) .
Example 6. Consider the trace semantics as rep-
resented on the right. We have represented below
the fixpoint iterates for the corresponding potential
and definite variant functions. Unlabelled states
are outside the variant function domain.

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Potential termination

25 This can be generalized from hO, <i to well-orders hW,�i using succ(x) ,
{y 2 W | x < y ^ @z 2 W : x < z < y} and sup is an upper-bound. For
ordinals succ(x) = {x + 1} is the successor ordinal and sup is the lub.
26 The partial map ;̇ 2 ⌃ 67! O is totally undefined and has dom(;̇) , ;.
27 The conditional is (true ? a : b) , a and (false ? a : b) , b.

The hierarchy of termination semantics

34

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• extracts the well-founded part of relation

• provides the rank of the elements in its domain

• strictly decreasing with transitions of relation

The ranking abstraction
10.2 Transition abstraction
If the program semantics ⇥+1JPK is not generated by a transition
system we might consider the transition abstraction h⌃, �!↵ (⇥+1JPK)i
where the transition abstraction h}(⌃+1), ✓i ���! ����!↵

�!�
h}(⌃ ⇥ ⌃), ✓i

is
�!↵ (T) , {hs, s0i | 9�,�0 : �ss0�0 2 T } transition abstraction

but the following counter-example shows that the condition is
su�cient but not necessary.

Counter-example 5. Let T , {ab, ba} be a trace semantics. The
corresponding transition relation ⌧ , �!↵ (T) = {ha, bi, hb, ai}
generates the infinite trace abababa . . . and so the transition relation
⌧ restricted to the reachable states {a, b} is not well-founded.

Another counter-example is fairness [35]. In the following, we
consider complete/maximal trace semantics T that are transition
closed (also generated by a transition system) that is �!↵ (T) = T or
equivalently T is closed by elimination of strict prefixes, closed by
extension by fusion, and closed by limits [35, Th. 2.6.8].

11. Variant semantics
It remains to design verification and static analysis methods to show
that hR, ⌧i is well-founded where

R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I]

over-approximates the reachable states. There are two important
remarks.

1. If ⌧ ✓ r and hR, ri is well-founded then hR, ⌧i is well-founded.
2. hR, ⌧i is well-founded if and only if there exists a variant function
⌫ 2 ⌃ 67!W 23 into a well-founded set hW, �i which domain is
R 24.

So for the traces generated by a transition system, termination can
be proved by mapping invariant states to a well-founded relation
which is the principle of Floyd/Turing variant function method.

11.1 Variant function
A variant function ⌫ 2 ⌃ 67! W is a partial function from the
set of states into a well-founded set hW, �i where � is a well-
founded relation on the set W (and 4 is its non-strict version). With
appropriate hypotheses on states and the transition relation, the co-
domain of the variant function can be fixed a priori and the variant
function can be found by constraint solving e.g. [17, 54]. However,
these methods are not as general as Floyd/Turing’s method.

In mathematics, the ordinals provide a standard well-founded
set thanks to ranking functions mapping each element of a well-
founded set to its ordinal rank. So, up to a ranking function, the
well-founded set hW, �i can always be chosen as the class hO, <i
of ordinals. The intuition is that any execution � starting in a state
�0 2 dom(⌫) must terminate in “at most” ⌫(�0) execution steps
while an execution � starting in a state �0 < dom(⌫) might not
terminate. We have ⌧ ✓ {hs, s0i 2 ⌃2 | s 2 dom(⌫) ^ ⌫(s) � ⌫(s0)}
and this relation is well-founded on states, proving termination.

11.2 Variant abstraction
A variant function is an abstraction of a set of finite traces. It is a
partial function which domain is the set of terminating states. Its

23 A 67! B (resp. A 7! B) is the set of partial (resp. total) maps from set A
into set B. We write dom(f) for the domain of a partial function f 2 A 67! B
and codom(f) for its co-domain. If f 2 A 7! B then dom(f) = A.
24 For a proof, take hW, �i to be the ordinals hO, <i and ⌫ to be the ordinal
rank of elements of R for the well-founded relation ⌧.

value is an upper bound of the remaining number of “steps” to
termination. It may be transfinite for unbounded non-determinism
with unbounded execution trace lengths. Let us define

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O) ranking abstraction
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� s0 2 dom(↵rk(r)) ^ hs, s0i 2 r
o

25 .

↵rk(r)s extracts the well-founded part of relation r and provides the
rank of the elements s of its domain. ↵v(T) does the same for the
transition relation by abstracting the set T of finite traces

↵v 2 }(⌃+) 7! (⌃ 67!W) variant abstraction
↵v(T) , � s .↵rk(�!↵ (T))s .

It follows that the abstraction h}(⌃+1), vi ��������!�! ���������
↵v �↵mt

�
0mt � �v

h⌃ 67!W, vvi

holds for potential termination and h}(⌃+1), vi ! h⌃ 67!W, vvi
for definite termination. These abstractions state, by def. of v, that
adding finite execution traces or suppressing infinite traces can only,
by def. of vv, augment the termination domain and, maybe, increase
execution times. It follows that the computational variant order is

⌫ vv ⌫0 , dom(⌫) ✓ dom(⌫0) ^ 8x 2 dom(⌫) : ⌫(x) 4 ⌫0(x) .

11.3 Variant semantics
A variant function can always be found by abstraction of the
termination semantics into a variant semantics

⌧mvJPK , ↵v(⌧mtJPK) potential termination variant
⌧MvJPK , ↵v(⌧MtJPK) definite termination variant.

This yields new termination proof methods and static analysis
methods by abstraction of this fixpoint definition.

11.4 Fixpoint variant semantics
By fixpoint abstraction of the fixpoint termination trace semantics
of Sect. 8.4, we get the fixpoint characterization of the variant
semantics26 ,27

⌧mvJPK = lfpv
v

;̇ �
 � mv
⌧ JPK potential termination

�
 � mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK o)
⌧MvJPK = lfpv

v

;̇ �
 � Mv
⌧ JPK definite termination

�
 � Mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK ^
8s00 : hs, s00i 2 ⌧JPK =) s00 2 dom(⌫)

o

) .
Example 6. Consider the trace semantics as rep-
resented on the right. We have represented below
the fixpoint iterates for the corresponding potential
and definite variant functions. Unlabelled states
are outside the variant function domain.

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Potential termination

25 This can be generalized from hO, <i to well-orders hW,�i using succ(x) ,
{y 2 W | x < y ^ @z 2 W : x < z < y} and sup is an upper-bound. For
ordinals succ(x) = {x + 1} is the successor ordinal and sup is the lub.
26 The partial map ;̇ 2 ⌃ 67! O is totally undefined and has dom(;̇) , ;.
27 The conditional is (true ? a : b) , a and (false ? a : b) , b.

10.2 Transition abstraction
If the program semantics ⇥+1JPK is not generated by a transition
system we might consider the transition abstraction h⌃, �!↵ (⇥+1JPK)i
where the transition abstraction h}(⌃+1), ✓i ���! ����!↵

�!�
h}(⌃ ⇥ ⌃), ✓i

is
�!↵ (T) , {hs, s0i | 9�,�0 : �ss0�0 2 T } transition abstraction

but the following counter-example shows that the condition is
su�cient but not necessary.

Counter-example 5. Let T , {ab, ba} be a trace semantics. The
corresponding transition relation ⌧ , �!↵ (T) = {ha, bi, hb, ai}
generates the infinite trace abababa . . . and so the transition relation
⌧ restricted to the reachable states {a, b} is not well-founded.

Another counter-example is fairness [35]. In the following, we
consider complete/maximal trace semantics T that are transition
closed (also generated by a transition system) that is �!↵ (T) = T or
equivalently T is closed by elimination of strict prefixes, closed by
extension by fusion, and closed by limits [35, Th. 2.6.8].

11. Variant semantics
It remains to design verification and static analysis methods to show
that hR, ⌧i is well-founded where

R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I]

over-approximates the reachable states. There are two important
remarks.

1. If ⌧ ✓ r and hR, ri is well-founded then hR, ⌧i is well-founded.
2. hR, ⌧i is well-founded if and only if there exists a variant function
⌫ 2 ⌃ 67!W 23 into a well-founded set hW, �i which domain is
R 24.

So for the traces generated by a transition system, termination can
be proved by mapping invariant states to a well-founded relation
which is the principle of Floyd/Turing variant function method.

11.1 Variant function
A variant function ⌫ 2 ⌃ 67! W is a partial function from the
set of states into a well-founded set hW, �i where � is a well-
founded relation on the set W (and 4 is its non-strict version). With
appropriate hypotheses on states and the transition relation, the co-
domain of the variant function can be fixed a priori and the variant
function can be found by constraint solving e.g. [17, 54]. However,
these methods are not as general as Floyd/Turing’s method.

In mathematics, the ordinals provide a standard well-founded
set thanks to ranking functions mapping each element of a well-
founded set to its ordinal rank. So, up to a ranking function, the
well-founded set hW, �i can always be chosen as the class hO, <i
of ordinals. The intuition is that any execution � starting in a state
�0 2 dom(⌫) must terminate in “at most” ⌫(�0) execution steps
while an execution � starting in a state �0 < dom(⌫) might not
terminate. We have ⌧ ✓ {hs, s0i 2 ⌃2 | s 2 dom(⌫) ^ ⌫(s) � ⌫(s0)}
and this relation is well-founded on states, proving termination.

11.2 Variant abstraction
A variant function is an abstraction of a set of finite traces. It is a
partial function which domain is the set of terminating states. Its

23 A 67! B (resp. A 7! B) is the set of partial (resp. total) maps from set A
into set B. We write dom(f) for the domain of a partial function f 2 A 67! B
and codom(f) for its co-domain. If f 2 A 7! B then dom(f) = A.
24 For a proof, take hW, �i to be the ordinals hO, <i and ⌫ to be the ordinal
rank of elements of R for the well-founded relation ⌧.

value is an upper bound of the remaining number of “steps” to
termination. It may be transfinite for unbounded non-determinism
with unbounded execution trace lengths. Let us define

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O) ranking abstraction
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� s0 2 dom(↵rk(r)) ^ hs, s0i 2 r
o

25 .

↵rk(r)s extracts the well-founded part of relation r and provides the
rank of the elements s of its domain. ↵v(T) does the same for the
transition relation by abstracting the set T of finite traces

↵v 2 }(⌃+) 7! (⌃ 67!W) variant abstraction
↵v(T) , � s .↵rk(�!↵ (T))s .

It follows that the abstraction h}(⌃+1), vi ��������!�! ���������
↵v �↵mt

�
0mt � �v

h⌃ 67!W, vvi

holds for potential termination and h}(⌃+1), vi ! h⌃ 67!W, vvi
for definite termination. These abstractions state, by def. of v, that
adding finite execution traces or suppressing infinite traces can only,
by def. of vv, augment the termination domain and, maybe, increase
execution times. It follows that the computational variant order is

⌫ vv ⌫0 , dom(⌫) ✓ dom(⌫0) ^ 8x 2 dom(⌫) : ⌫(x) 4 ⌫0(x) .

11.3 Variant semantics
A variant function can always be found by abstraction of the
termination semantics into a variant semantics

⌧mvJPK , ↵v(⌧mtJPK) potential termination variant
⌧MvJPK , ↵v(⌧MtJPK) definite termination variant.

This yields new termination proof methods and static analysis
methods by abstraction of this fixpoint definition.

11.4 Fixpoint variant semantics
By fixpoint abstraction of the fixpoint termination trace semantics
of Sect. 8.4, we get the fixpoint characterization of the variant
semantics26 ,27

⌧mvJPK = lfpv
v

;̇ �
 � mv
⌧ JPK potential termination

�
 � mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK o)
⌧MvJPK = lfpv

v

;̇ �
 � Mv
⌧ JPK definite termination

�
 � Mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK ^
8s00 : hs, s00i 2 ⌧JPK =) s00 2 dom(⌫)

o

) .
Example 6. Consider the trace semantics as rep-
resented on the right. We have represented below
the fixpoint iterates for the corresponding potential
and definite variant functions. Unlabelled states
are outside the variant function domain.

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Potential termination

25 This can be generalized from hO, <i to well-orders hW,�i using succ(x) ,
{y 2 W | x < y ^ @z 2 W : x < z < y} and sup is an upper-bound. For
ordinals succ(x) = {x + 1} is the successor ordinal and sup is the lub.
26 The partial map ;̇ 2 ⌃ 67! O is totally undefined and has dom(;̇) , ;.
27 The conditional is (true ? a : b) , a and (false ? a : b) , b.

10.2 Transition abstraction
If the program semantics ⇥+1JPK is not generated by a transition
system we might consider the transition abstraction h⌃, �!↵ (⇥+1JPK)i
where the transition abstraction h}(⌃+1), ✓i ���! ����!↵

�!�
h}(⌃ ⇥ ⌃), ✓i

is
�!↵ (T) , {hs, s0i | 9�,�0 : �ss0�0 2 T } transition abstraction

but the following counter-example shows that the condition is
su�cient but not necessary.

Counter-example 5. Let T , {ab, ba} be a trace semantics. The
corresponding transition relation ⌧ , �!↵ (T) = {ha, bi, hb, ai}
generates the infinite trace abababa . . . and so the transition relation
⌧ restricted to the reachable states {a, b} is not well-founded.

Another counter-example is fairness [35]. In the following, we
consider complete/maximal trace semantics T that are transition
closed (also generated by a transition system) that is �!↵ (T) = T or
equivalently T is closed by elimination of strict prefixes, closed by
extension by fusion, and closed by limits [35, Th. 2.6.8].

11. Variant semantics
It remains to design verification and static analysis methods to show
that hR, ⌧i is well-founded where

R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I]

over-approximates the reachable states. There are two important
remarks.

1. If ⌧ ✓ r and hR, ri is well-founded then hR, ⌧i is well-founded.
2. hR, ⌧i is well-founded if and only if there exists a variant function
⌫ 2 ⌃ 67!W 23 into a well-founded set hW, �i which domain is
R 24.

So for the traces generated by a transition system, termination can
be proved by mapping invariant states to a well-founded relation
which is the principle of Floyd/Turing variant function method.

11.1 Variant function
A variant function ⌫ 2 ⌃ 67! W is a partial function from the
set of states into a well-founded set hW, �i where � is a well-
founded relation on the set W (and 4 is its non-strict version). With
appropriate hypotheses on states and the transition relation, the co-
domain of the variant function can be fixed a priori and the variant
function can be found by constraint solving e.g. [17, 54]. However,
these methods are not as general as Floyd/Turing’s method.

In mathematics, the ordinals provide a standard well-founded
set thanks to ranking functions mapping each element of a well-
founded set to its ordinal rank. So, up to a ranking function, the
well-founded set hW, �i can always be chosen as the class hO, <i
of ordinals. The intuition is that any execution � starting in a state
�0 2 dom(⌫) must terminate in “at most” ⌫(�0) execution steps
while an execution � starting in a state �0 < dom(⌫) might not
terminate. We have ⌧ ✓ {hs, s0i 2 ⌃2 | s 2 dom(⌫) ^ ⌫(s) � ⌫(s0)}
and this relation is well-founded on states, proving termination.

11.2 Variant abstraction
A variant function is an abstraction of a set of finite traces. It is a
partial function which domain is the set of terminating states. Its

23 A 67! B (resp. A 7! B) is the set of partial (resp. total) maps from set A
into set B. We write dom(f) for the domain of a partial function f 2 A 67! B
and codom(f) for its co-domain. If f 2 A 7! B then dom(f) = A.
24 For a proof, take hW, �i to be the ordinals hO, <i and ⌫ to be the ordinal
rank of elements of R for the well-founded relation ⌧.

value is an upper bound of the remaining number of “steps” to
termination. It may be transfinite for unbounded non-determinism
with unbounded execution trace lengths. Let us define

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O) ranking abstraction
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� s0 2 dom(↵rk(r)) ^ hs, s0i 2 r
o

25 .

↵rk(r)s extracts the well-founded part of relation r and provides the
rank of the elements s of its domain. ↵v(T) does the same for the
transition relation by abstracting the set T of finite traces

↵v 2 }(⌃+) 7! (⌃ 67!W) variant abstraction
↵v(T) , � s .↵rk(�!↵ (T))s .

It follows that the abstraction h}(⌃+1), vi ��������!�! ���������
↵v �↵mt

�
0mt � �v

h⌃ 67!W, vvi

holds for potential termination and h}(⌃+1), vi ! h⌃ 67!W, vvi
for definite termination. These abstractions state, by def. of v, that
adding finite execution traces or suppressing infinite traces can only,
by def. of vv, augment the termination domain and, maybe, increase
execution times. It follows that the computational variant order is

⌫ vv ⌫0 , dom(⌫) ✓ dom(⌫0) ^ 8x 2 dom(⌫) : ⌫(x) 4 ⌫0(x) .

11.3 Variant semantics
A variant function can always be found by abstraction of the
termination semantics into a variant semantics

⌧mvJPK , ↵v(⌧mtJPK) potential termination variant
⌧MvJPK , ↵v(⌧MtJPK) definite termination variant.

This yields new termination proof methods and static analysis
methods by abstraction of this fixpoint definition.

11.4 Fixpoint variant semantics
By fixpoint abstraction of the fixpoint termination trace semantics
of Sect. 8.4, we get the fixpoint characterization of the variant
semantics26 ,27

⌧mvJPK = lfpv
v

;̇ �
 � mv
⌧ JPK potential termination

�
 � mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK o)
⌧MvJPK = lfpv

v

;̇ �
 � Mv
⌧ JPK definite termination

�
 � Mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK ^
8s00 : hs, s00i 2 ⌧JPK =) s00 2 dom(⌫)

o

) .
Example 6. Consider the trace semantics as rep-
resented on the right. We have represented below
the fixpoint iterates for the corresponding potential
and definite variant functions. Unlabelled states
are outside the variant function domain.

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Potential termination

25 This can be generalized from hO, <i to well-orders hW,�i using succ(x) ,
{y 2 W | x < y ^ @z 2 W : x < z < y} and sup is an upper-bound. For
ordinals succ(x) = {x + 1} is the successor ordinal and sup is the lub.
26 The partial map ;̇ 2 ⌃ 67! O is totally undefined and has dom(;̇) , ;.
27 The conditional is (true ? a : b) , a and (false ? a : b) , b.

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

35

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

the most precise variant function

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Fixpoint definition of the variant function

• The maximal trace semantics has a fixpoint definition

• The variant function is an abstraction of the maximal
trace semantics

• With this abstraction, we construct a fixpoint
definition of the abstract variant semantics

We now apply the abstract interpretation methodology:

36

Fixpoint induction provides a termination proof
method

Further abstractions and widenings provide a
static analysis method

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Example I
• Maximal trace semantics:

• Ranking fixpoint iterates:

10.2 Transition abstraction
If the program semantics ⇥+1JPK is not generated by a transition
system we might consider the transition abstraction h⌃, �!↵ (⇥+1JPK)i
where the transition abstraction h}(⌃+1), ✓i ���! ����!↵

�!�
h}(⌃ ⇥ ⌃), ✓i

is
�!↵ (T) , {hs, s0i | 9�,�0 : �ss0�0 2 T } transition abstraction

but the following counter-example shows that the condition is
su�cient but not necessary.

Counter-example 5. Let T , {ab, ba} be a trace semantics. The
corresponding transition relation ⌧ , �!↵ (T) = {ha, bi, hb, ai}
generates the infinite trace abababa . . . and so the transition relation
⌧ restricted to the reachable states {a, b} is not well-founded.

Another counter-example is fairness [35]. In the following, we
consider complete/maximal trace semantics T that are transition
closed (also generated by a transition system) that is �!↵ (T) = T or
equivalently T is closed by elimination of strict prefixes, closed by
extension by fusion, and closed by limits [35, Th. 2.6.8].

11. Variant semantics
It remains to design verification and static analysis methods to show
that hR, ⌧i is well-founded where

R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I]

over-approximates the reachable states. There are two important
remarks.

1. If ⌧ ✓ r and hR, ri is well-founded then hR, ⌧i is well-founded.
2. hR, ⌧i is well-founded if and only if there exists a variant function
⌫ 2 ⌃ 67!W 23 into a well-founded set hW, �i which domain is
R 24.

So for the traces generated by a transition system, termination can
be proved by mapping invariant states to a well-founded relation
which is the principle of Floyd/Turing variant function method.

11.1 Variant function
A variant function ⌫ 2 ⌃ 67! W is a partial function from the
set of states into a well-founded set hW, �i where � is a well-
founded relation on the set W (and 4 is its non-strict version). With
appropriate hypotheses on states and the transition relation, the co-
domain of the variant function can be fixed a priori and the variant
function can be found by constraint solving e.g. [17, 54]. However,
these methods are not as general as Floyd/Turing’s method.

In mathematics, the ordinals provide a standard well-founded
set thanks to ranking functions mapping each element of a well-
founded set to its ordinal rank. So, up to a ranking function, the
well-founded set hW, �i can always be chosen as the class hO, <i
of ordinals. The intuition is that any execution � starting in a state
�0 2 dom(⌫) must terminate in “at most” ⌫(�0) execution steps
while an execution � starting in a state �0 < dom(⌫) might not
terminate. We have ⌧ ✓ {hs, s0i 2 ⌃2 | s 2 dom(⌫) ^ ⌫(s) � ⌫(s0)}
and this relation is well-founded on states, proving termination.

11.2 Variant abstraction
A variant function is an abstraction of a set of finite traces. It is a
partial function which domain is the set of terminating states. Its

23 A 67! B (resp. A 7! B) is the set of partial (resp. total) maps from set A
into set B. We write dom(f) for the domain of a partial function f 2 A 67! B
and codom(f) for its co-domain. If f 2 A 7! B then dom(f) = A.
24 For a proof, take hW, �i to be the ordinals hO, <i and ⌫ to be the ordinal
rank of elements of R for the well-founded relation ⌧.

value is an upper bound of the remaining number of “steps” to
termination. It may be transfinite for unbounded non-determinism
with unbounded execution trace lengths. Let us define

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O) ranking abstraction
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� s0 2 dom(↵rk(r)) ^ hs, s0i 2 r
o

25 .

↵rk(r)s extracts the well-founded part of relation r and provides the
rank of the elements s of its domain. ↵v(T) does the same for the
transition relation by abstracting the set T of finite traces

↵v 2 }(⌃+) 7! (⌃ 67!W) variant abstraction
↵v(T) , � s .↵rk(�!↵ (T))s .

It follows that the abstraction h}(⌃+1), vi ��������!�! ���������
↵v �↵mt

�
0mt � �v

h⌃ 67!W, vvi

holds for potential termination and h}(⌃+1), vi ! h⌃ 67!W, vvi
for definite termination. These abstractions state, by def. of v, that
adding finite execution traces or suppressing infinite traces can only,
by def. of vv, augment the termination domain and, maybe, increase
execution times. It follows that the computational variant order is

⌫ vv ⌫0 , dom(⌫) ✓ dom(⌫0) ^ 8x 2 dom(⌫) : ⌫(x) 4 ⌫0(x) .

11.3 Variant semantics
A variant function can always be found by abstraction of the
termination semantics into a variant semantics

⌧mvJPK , ↵v(⌧mtJPK) potential termination variant
⌧MvJPK , ↵v(⌧MtJPK) definite termination variant.

This yields new termination proof methods and static analysis
methods by abstraction of this fixpoint definition.

11.4 Fixpoint variant semantics
By fixpoint abstraction of the fixpoint termination trace semantics
of Sect. 8.4, we get the fixpoint characterization of the variant
semantics26 ,27

⌧mvJPK = lfpv
v

;̇ �
 � mv
⌧ JPK potential termination

�
 � mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK o)
⌧MvJPK = lfpv

v

;̇ �
 � Mv
⌧ JPK definite termination

�
 � Mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK ^
8s00 : hs, s00i 2 ⌧JPK =) s00 2 dom(⌫)

o

) .
Example 6. Consider the trace semantics as rep-
resented on the right. We have represented below
the fixpoint iterates for the corresponding potential
and definite variant functions. Unlabelled states
are outside the variant function domain.

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Potential termination

25 This can be generalized from hO, <i to well-orders hW,�i using succ(x) ,
{y 2 W | x < y ^ @z 2 W : x < z < y} and sup is an upper-bound. For
ordinals succ(x) = {x + 1} is the successor ordinal and sup is the lub.
26 The partial map ;̇ 2 ⌃ 67! O is totally undefined and has dom(;̇) , ;.
27 The conditional is (true ? a : b) , a and (false ? a : b) , b.

iterate 1 iterate 2 iterate 3 iterate 4

fixpoint

10.2 Transition abstraction
If the program semantics ⇥+1JPK is not generated by a transition
system we might consider the transition abstraction h⌃, �!↵ (⇥+1JPK)i
where the transition abstraction h}(⌃+1), ✓i ���! ����!↵

�!�
h}(⌃ ⇥ ⌃), ✓i

is
�!↵ (T) , {hs, s0i | 9�,�0 : �ss0�0 2 T } transition abstraction

but the following counter-example shows that the condition is
su�cient but not necessary.

Counter-example 5. Let T , {ab, ba} be a trace semantics. The
corresponding transition relation ⌧ , �!↵ (T) = {ha, bi, hb, ai}
generates the infinite trace abababa . . . and so the transition relation
⌧ restricted to the reachable states {a, b} is not well-founded.

Another counter-example is fairness [35]. In the following, we
consider complete/maximal trace semantics T that are transition
closed (also generated by a transition system) that is �!↵ (T) = T or
equivalently T is closed by elimination of strict prefixes, closed by
extension by fusion, and closed by limits [35, Th. 2.6.8].

11. Variant semantics
It remains to design verification and static analysis methods to show
that hR, ⌧i is well-founded where

R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I]

over-approximates the reachable states. There are two important
remarks.

1. If ⌧ ✓ r and hR, ri is well-founded then hR, ⌧i is well-founded.
2. hR, ⌧i is well-founded if and only if there exists a variant function
⌫ 2 ⌃ 67!W 23 into a well-founded set hW, �i which domain is
R 24.

So for the traces generated by a transition system, termination can
be proved by mapping invariant states to a well-founded relation
which is the principle of Floyd/Turing variant function method.

11.1 Variant function
A variant function ⌫ 2 ⌃ 67! W is a partial function from the
set of states into a well-founded set hW, �i where � is a well-
founded relation on the set W (and 4 is its non-strict version). With
appropriate hypotheses on states and the transition relation, the co-
domain of the variant function can be fixed a priori and the variant
function can be found by constraint solving e.g. [17, 54]. However,
these methods are not as general as Floyd/Turing’s method.

In mathematics, the ordinals provide a standard well-founded
set thanks to ranking functions mapping each element of a well-
founded set to its ordinal rank. So, up to a ranking function, the
well-founded set hW, �i can always be chosen as the class hO, <i
of ordinals. The intuition is that any execution � starting in a state
�0 2 dom(⌫) must terminate in “at most” ⌫(�0) execution steps
while an execution � starting in a state �0 < dom(⌫) might not
terminate. We have ⌧ ✓ {hs, s0i 2 ⌃2 | s 2 dom(⌫) ^ ⌫(s) � ⌫(s0)}
and this relation is well-founded on states, proving termination.

11.2 Variant abstraction
A variant function is an abstraction of a set of finite traces. It is a
partial function which domain is the set of terminating states. Its

23 A 67! B (resp. A 7! B) is the set of partial (resp. total) maps from set A
into set B. We write dom(f) for the domain of a partial function f 2 A 67! B
and codom(f) for its co-domain. If f 2 A 7! B then dom(f) = A.
24 For a proof, take hW, �i to be the ordinals hO, <i and ⌫ to be the ordinal
rank of elements of R for the well-founded relation ⌧.

value is an upper bound of the remaining number of “steps” to
termination. It may be transfinite for unbounded non-determinism
with unbounded execution trace lengths. Let us define

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O) ranking abstraction
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� s0 2 dom(↵rk(r)) ^ hs, s0i 2 r
o

25 .

↵rk(r)s extracts the well-founded part of relation r and provides the
rank of the elements s of its domain. ↵v(T) does the same for the
transition relation by abstracting the set T of finite traces

↵v 2 }(⌃+) 7! (⌃ 67!W) variant abstraction
↵v(T) , � s .↵rk(�!↵ (T))s .

It follows that the abstraction h}(⌃+1), vi ��������!�! ���������
↵v �↵mt

�
0mt � �v

h⌃ 67!W, vvi

holds for potential termination and h}(⌃+1), vi ! h⌃ 67!W, vvi
for definite termination. These abstractions state, by def. of v, that
adding finite execution traces or suppressing infinite traces can only,
by def. of vv, augment the termination domain and, maybe, increase
execution times. It follows that the computational variant order is

⌫ vv ⌫0 , dom(⌫) ✓ dom(⌫0) ^ 8x 2 dom(⌫) : ⌫(x) 4 ⌫0(x) .

11.3 Variant semantics
A variant function can always be found by abstraction of the
termination semantics into a variant semantics

⌧mvJPK , ↵v(⌧mtJPK) potential termination variant
⌧MvJPK , ↵v(⌧MtJPK) definite termination variant.

This yields new termination proof methods and static analysis
methods by abstraction of this fixpoint definition.

11.4 Fixpoint variant semantics
By fixpoint abstraction of the fixpoint termination trace semantics
of Sect. 8.4, we get the fixpoint characterization of the variant
semantics26 ,27

⌧mvJPK = lfpv
v

;̇ �
 � mv
⌧ JPK potential termination

�
 � mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK o)
⌧MvJPK = lfpv

v

;̇ �
 � Mv
⌧ JPK definite termination

�
 � Mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK ^
8s00 : hs, s00i 2 ⌧JPK =) s00 2 dom(⌫)

o

) .
Example 6. Consider the trace semantics as rep-
resented on the right. We have represented below
the fixpoint iterates for the corresponding potential
and definite variant functions. Unlabelled states
are outside the variant function domain.

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Potential termination

25 This can be generalized from hO, <i to well-orders hW,�i using succ(x) ,
{y 2 W | x < y ^ @z 2 W : x < z < y} and sup is an upper-bound. For
ordinals succ(x) = {x + 1} is the successor ordinal and sup is the lub.
26 The partial map ;̇ 2 ⌃ 67! O is totally undefined and has dom(;̇) , ;.
27 The conditional is (true ? a : b) , a and (false ? a : b) , b.

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

↵rk

;

37

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Example II
• Program

• Fixpoint

• Iterates

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Definite termination
The potential variant can be used as a run-time check of definite
non-termination (since beyond 4 execution steps termination is
inevitable). This general observation is not in contradiction with the
fact that termination is not checkable at runtime since here it relies
on a prior static analysis considering all possible executions.

Example 7. The definite termination variant semantics lfpv
v

;̇ �
 � Mv
⌧ JPK

of the following program P

int main () { int x; while (x > 0) { x = x - 2; }}

is the limit ⌫! of the iterates ⌫n, n 2 N of � � Mv
⌧ JPK from ;̇.

Considering only one loop head control point so that the state can
be reduced to the value x of x, we have

�
 � Mv
⌧ JPK(⌫)x , (x 6 0 ? 0 : sup { ⌫(x � 2) + 1 | x � 2 2 dom(⌫)}) .

The program being deterministic, the potential termination equation
⌫ = �
 � mv
⌧ JPK(⌫) is similar. The fixpoint iterates are28 ,29

⌫0 = ;̇
⌫1 = � x 2 [�1, 0] . 0
⌫2 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1
⌫3 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3, 4] . 2
. . .
⌫n = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2 ⇥ (n � 1)] . (x + 1) ÷ 2
. . .
⌫! = � x 2 [�1, 0] . 0 [̇ � x 2 [1,+1] . (x + 1) ÷ 2 .

11.5 Termination proof method
The variant semantics is sound and complete to prove termination
of a program P for initial states I since

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () I ✓ dom(⌧MvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; () I ✓ dom(⌧mvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

Applying fixpoint induction to check for the least fixpoint over-
approximation, we get a termination proof method. We have

9⌫ 2 ⌃ 67! O : ⌧MvJPK vv ⌫

,9⌫ : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ Hfixpoint semantics of Sect. 11.4I

,9⌫ : 9⌫0 : ;̇ vv ⌫0 ^ � � Mv
⌧ JPK⌫0 vv ⌫0 ^ ⌫0 vv ⌫ Hfixpoint ind.I

,9⌫0 : � � Mv
⌧ JPK⌫0 vv ⌫0 Hdef. vv and choosing ⌫ = ⌫0I

,9⌫ : � s . (s 2 �⌧JPK ? 0 : sup{⌫(s0) + 1 | 9s0 : hs,
s0i 2 ⌧JPK ^ s0 2 dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2
dom(⌫)}) vv ⌫ Hdef. � � Mv

⌧ JPKI
,9⌫ : � s . sup{⌫(s0)+ 1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2 dom(⌫)^8s0 :
hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} vv ⌫Hsince 8s : ⌫(s0) > 0 and 9s0 : hs, s0i 2 ⌧JPK implies s < �⌧JPKI

,9⌫ : dom(� s . sup{⌫(s0) + 1 | 9s0 : hs, s0i 2 ⌧JPK ^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)}) ✓
dom(⌫)^8s 2 dom(⌫) : sup{⌫(s0)+1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} 6 ⌫(s)

28 [̇ joins partial functions with disjoint domains f1 [̇ f2(x) , f1(x) if
x 2 dom(f1) and f1 [̇ f2(x) , f2(x) if x 2 dom(f2) where dom(f1) \
dom(f2) = ;.
29÷ is the integer division.

Hdef. vv for ordinalsI
,9⌫ : 8s 2 dom(⌫) :

⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
This calculational design yields the following definite termination
induction principle

↵i(I)(⌧+1JPK) ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
�9s0 2 I : hs, s0i 2 ⌧JPK� =)
�9s00 2 I : hs, s00i 2 ⌧JPK ^ s00 2 I ^ ⌫(s00) � ⌫(s)

�

.

Observe that the fixpoint variant semantics of Sect. 11.4 is calculated
backwards (the variant function increases on previous steps) but that
the termination induction principles proceed forward (the variant
function decreases on next steps).

Example 8. A similar induction principle is proposed in [35, Ch.
5.2.3] for relational inevitability proofs (a state must be reached
that relates to the initial state as given by a specification relation
). The following example is used in [35, Ch. 5.2.5] to show that,
the invariant and variant function must also be relational, that is
relate the current and initial state: ⌃ , {1, 2, 3}, I , {1, 2}, ⌧ , {hx,
x + 1i | x, x + 1 2 ⌃}, , ⌧. We can prove termination with
assertions, no relational invariants being needed. For the above
example, choose I = ⌃, hW, �i = h⌃, <i, ⌫(1) = 2, ⌫(2) = 1,
⌫(3) = 0. This example shows that termination proofs are simpler
than inevitability proofs.

Example 9. For the program of Ex. 7, the definite termination proof
for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}
requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (4), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current values
of the variables to their past values. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 10. Continuing Ex. 9, the program is transformed into

int main () { int x, x0;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Definite termination
The potential variant can be used as a run-time check of definite
non-termination (since beyond 4 execution steps termination is
inevitable). This general observation is not in contradiction with the
fact that termination is not checkable at runtime since here it relies
on a prior static analysis considering all possible executions.

Example 7. The definite termination variant semantics lfpv
v

;̇ �
 � Mv
⌧ JPK

of the following program P

int main () { int x; while (x > 0) { x = x - 2; }}

is the limit ⌫! of the iterates ⌫n, n 2 N of � � Mv
⌧ JPK from ;̇.

Considering only one loop head control point so that the state can
be reduced to the value x of x, we have

�
 � Mv
⌧ JPK(⌫)x , (x 6 0 ? 0 : sup { ⌫(x � 2) + 1 | x � 2 2 dom(⌫)}) .

The program being deterministic, the potential termination equation
⌫ = �
 � mv
⌧ JPK(⌫) is similar. The fixpoint iterates are28 ,29

⌫0 = ;̇
⌫1 = � x 2 [�1, 0] . 0
⌫2 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1
⌫3 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3, 4] . 2
. . .
⌫n = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2 ⇥ (n � 1)] . (x + 1) ÷ 2
. . .
⌫! = � x 2 [�1, 0] . 0 [̇ � x 2 [1,+1] . (x + 1) ÷ 2 .

11.5 Termination proof method
The variant semantics is sound and complete to prove termination
of a program P for initial states I since

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () I ✓ dom(⌧MvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; () I ✓ dom(⌧mvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

Applying fixpoint induction to check for the least fixpoint over-
approximation, we get a termination proof method. We have

9⌫ 2 ⌃ 67! O : ⌧MvJPK vv ⌫

,9⌫ : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ Hfixpoint semantics of Sect. 11.4I

,9⌫ : 9⌫0 : ;̇ vv ⌫0 ^ � � Mv
⌧ JPK⌫0 vv ⌫0 ^ ⌫0 vv ⌫ Hfixpoint ind.I

,9⌫0 : � � Mv
⌧ JPK⌫0 vv ⌫0 Hdef. vv and choosing ⌫ = ⌫0I

,9⌫ : � s . (s 2 �⌧JPK ? 0 : sup{⌫(s0) + 1 | 9s0 : hs,
s0i 2 ⌧JPK ^ s0 2 dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2
dom(⌫)}) vv ⌫ Hdef. � � Mv

⌧ JPKI
,9⌫ : � s . sup{⌫(s0)+ 1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2 dom(⌫)^8s0 :
hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} vv ⌫Hsince 8s : ⌫(s0) > 0 and 9s0 : hs, s0i 2 ⌧JPK implies s < �⌧JPKI

,9⌫ : dom(� s . sup{⌫(s0) + 1 | 9s0 : hs, s0i 2 ⌧JPK ^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)}) ✓
dom(⌫)^8s 2 dom(⌫) : sup{⌫(s0)+1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} 6 ⌫(s)

28 [̇ joins partial functions with disjoint domains f1 [̇ f2(x) , f1(x) if
x 2 dom(f1) and f1 [̇ f2(x) , f2(x) if x 2 dom(f2) where dom(f1) \
dom(f2) = ;.
29÷ is the integer division.

Hdef. vv for ordinalsI
,9⌫ : 8s 2 dom(⌫) :

⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
This calculational design yields the following definite termination
induction principle

↵i(I)(⌧+1JPK) ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
�9s0 2 I : hs, s0i 2 ⌧JPK� =)
�9s00 2 I : hs, s00i 2 ⌧JPK ^ s00 2 I ^ ⌫(s00) � ⌫(s)

�

.

Observe that the fixpoint variant semantics of Sect. 11.4 is calculated
backwards (the variant function increases on previous steps) but that
the termination induction principles proceed forward (the variant
function decreases on next steps).

Example 8. A similar induction principle is proposed in [35, Ch.
5.2.3] for relational inevitability proofs (a state must be reached
that relates to the initial state as given by a specification relation
). The following example is used in [35, Ch. 5.2.5] to show that,
the invariant and variant function must also be relational, that is
relate the current and initial state: ⌃ , {1, 2, 3}, I , {1, 2}, ⌧ , {hx,
x + 1i | x, x + 1 2 ⌃}, , ⌧. We can prove termination with
assertions, no relational invariants being needed. For the above
example, choose I = ⌃, hW, �i = h⌃, <i, ⌫(1) = 2, ⌫(2) = 1,
⌫(3) = 0. This example shows that termination proofs are simpler
than inevitability proofs.

Example 9. For the program of Ex. 7, the definite termination proof
for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}
requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (4), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current values
of the variables to their past values. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 10. Continuing Ex. 9, the program is transformed into

int main () { int x, x0;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Definite termination
The potential variant can be used as a run-time check of definite
non-termination (since beyond 4 execution steps termination is
inevitable). This general observation is not in contradiction with the
fact that termination is not checkable at runtime since here it relies
on a prior static analysis considering all possible executions.

Example 7. The definite termination variant semantics lfpv
v

;̇ �
 � Mv
⌧ JPK

of the following program P

int main () { int x; while (x > 0) { x = x - 2; }}

is the limit ⌫! of the iterates ⌫n, n 2 N of � � Mv
⌧ JPK from ;̇.

Considering only one loop head control point so that the state can
be reduced to the value x of x, we have

�
 � Mv
⌧ JPK(⌫)x , (x 6 0 ? 0 : sup { ⌫(x � 2) + 1 | x � 2 2 dom(⌫)}) .

The program being deterministic, the potential termination equation
⌫ = �
 � mv
⌧ JPK(⌫) is similar. The fixpoint iterates are28 ,29

⌫0 = ;̇
⌫1 = � x 2 [�1, 0] . 0
⌫2 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1
⌫3 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3, 4] . 2
. . .
⌫n = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2 ⇥ (n � 1)] . (x + 1) ÷ 2
. . .
⌫! = � x 2 [�1, 0] . 0 [̇ � x 2 [1,+1] . (x + 1) ÷ 2 .

11.5 Termination proof method
The variant semantics is sound and complete to prove termination
of a program P for initial states I since

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () I ✓ dom(⌧MvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; () I ✓ dom(⌧mvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

Applying fixpoint induction to check for the least fixpoint over-
approximation, we get a termination proof method. We have

9⌫ 2 ⌃ 67! O : ⌧MvJPK vv ⌫

,9⌫ : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ Hfixpoint semantics of Sect. 11.4I

,9⌫ : 9⌫0 : ;̇ vv ⌫0 ^ � � Mv
⌧ JPK⌫0 vv ⌫0 ^ ⌫0 vv ⌫ Hfixpoint ind.I

,9⌫0 : � � Mv
⌧ JPK⌫0 vv ⌫0 Hdef. vv and choosing ⌫ = ⌫0I

,9⌫ : � s . (s 2 �⌧JPK ? 0 : sup{⌫(s0) + 1 | 9s0 : hs,
s0i 2 ⌧JPK ^ s0 2 dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2
dom(⌫)}) vv ⌫ Hdef. � � Mv

⌧ JPKI
,9⌫ : � s . sup{⌫(s0)+ 1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2 dom(⌫)^8s0 :
hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} vv ⌫Hsince 8s : ⌫(s0) > 0 and 9s0 : hs, s0i 2 ⌧JPK implies s < �⌧JPKI

,9⌫ : dom(� s . sup{⌫(s0) + 1 | 9s0 : hs, s0i 2 ⌧JPK ^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)}) ✓
dom(⌫)^8s 2 dom(⌫) : sup{⌫(s0)+1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} 6 ⌫(s)

28 [̇ joins partial functions with disjoint domains f1 [̇ f2(x) , f1(x) if
x 2 dom(f1) and f1 [̇ f2(x) , f2(x) if x 2 dom(f2) where dom(f1) \
dom(f2) = ;.
29÷ is the integer division.

Hdef. vv for ordinalsI
,9⌫ : 8s 2 dom(⌫) :

⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
This calculational design yields the following definite termination
induction principle

↵i(I)(⌧+1JPK) ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
�9s0 2 I : hs, s0i 2 ⌧JPK� =)
�9s00 2 I : hs, s00i 2 ⌧JPK ^ s00 2 I ^ ⌫(s00) � ⌫(s)

�

.

Observe that the fixpoint variant semantics of Sect. 11.4 is calculated
backwards (the variant function increases on previous steps) but that
the termination induction principles proceed forward (the variant
function decreases on next steps).

Example 8. A similar induction principle is proposed in [35, Ch.
5.2.3] for relational inevitability proofs (a state must be reached
that relates to the initial state as given by a specification relation
). The following example is used in [35, Ch. 5.2.5] to show that,
the invariant and variant function must also be relational, that is
relate the current and initial state: ⌃ , {1, 2, 3}, I , {1, 2}, ⌧ , {hx,
x + 1i | x, x + 1 2 ⌃}, , ⌧. We can prove termination with
assertions, no relational invariants being needed. For the above
example, choose I = ⌃, hW, �i = h⌃, <i, ⌫(1) = 2, ⌫(2) = 1,
⌫(3) = 0. This example shows that termination proofs are simpler
than inevitability proofs.

Example 9. For the program of Ex. 7, the definite termination proof
for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}
requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (4), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current values
of the variables to their past values. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 10. Continuing Ex. 9, the program is transformed into

int main () { int x, x0;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Definite termination
The potential variant can be used as a run-time check of definite
non-termination (since beyond 4 execution steps termination is
inevitable). This general observation is not in contradiction with the
fact that termination is not checkable at runtime since here it relies
on a prior static analysis considering all possible executions.

Example 7. The definite termination variant semantics lfpv
v

;̇ �
 � Mv
⌧ JPK

of the following program P

int main () { int x; while (x > 0) { x = x - 2; }}

is the limit ⌫! of the iterates ⌫n, n 2 N of � � Mv
⌧ JPK from ;̇.

Considering only one loop head control point so that the state can
be reduced to the value x of x, we have

�
 � Mv
⌧ JPK(⌫)x , (x 6 0 ? 0 : sup { ⌫(x � 2) + 1 | x � 2 2 dom(⌫)}) .

The program being deterministic, the potential termination equation
⌫ = �
 � mv
⌧ JPK(⌫) is similar. The fixpoint iterates are28 ,29

⌫0 = ;̇
⌫1 = � x 2 [�1, 0] . 0
⌫2 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1
⌫3 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3, 4] . 2
. . .
⌫n = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2 ⇥ (n � 1)] . (x + 1) ÷ 2
. . .
⌫! = � x 2 [�1, 0] . 0 [̇ � x 2 [1,+1] . (x + 1) ÷ 2 .

11.5 Termination proof method
The variant semantics is sound and complete to prove termination
of a program P for initial states I since

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () I ✓ dom(⌧MvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; () I ✓ dom(⌧mvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

Applying fixpoint induction to check for the least fixpoint over-
approximation, we get a termination proof method. We have

9⌫ 2 ⌃ 67! O : ⌧MvJPK vv ⌫

,9⌫ : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ Hfixpoint semantics of Sect. 11.4I

,9⌫ : 9⌫0 : ;̇ vv ⌫0 ^ � � Mv
⌧ JPK⌫0 vv ⌫0 ^ ⌫0 vv ⌫ Hfixpoint ind.I

,9⌫0 : � � Mv
⌧ JPK⌫0 vv ⌫0 Hdef. vv and choosing ⌫ = ⌫0I

,9⌫ : � s . (s 2 �⌧JPK ? 0 : sup{⌫(s0) + 1 | 9s0 : hs,
s0i 2 ⌧JPK ^ s0 2 dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2
dom(⌫)}) vv ⌫ Hdef. � � Mv

⌧ JPKI
,9⌫ : � s . sup{⌫(s0)+ 1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2 dom(⌫)^8s0 :
hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} vv ⌫Hsince 8s : ⌫(s0) > 0 and 9s0 : hs, s0i 2 ⌧JPK implies s < �⌧JPKI

,9⌫ : dom(� s . sup{⌫(s0) + 1 | 9s0 : hs, s0i 2 ⌧JPK ^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)}) ✓
dom(⌫)^8s 2 dom(⌫) : sup{⌫(s0)+1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} 6 ⌫(s)

28 [̇ joins partial functions with disjoint domains f1 [̇ f2(x) , f1(x) if
x 2 dom(f1) and f1 [̇ f2(x) , f2(x) if x 2 dom(f2) where dom(f1) \
dom(f2) = ;.
29÷ is the integer division.

Hdef. vv for ordinalsI
,9⌫ : 8s 2 dom(⌫) :

⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
This calculational design yields the following definite termination
induction principle

↵i(I)(⌧+1JPK) ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
�9s0 2 I : hs, s0i 2 ⌧JPK� =)
�9s00 2 I : hs, s00i 2 ⌧JPK ^ s00 2 I ^ ⌫(s00) � ⌫(s)

�

.

Observe that the fixpoint variant semantics of Sect. 11.4 is calculated
backwards (the variant function increases on previous steps) but that
the termination induction principles proceed forward (the variant
function decreases on next steps).

Example 8. A similar induction principle is proposed in [35, Ch.
5.2.3] for relational inevitability proofs (a state must be reached
that relates to the initial state as given by a specification relation
). The following example is used in [35, Ch. 5.2.5] to show that,
the invariant and variant function must also be relational, that is
relate the current and initial state: ⌃ , {1, 2, 3}, I , {1, 2}, ⌧ , {hx,
x + 1i | x, x + 1 2 ⌃}, , ⌧. We can prove termination with
assertions, no relational invariants being needed. For the above
example, choose I = ⌃, hW, �i = h⌃, <i, ⌫(1) = 2, ⌫(2) = 1,
⌫(3) = 0. This example shows that termination proofs are simpler
than inevitability proofs.

Example 9. For the program of Ex. 7, the definite termination proof
for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}
requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (4), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current values
of the variables to their past values. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 10. Continuing Ex. 9, the program is transformed into

int main () { int x, x0;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Definite termination
The potential variant can be used as a run-time check of definite
non-termination (since beyond 4 execution steps termination is
inevitable). This general observation is not in contradiction with the
fact that termination is not checkable at runtime since here it relies
on a prior static analysis considering all possible executions.

Example 7. The definite termination variant semantics lfpv
v

;̇ �
 � Mv
⌧ JPK

of the following program P

int main () { int x; while (x > 0) { x = x - 2; }}

is the limit ⌫! of the iterates ⌫n, n 2 N of � � Mv
⌧ JPK from ;̇.

Considering only one loop head control point so that the state can
be reduced to the value x of x, we have

�
 � Mv
⌧ JPK(⌫)x , (x 6 0 ? 0 : sup { ⌫(x � 2) + 1 | x � 2 2 dom(⌫)}) .

The program being deterministic, the potential termination equation
⌫ = �
 � mv
⌧ JPK(⌫) is similar. The fixpoint iterates are28 ,29

⌫0 = ;̇
⌫1 = � x 2 [�1, 0] . 0
⌫2 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1
⌫3 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3, 4] . 2
. . .
⌫n = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2 ⇥ (n � 1)] . (x + 1) ÷ 2
. . .
⌫! = � x 2 [�1, 0] . 0 [̇ � x 2 [1,+1] . (x + 1) ÷ 2 .

11.5 Termination proof method
The variant semantics is sound and complete to prove termination
of a program P for initial states I since

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () I ✓ dom(⌧MvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; () I ✓ dom(⌧mvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

Applying fixpoint induction to check for the least fixpoint over-
approximation, we get a termination proof method. We have

9⌫ 2 ⌃ 67! O : ⌧MvJPK vv ⌫

,9⌫ : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ Hfixpoint semantics of Sect. 11.4I

,9⌫ : 9⌫0 : ;̇ vv ⌫0 ^ � � Mv
⌧ JPK⌫0 vv ⌫0 ^ ⌫0 vv ⌫ Hfixpoint ind.I

,9⌫0 : � � Mv
⌧ JPK⌫0 vv ⌫0 Hdef. vv and choosing ⌫ = ⌫0I

,9⌫ : � s . (s 2 �⌧JPK ? 0 : sup{⌫(s0) + 1 | 9s0 : hs,
s0i 2 ⌧JPK ^ s0 2 dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2
dom(⌫)}) vv ⌫ Hdef. � � Mv

⌧ JPKI
,9⌫ : � s . sup{⌫(s0)+ 1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2 dom(⌫)^8s0 :
hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} vv ⌫Hsince 8s : ⌫(s0) > 0 and 9s0 : hs, s0i 2 ⌧JPK implies s < �⌧JPKI

,9⌫ : dom(� s . sup{⌫(s0) + 1 | 9s0 : hs, s0i 2 ⌧JPK ^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)}) ✓
dom(⌫)^8s 2 dom(⌫) : sup{⌫(s0)+1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} 6 ⌫(s)

28 [̇ joins partial functions with disjoint domains f1 [̇ f2(x) , f1(x) if
x 2 dom(f1) and f1 [̇ f2(x) , f2(x) if x 2 dom(f2) where dom(f1) \
dom(f2) = ;.
29÷ is the integer division.

Hdef. vv for ordinalsI
,9⌫ : 8s 2 dom(⌫) :

⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
This calculational design yields the following definite termination
induction principle

↵i(I)(⌧+1JPK) ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
�9s0 2 I : hs, s0i 2 ⌧JPK� =)
�9s00 2 I : hs, s00i 2 ⌧JPK ^ s00 2 I ^ ⌫(s00) � ⌫(s)

�

.

Observe that the fixpoint variant semantics of Sect. 11.4 is calculated
backwards (the variant function increases on previous steps) but that
the termination induction principles proceed forward (the variant
function decreases on next steps).

Example 8. A similar induction principle is proposed in [35, Ch.
5.2.3] for relational inevitability proofs (a state must be reached
that relates to the initial state as given by a specification relation
). The following example is used in [35, Ch. 5.2.5] to show that,
the invariant and variant function must also be relational, that is
relate the current and initial state: ⌃ , {1, 2, 3}, I , {1, 2}, ⌧ , {hx,
x + 1i | x, x + 1 2 ⌃}, , ⌧. We can prove termination with
assertions, no relational invariants being needed. For the above
example, choose I = ⌃, hW, �i = h⌃, <i, ⌫(1) = 2, ⌫(2) = 1,
⌫(3) = 0. This example shows that termination proofs are simpler
than inevitability proofs.

Example 9. For the program of Ex. 7, the definite termination proof
for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}
requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (4), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current values
of the variables to their past values. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 10. Continuing Ex. 9, the program is transformed into

int main () { int x, x0;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

38

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

POPL 2012, An Abstract Interpretation Framework for Termination © P. Cousot & R. Cousot

Computational order on functions

10.2 Transition abstraction
If the program semantics ⇥+1JPK is not generated by a transition
system we might consider the transition abstraction h⌃, �!↵ (⇥+1JPK)i
where the transition abstraction h}(⌃+1), ✓i ���! ����!↵

�!�
h}(⌃ ⇥ ⌃), ✓i

is
�!↵ (T) , {hs, s0i | 9�,�0 : �ss0�0 2 T } transition abstraction

but the following counter-example shows that the condition is
su�cient but not necessary.

Counter-example 5. Let T , {ab, ba} be a trace semantics. The
corresponding transition relation ⌧ , �!↵ (T) = {ha, bi, hb, ai}
generates the infinite trace abababa . . . and so the transition relation
⌧ restricted to the reachable states {a, b} is not well-founded.

Another counter-example is fairness [35]. In the following, we
consider complete/maximal trace semantics T that are transition
closed (also generated by a transition system) that is �!↵ (T) = T or
equivalently T is closed by elimination of strict prefixes, closed by
extension by fusion, and closed by limits [35, Th. 2.6.8].

11. Variant semantics
It remains to design verification and static analysis methods to show
that hR, ⌧i is well-founded where

R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I]

over-approximates the reachable states. There are two important
remarks.

1. If ⌧ ✓ r and hR, ri is well-founded then hR, ⌧i is well-founded.
2. hR, ⌧i is well-founded if and only if there exists a variant function
⌫ 2 ⌃ 67!W 23 into a well-founded set hW, �i which domain is
R 24.

So for the traces generated by a transition system, termination can
be proved by mapping invariant states to a well-founded relation
which is the principle of Floyd/Turing variant function method.

11.1 Variant function
A variant function ⌫ 2 ⌃ 67! W is a partial function from the
set of states into a well-founded set hW, �i where � is a well-
founded relation on the set W (and 4 is its non-strict version). With
appropriate hypotheses on states and the transition relation, the co-
domain of the variant function can be fixed a priori and the variant
function can be found by constraint solving e.g. [17, 54]. However,
these methods are not as general as Floyd/Turing’s method.

In mathematics, the ordinals provide a standard well-founded
set thanks to ranking functions mapping each element of a well-
founded set to its ordinal rank. So, up to a ranking function, the
well-founded set hW, �i can always be chosen as the class hO, <i
of ordinals. The intuition is that any execution � starting in a state
�0 2 dom(⌫) must terminate in “at most” ⌫(�0) execution steps
while an execution � starting in a state �0 < dom(⌫) might not
terminate. We have ⌧ ✓ {hs, s0i 2 ⌃2 | s 2 dom(⌫) ^ ⌫(s) � ⌫(s0)}
and this relation is well-founded on states, proving termination.

11.2 Variant abstraction
A variant function is an abstraction of a set of finite traces. It is a
partial function which domain is the set of terminating states. Its

23 A 67! B (resp. A 7! B) is the set of partial (resp. total) maps from set A
into set B. We write dom(f) for the domain of a partial function f 2 A 67! B
and codom(f) for its co-domain. If f 2 A 7! B then dom(f) = A.
24 For a proof, take hW, �i to be the ordinals hO, <i and ⌫ to be the ordinal
rank of elements of R for the well-founded relation ⌧.

value is an upper bound of the remaining number of “steps” to
termination. It may be transfinite for unbounded non-determinism
with unbounded execution trace lengths. Let us define

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O) ranking abstraction
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� s0 2 dom(↵rk(r)) ^ hs, s0i 2 r
o

25 .

↵rk(r)s extracts the well-founded part of relation r and provides the
rank of the elements s of its domain. ↵v(T) does the same for the
transition relation by abstracting the set T of finite traces

↵v 2 }(⌃+) 7! (⌃ 67!W) variant abstraction
↵v(T) , � s .↵rk(�!↵ (T))s .

It follows that the abstraction h}(⌃+1), vi ��������!�! ���������
↵v �↵mt

�
0mt � �v

h⌃ 67!W, vvi

holds for potential termination and h}(⌃+1), vi ! h⌃ 67!W, vvi
for definite termination. These abstractions state, by def. of v, that
adding finite execution traces or suppressing infinite traces can only,
by def. of vv, augment the termination domain and, maybe, increase
execution times. It follows that the computational variant order is

⌫ vv ⌫0 , dom(⌫) ✓ dom(⌫0) ^ 8x 2 dom(⌫) : ⌫(x) 4 ⌫0(x) .

11.3 Variant semantics
A variant function can always be found by abstraction of the
termination semantics into a variant semantics

⌧mvJPK , ↵v(⌧mtJPK) potential termination variant
⌧MvJPK , ↵v(⌧MtJPK) definite termination variant.

This yields new termination proof methods and static analysis
methods by abstraction of this fixpoint definition.

11.4 Fixpoint variant semantics
By fixpoint abstraction of the fixpoint termination trace semantics
of Sect. 8.4, we get the fixpoint characterization of the variant
semantics26 ,27

⌧mvJPK = lfpv
v

;̇ �
 � mv
⌧ JPK potential termination

�
 � mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK o)
⌧MvJPK = lfpv

v

;̇ �
 � Mv
⌧ JPK definite termination

�
 � Mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK ^
8s00 : hs, s00i 2 ⌧JPK =) s00 2 dom(⌫)

o

) .
Example 6. Consider the trace semantics as rep-
resented on the right. We have represented below
the fixpoint iterates for the corresponding potential
and definite variant functions. Unlabelled states
are outside the variant function domain.

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Potential termination

25 This can be generalized from hO, <i to well-orders hW,�i using succ(x) ,
{y 2 W | x < y ^ @z 2 W : x < z < y} and sup is an upper-bound. For
ordinals succ(x) = {x + 1} is the successor ordinal and sup is the lub.
26 The partial map ;̇ 2 ⌃ 67! O is totally undefined and has dom(;̇) , ;.
27 The conditional is (true ? a : b) , a and (false ? a : b) , b.

10.2 Transition abstraction
If the program semantics ⇥+1JPK is not generated by a transition
system we might consider the transition abstraction h⌃, �!↵ (⇥+1JPK)i
where the transition abstraction h}(⌃+1), ✓i ���! ����!↵

�!�
h}(⌃ ⇥ ⌃), ✓i

is
�!↵ (T) , {hs, s0i | 9�,�0 : �ss0�0 2 T } transition abstraction

but the following counter-example shows that the condition is
su�cient but not necessary.

Counter-example 5. Let T , {ab, ba} be a trace semantics. The
corresponding transition relation ⌧ , �!↵ (T) = {ha, bi, hb, ai}
generates the infinite trace abababa . . . and so the transition relation
⌧ restricted to the reachable states {a, b} is not well-founded.

Another counter-example is fairness [35]. In the following, we
consider complete/maximal trace semantics T that are transition
closed (also generated by a transition system) that is �!↵ (T) = T or
equivalently T is closed by elimination of strict prefixes, closed by
extension by fusion, and closed by limits [35, Th. 2.6.8].

11. Variant semantics
It remains to design verification and static analysis methods to show
that hR, ⌧i is well-founded where

R ◆ ↵r(↵i(I)(⌧+1JPK)) = ⌧JPK⇤[I]

over-approximates the reachable states. There are two important
remarks.

1. If ⌧ ✓ r and hR, ri is well-founded then hR, ⌧i is well-founded.
2. hR, ⌧i is well-founded if and only if there exists a variant function
⌫ 2 ⌃ 67!W 23 into a well-founded set hW, �i which domain is
R 24.

So for the traces generated by a transition system, termination can
be proved by mapping invariant states to a well-founded relation
which is the principle of Floyd/Turing variant function method.

11.1 Variant function
A variant function ⌫ 2 ⌃ 67! W is a partial function from the
set of states into a well-founded set hW, �i where � is a well-
founded relation on the set W (and 4 is its non-strict version). With
appropriate hypotheses on states and the transition relation, the co-
domain of the variant function can be fixed a priori and the variant
function can be found by constraint solving e.g. [17, 54]. However,
these methods are not as general as Floyd/Turing’s method.

In mathematics, the ordinals provide a standard well-founded
set thanks to ranking functions mapping each element of a well-
founded set to its ordinal rank. So, up to a ranking function, the
well-founded set hW, �i can always be chosen as the class hO, <i
of ordinals. The intuition is that any execution � starting in a state
�0 2 dom(⌫) must terminate in “at most” ⌫(�0) execution steps
while an execution � starting in a state �0 < dom(⌫) might not
terminate. We have ⌧ ✓ {hs, s0i 2 ⌃2 | s 2 dom(⌫) ^ ⌫(s) � ⌫(s0)}
and this relation is well-founded on states, proving termination.

11.2 Variant abstraction
A variant function is an abstraction of a set of finite traces. It is a
partial function which domain is the set of terminating states. Its

23 A 67! B (resp. A 7! B) is the set of partial (resp. total) maps from set A
into set B. We write dom(f) for the domain of a partial function f 2 A 67! B
and codom(f) for its co-domain. If f 2 A 7! B then dom(f) = A.
24 For a proof, take hW, �i to be the ordinals hO, <i and ⌫ to be the ordinal
rank of elements of R for the well-founded relation ⌧.

value is an upper bound of the remaining number of “steps” to
termination. It may be transfinite for unbounded non-determinism
with unbounded execution trace lengths. Let us define

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O) ranking abstraction
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� s0 2 dom(↵rk(r)) ^ hs, s0i 2 r
o

25 .

↵rk(r)s extracts the well-founded part of relation r and provides the
rank of the elements s of its domain. ↵v(T) does the same for the
transition relation by abstracting the set T of finite traces

↵v 2 }(⌃+) 7! (⌃ 67!W) variant abstraction
↵v(T) , � s .↵rk(�!↵ (T))s .

It follows that the abstraction h}(⌃+1), vi ��������!�! ���������
↵v �↵mt

�
0mt � �v

h⌃ 67!W, vvi

holds for potential termination and h}(⌃+1), vi ! h⌃ 67!W, vvi
for definite termination. These abstractions state, by def. of v, that
adding finite execution traces or suppressing infinite traces can only,
by def. of vv, augment the termination domain and, maybe, increase
execution times. It follows that the computational variant order is

⌫ vv ⌫0 , dom(⌫) ✓ dom(⌫0) ^ 8x 2 dom(⌫) : ⌫(x) 4 ⌫0(x) .

11.3 Variant semantics
A variant function can always be found by abstraction of the
termination semantics into a variant semantics

⌧mvJPK , ↵v(⌧mtJPK) potential termination variant
⌧MvJPK , ↵v(⌧MtJPK) definite termination variant.

This yields new termination proof methods and static analysis
methods by abstraction of this fixpoint definition.

11.4 Fixpoint variant semantics
By fixpoint abstraction of the fixpoint termination trace semantics
of Sect. 8.4, we get the fixpoint characterization of the variant
semantics26 ,27

⌧mvJPK = lfpv
v

;̇ �
 � mv
⌧ JPK potential termination

�
 � mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK o)
⌧MvJPK = lfpv

v

;̇ �
 � Mv
⌧ JPK definite termination

�
 � Mv
⌧ JPK(⌫)s , (s 2 �⌧JPK ? 0 : sup

n

⌫(s0) + 1
�

�

�

s0 2 dom(⌫) ^ hs, s0i 2 ⌧JPK ^
8s00 : hs, s00i 2 ⌧JPK =) s00 2 dom(⌫)

o

) .
Example 6. Consider the trace semantics as rep-
resented on the right. We have represented below
the fixpoint iterates for the corresponding potential
and definite variant functions. Unlabelled states
are outside the variant function domain.

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Potential termination

25 This can be generalized from hO, <i to well-orders hW,�i using succ(x) ,
{y 2 W | x < y ^ @z 2 W : x < z < y} and sup is an upper-bound. For
ordinals succ(x) = {x + 1} is the successor ordinal and sup is the lub.
26 The partial map ;̇ 2 ⌃ 67! O is totally undefined and has dom(;̇) , ;.
27 The conditional is (true ? a : b) , a and (false ? a : b) , b.

39

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• Program:

• Iterates (linear abstraction):

Example III
{ even(x-y), x >= y }
while (x <> y) {
 x := x - 1;
 y := y + 1
}
{ x = y }

x = y

0

1

x

y

2

x+1

y-1

x+2

y-2

40

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Example IV
• In general a widening is needed to enforce

convergence

• Program:

• Iterates with widening:

0

0

0

0

1
1

0

0

1
2

3

0

0

1
2

2

0

0

0

0

1
2

0

0

1
2

0

0

1

Definite termination
The potential variant can be used as a run-time check of definite
non-termination (since beyond 4 execution steps termination is
inevitable). This general observation is not in contradiction with the
fact that termination is not checkable at runtime since here it relies
on a prior static analysis considering all possible executions.

Example 7. The definite termination variant semantics lfpv
v

;̇ �
 � Mv
⌧ JPK

of the following program P

int main () { int x; while (x > 0) { x = x - 2; }}

is the limit ⌫! of the iterates ⌫n, n 2 N of � � Mv
⌧ JPK from ;̇.

Considering only one loop head control point so that the state can
be reduced to the value x of x, we have

�
 � Mv
⌧ JPK(⌫)x , (x 6 0 ? 0 : sup { ⌫(x � 2) + 1 | x � 2 2 dom(⌫)}) .

The program being deterministic, the potential termination equation
⌫ = �
 � mv
⌧ JPK(⌫) is similar. The fixpoint iterates are28 ,29

⌫0 = ;̇
⌫1 = � x 2 [�1, 0] . 0
⌫2 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1
⌫3 = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3, 4] . 2
. . .
⌫n = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2 ⇥ (n � 1)] . (x + 1) ÷ 2
. . .
⌫! = � x 2 [�1, 0] . 0 [̇ � x 2 [1,+1] . (x + 1) ÷ 2 .

11.5 Termination proof method
The variant semantics is sound and complete to prove termination
of a program P for initial states I since

↵i(I)(⌧+1JPK) ✓ ⌃+JPK () I ✓ dom(⌧MvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; () I ✓ dom(⌧mvJPK)

() 9⌫ 2 ⌃ 67! O : lfpv
v

;̇ �
 � mv
⌧ JPK vv ⌫ ^ I ✓ dom(⌫)

Applying fixpoint induction to check for the least fixpoint over-
approximation, we get a termination proof method. We have

9⌫ 2 ⌃ 67! O : ⌧MvJPK vv ⌫

,9⌫ : lfpv
v

;̇ �
 � Mv
⌧ JPK vv ⌫ Hfixpoint semantics of Sect. 11.4I

,9⌫ : 9⌫0 : ;̇ vv ⌫0 ^ � � Mv
⌧ JPK⌫0 vv ⌫0 ^ ⌫0 vv ⌫ Hfixpoint ind.I

,9⌫0 : � � Mv
⌧ JPK⌫0 vv ⌫0 Hdef. vv and choosing ⌫ = ⌫0I

,9⌫ : � s . (s 2 �⌧JPK ? 0 : sup{⌫(s0) + 1 | 9s0 : hs,
s0i 2 ⌧JPK ^ s0 2 dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2
dom(⌫)}) vv ⌫ Hdef. � � Mv

⌧ JPKI
,9⌫ : � s . sup{⌫(s0)+ 1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2 dom(⌫)^8s0 :
hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} vv ⌫Hsince 8s : ⌫(s0) > 0 and 9s0 : hs, s0i 2 ⌧JPK implies s < �⌧JPKI

,9⌫ : dom(� s . sup{⌫(s0) + 1 | 9s0 : hs, s0i 2 ⌧JPK ^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)}) ✓
dom(⌫)^8s 2 dom(⌫) : sup{⌫(s0)+1 | 9s0 : hs, s0i 2 ⌧JPK^ s0 2
dom(⌫) ^ 8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)} 6 ⌫(s)

28 [̇ joins partial functions with disjoint domains f1 [̇ f2(x) , f1(x) if
x 2 dom(f1) and f1 [̇ f2(x) , f2(x) if x 2 dom(f2) where dom(f1) \
dom(f2) = ;.
29÷ is the integer division.

Hdef. vv for ordinalsI
,9⌫ : 8s 2 dom(⌫) :

⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
This calculational design yields the following definite termination
induction principle

↵i(I)(⌧+1JPK) ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(I)(⌧+1JPK) \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67!W : I ✓ dom(⌫) ^ 8s 2 I :
�9s0 2 I : hs, s0i 2 ⌧JPK� =)
�9s00 2 I : hs, s00i 2 ⌧JPK ^ s00 2 I ^ ⌫(s00) � ⌫(s)

�

.

Observe that the fixpoint variant semantics of Sect. 11.4 is calculated
backwards (the variant function increases on previous steps) but that
the termination induction principles proceed forward (the variant
function decreases on next steps).

Example 8. A similar induction principle is proposed in [35, Ch.
5.2.3] for relational inevitability proofs (a state must be reached
that relates to the initial state as given by a specification relation
). The following example is used in [35, Ch. 5.2.5] to show that,
the invariant and variant function must also be relational, that is
relate the current and initial state: ⌃ , {1, 2, 3}, I , {1, 2}, ⌧ , {hx,
x + 1i | x, x + 1 2 ⌃}, , ⌧. We can prove termination with
assertions, no relational invariants being needed. For the above
example, choose I = ⌃, hW, �i = h⌃, <i, ⌫(1) = 2, ⌫(2) = 1,
⌫(3) = 0. This example shows that termination proofs are simpler
than inevitability proofs.

Example 9. For the program of Ex. 7, the definite termination proof
for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}
requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (4), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current values
of the variables to their past values. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 10. Continuing Ex. 9, the program is transformed into

int main () { int x, x0;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

12.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i], 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 14.

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

A coarser partition can also be used in the join (as in [33, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

12.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 follows the idea introduced in [20] of

widening functions by widening the domain of their parameters with
a domain widening Ȯ

v
d and then their results with a range widening

Ȯ
v

r . So the blocks of the partitioned domains of ⌫1 and ⌫2 are first
widened using e.g. interval widening Ȯ

v
d (possibly with thresholds)

of the blocks with respect to their neighbors in all directions.

Example 15. An interval widening for a two-dimensional domain
hx, yi 2 Z2 yields

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

x

y

ν!(x) ν"(x)

[[

[)

)

))

[

ν!(x)

ν"(x)

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by the
fact that ? is used outside this domain for undefined).

Similarly, the join P ṫv
Q first unifies blocks of the partitioned

domains of P and Q into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of the

partition by

min
�

~a
�

�

� 8i 2 [1, n] : xi 2 [` ji
i , `

ji+1
i) ^ ~a `

j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

For example

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of P and Q into a common coarser partition. The
linear expression of each block of the coarser partition for PȮ

v
Q is

obtained by joining the sub-blocks of of P and Q it originates from.
Then the linear expressions of each block of P Ȯ

v
Q is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 11. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

x

y
υA(x)

v(x)

[

[

[)

[

[

)

)

)

)

x

y
υA(x)

v(x)

[

[

[)

[

[

)

)

)

)

!"

!

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

13. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

13.1 Relational variant abstraction
A variant function ⌫ can be abstracted as the pair of an abstraction
of its domain dom(⌫) by a set abstraction (such as e.g. intervals) and
an abstraction of its value by (a relational abstraction of) the down-
closed relation r which over-approximates the variant function on
its domain that is 8s 2 dom(⌫),w 2 ⌃ : hs, wi 2 r =) w 4 ⌫(s).
The abstraction is therefore (the first component is redundant but
useful for static analysis)

↵rv(⌫) , hdom(⌫), ↵#({hs, ⌫(s)i | s 2 dom(⌫)})i
where the down-closure of a relation r 2 }(⌃ ⇥W) is

↵#(r) , {hs, w0i | 9w : w0 4 w ^ hs, wi 2 r} .
Observe that the e↵ect of the down-closure is to replace equalities
by inequalities for which numerous abstract domains are available.
Moreover an over approximation of the first component is known
by Sect. 8 but for correction we either need an under-approximation
or prove termination for this over-approximation, which is the op-
tion we choose. For the second component, an over-approximation
is correct (this over-estimates the termination time). We have19

h⌃ 67! W, vvi ����! ����
↵v

�v

h}(⌃) ⇥ ↵#[}(⌃ ⇥W)], ✓ ⇥ ✓i .

Proof.

19 6⇥v is the componentwise partial order hx, yi 6 ⇥ v hx0, y0i () x 6
x0 ^ y v y0.

8 2011/6/21

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor e�ciency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 first widens the blocks of the parti-

tioned domains of ⌫1 and ⌫2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

x

y
νA(x)

ν(x)

[

[

[)

[

[

)

)

)

)
! "

"

x

y
νA(x)

ν(x)

[

[

[)

[

[

)

)

)

)
"!

"

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

8 2011/6/21

x

y

d
...

Then the range-widening Ȯ
v

r increases the gradient (i.e. slope in two
dimensions) of the variant function of each block in the directions of
its domain-widened neighbors to over-approximate their respective
variants functions (extended to the widened domains).

Example 16.

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor e�ciency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 first widens the blocks of the parti-

tioned domains of ⌫1 and ⌫2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

8 2011/6/21

x

ν(x)

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 follows the idea introduced by [14]

of widening functions by widening the domain of their parameters
with a domain widening Ȯ

v
d and then their results with a range

widening Ȯ
v

r . So the blocks of the partitioned domains of ⌫1 and
⌫2 are first widened using e.g. interval widening Ȯ

v
d (possibly with

thresholds) of the blocks with respect to their neiborghs.

Example 13. An interval widening for a two-dimensions domain
hx, yi 2 Z2 yields

Then the range-widening Ȯ
v

r

Example 14.

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 15. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

8 2011/6/21

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 follows the idea introduced by [14]

of widening functions by widening the domain of their parameters
with a domain widening Ȯ

v
d and then their results with a range

widening Ȯ
v

r . So the blocks of the partitioned domains of ⌫1 and
⌫2 are first widened using e.g. interval widening Ȯ

v
d (possibly with

thresholds) of the blocks with respect to their neiborghs.

Example 13. An interval widening for a two-dimensions domain
hx, yi 2 Z2 yields

Then the range-widening Ȯ
v

r

Example 14.

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 15. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

8 2011/6/21

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor e�ciency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 first widens the blocks of the parti-

tioned domains of ⌫1 and ⌫2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

8 2011/6/21

r

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor e�ciency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 first widens the blocks of the parti-

tioned domains of ⌫1 and ⌫2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

8 2011/6/21

d

To enforce convergence, the widening may have to skip to finitely
many given thresholds of gradients before abandoning the constraint
to >.

Example 17. We use two loop unrollings to stabilize iterations
before widening [56].

⌫0
A = � x 2 [�1,+1] .?
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫
2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3,+1] ? x
2
+ 1)

⌫4
A = ⌫

3
A .

The over-approximation of ⌫ in Ex. 7, by ⌫A is as follows

x

y
!A(x)

!(x)

[

[

[)

[

[

)

)

)

)
! "

"

x

y
νA(x)

ν(x)

[

[

[)

[

[

)

)

)

)
"!

"

.

Notice that the domain of termination is widened which is an over-
approximation which might include non-termination cases. However,
the iterates with widening stop at a post-fixpoint ⌫A

�]
 � mv
⌧ JPK(⌫A) vv

⌫A

which, by definition of the abstract partial order vv ensures that
⌫A is decreasing on blocks for which it is defined. Termination is
therefore proven for blocks with either 0 or a strictly decreasing
variant. By undecidability, there might be blocks which variant value
is > indicating insu�cient precision to conclude.

12.2 Non-linear variant abstraction
Besides classical linear relational abstractions (e.g. octagons [46],
polyhedra [31], etc.) which can be used pointwise as in Sect. 12.1,
the variant function in each block of the partition can also be non-
linear (e.g. polynomials [47], exponentials [39], etc.).

13. Relational variant semantics
To use relational abstractions for static termination analysis, we can
further abstract variant functions into relations.

13.1 Relational variant abstraction
A variant function ⌫ can be abstracted as the pair of an abstraction
of its domain dom(⌫) by a set abstraction (such as e.g. intervals) and
an abstraction of its value by (a relational abstraction of) the down-
closed relation r which over-approximates the variant function on
its domain that is 8s 2 dom(⌫),w 2 ⌃ : hs, wi 2 r =) w 4 ⌫(s).
The abstraction is therefore (the first component is redundant but
useful for static analysis)

↵rv(⌫) , hdom(⌫), ↵#({hs, ⌫(s)i | s 2 dom(⌫)})i
where the down-closure of a relation r 2 }(⌃ ⇥W) is

↵#(r) , {hs, w0i | 9w : w0 4 w ^ hs, wi 2 r} .
Observe that the e↵ect of the down-closure is to replace equalities
by inequalities for which numerous abstract domains are available.
Moreover, an over-approximation of the first component is known
by Sect. 9 but for correction we either need an under-approximation
or prove termination for this over-approximation, which is the usual
option. For the second component, an over-approximation is correct
(this over-estimates the termination time). We have31

h⌃ 67!W, vvi ����! ����
↵v

�v

h}(⌃) ⇥ ↵#[}(⌃ ⇥W)], ✓ ⇥ ✓i .

13.2 Relational variant semantics
The relational variant semantics of a program P is

⌧mrvJPK , ↵rv(⌧mvJPK) potential termination relational variant
⌧MrvJPK , ↵rv(⌧MtJPK) definite termination relational variant.

31 6⇥v is the componentwise partial order hx, yi 6 ⇥ v hx0, y0i () x 6
x0 ^ y v y0.

12.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i], 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 14.

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

A coarser partition can also be used in the join (as in [33, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

12.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 follows the idea introduced in [20] of

widening functions by widening the domain of their parameters with
a domain widening Ȯ

v
d and then their results with a range widening

Ȯ
v

r . So the blocks of the partitioned domains of ⌫1 and ⌫2 are first
widened using e.g. interval widening Ȯ

v
d (possibly with thresholds)

of the blocks with respect to their neighbors in all directions.

Example 15. An interval widening for a two-dimensional domain
hx, yi 2 Z2 yields

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

x

y

ν!(x) ν"(x)

[[

[)

)

))

[

ν!(x)

ν"(x)

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by the
fact that ? is used outside this domain for undefined).

Similarly, the join P ṫv
Q first unifies blocks of the partitioned

domains of P and Q into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of the

partition by

min
�

~a
�

�

� 8i 2 [1, n] : xi 2 [` ji
i , `

ji+1
i) ^ ~a `

j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

For example

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of P and Q into a common coarser partition. The
linear expression of each block of the coarser partition for PȮ

v
Q is

obtained by joining the sub-blocks of of P and Q it originates from.
Then the linear expressions of each block of P Ȯ

v
Q is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 11. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

x

y
υA(x)

v(x)

[

[

[)

[

[

)

)

)

)

x

y
υA(x)

v(x)

[

[

[)

[

[

)

)

)

)

!"

!

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

13. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

13.1 Relational variant abstraction
A variant function ⌫ can be abstracted as the pair of an abstraction
of its domain dom(⌫) by a set abstraction (such as e.g. intervals) and
an abstraction of its value by (a relational abstraction of) the down-
closed relation r which over-approximates the variant function on
its domain that is 8s 2 dom(⌫),w 2 ⌃ : hs, wi 2 r =) w 4 ⌫(s).
The abstraction is therefore (the first component is redundant but
useful for static analysis)

↵rv(⌫) , hdom(⌫), ↵#({hs, ⌫(s)i | s 2 dom(⌫)})i
where the down-closure of a relation r 2 }(⌃ ⇥W) is

↵#(r) , {hs, w0i | 9w : w0 4 w ^ hs, wi 2 r} .
Observe that the e↵ect of the down-closure is to replace equalities
by inequalities for which numerous abstract domains are available.
Moreover an over approximation of the first component is known
by Sect. 8 but for correction we either need an under-approximation
or prove termination for this over-approximation, which is the op-
tion we choose. For the second component, an over-approximation
is correct (this over-estimates the termination time). We have19

h⌃ 67! W, vvi ����! ����
↵v

�v

h}(⌃) ⇥ ↵#[}(⌃ ⇥W)], ✓ ⇥ ✓i .

Proof.

19 6⇥v is the componentwise partial order hx, yi 6 ⇥ v hx0, y0i () x 6
x0 ^ y v y0.

8 2011/6/21

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor e�ciency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 first widens the blocks of the parti-

tioned domains of ⌫1 and ⌫2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

x

y
νA(x)

ν(x)

[

[

[)

[

[

)

)

)

)
! "

"

x

y
νA(x)

ν(x)

[

[

[)

[

[

)

)

)

)
"!

"

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

8 2011/6/21

x

y

d
...

Then the range-widening Ȯ
v

r increases the gradient (i.e. slope in two
dimensions) of the variant function of each block in the directions of
its domain-widened neighbors to over-approximate their respective
variants functions (extended to the widened domains).

Example 16.

,9⌫ : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs, s0i 2 ⌧JPK⌘ =) ⇣

8s0 :

hs, s0i 2 ⌧JPK =) s0 2 dom(⌫) ^ ⌫(s0) < ⌫(s)
⌘ Hdef. supI

,9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 dom(⌫) :
⇣

9s0 2 dom(⌫) : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 dom(⌫)^⌫(s0) �
⌫(s)
⌘ Hsince an ordinal is the order type of a well-founded setI

,9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs,
s0i 2 ⌧JPK⌘ =) ⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

Hchoosing I = dom(⌫).I
By calculational design, we get the definite termination induction
principle

↵i(⇥+1⌧ JPK)I ✓ ⌃+JPK definite termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I :
⇣

9s0 2 I : hs, s0i 2 ⌧JPK⌘ =)
⇣

8s0 : hs, s0i 2 ⌧JPK =) s0 2 I ^ ⌫(s0) � ⌫(s)
⌘

.

A similar calculational design, yields the potential termination
induction principle

↵i(⇥+1⌧ JPK)I \ ⌃+JPK , ; potential termination proof()
9I 2 }(⌃) : 9hW, �i : 9⌫ 2 ⌃ 67! W : 8s 2 I : 9s0 2 I :
hs, s0i 2 ⌧JPK ^ s0 2 I ^ ⌫(s0) � ⌫(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌧JPK , {hx, x0i | x > 0 ^ x0 = x + 1}

requires guessing I = Z, hW, �i = hN, <i, ⌫ = � x . (x 6 0 ? 0 :
(x + 1) ÷ 2) and proving 8x, x0 2 Z : (x > 0 ^ x0 = x + 1) =)
(8x00 : x00 = x + 1 =) ⌫(x00) < ⌫(x)).

Because Turing/Floyd method uses the reachability abstraction
↵r of (2), it is not possible to directly relate states occurring at
di↵erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction ↵r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;

while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌧0JPK , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧JPK} .
This is an abstraction h}(⌃⇥⌃), ✓i ����! ����

↵0

�0

h}(⌃2⇥⌃2), ✓i such that

↵0(⌧) , {hhx0, xi, hx00, x0ii | x00 = x ^ hx, x0i 2 ⌧} .

The benefit is that a relational abstraction ↵R used with ⌧ is equiva-
lent to a non-relational reachability abstraction ↵r for ↵0(⌧). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction h⌃ 67! O, vvi ���! ���↵

�
hA, vi of functions.

Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
↵ 2 ⌃ 7! (7! Z) so that, be composition, we are left
with an abstraction h(7! Z) 67! O, vvi ���! ���↵

�
hA, vi. By

encoding of partial map by a total map (using "? for undefined
and abstracting higher-order ordinal but > (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
(7! Z) 7! N[{?,>}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi 2 , i 2 [1, n] are segmented
into `1i = �1 < · · · < `

ji
i < · · · < `

mi
i = +1. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [` ji

i , `
ji+1
i (, i 2

[1, n], ji 2 [1,mi(.
The positive value of the variant function for elements ~x =

x1, . . . , xn of each block [` ji
i , `

ji+1
i (of the partition is a linear ex-

pression ~a `
j1
1 ...`

ji
i ...`

jn
n .~x of the form

a
`

j1
1 ...`

ji
i ...`

jn
n

1 x1 + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

i xi + . . . + a
`

j1
1 ...`

ji
i ...`

jn
n

n xn + a
`

j1
1 ...`

ji
i ...`

jn
n

n+1

where the coe�cients a
`

j1
1 ...`

ji
i ...`

jn
n

k 2 Q, k 2 [1, n + 1] are rationals.
For example, in two dimensions

`11 = �1 `21 `31 `
4
1 = +1 m1 = 4

�1 = `12
`22 a

`21`
2
2

1 x1 + a
`21`

2
2

2 x2 + a
`21`

2
2

3

`32
m2 = 4 +1 = `42

The abstract domain is therefore

A ,
n

� ~x 2 Zn . �

v

i 2 [1, n],
ji 2 [1,mi(

(` ji
i 6 xi < `

ji+1
i ? ~a `

j1
1 ...`

ji
i ...`

jn
n

1 .~x : ?)

�

�

�

�

8i 2 [1, n] : `1i = �1 < · · · < ` ji
i < · · · < `

mi
i = +1^

~a `
j1
1 ...`

ji
i ...`

jn
n 2 Qn+1 ^

8 ji 2 [1,mi(, xi 2 [` ji
i , `

ji+1
i (: ~a

`
j1
1 ...`

ji
i ...`

jn
n

1 .~x > 0
o

When the ` ji
i 2 Q, i 2 [1, n], ji 2 [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order vv first unifies segments of the domain into
a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ? is the infimum and > is the
supremum (so that the domain comparison is done implicitly by
the fact that ? is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise

7 2011/6/19

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor e�ciency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 first widens the blocks of the parti-

tioned domains of ⌫1 and ⌫2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

8 2011/6/21

x

ν(x)

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 follows the idea introduced by [14]

of widening functions by widening the domain of their parameters
with a domain widening Ȯ

v
d and then their results with a range

widening Ȯ
v

r . So the blocks of the partitioned domains of ⌫1 and
⌫2 are first widened using e.g. interval widening Ȯ

v
d (possibly with

thresholds) of the blocks with respect to their neiborghs.

Example 13. An interval widening for a two-dimensions domain
hx, yi 2 Z2 yields

Then the range-widening Ȯ
v

r

Example 14.

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 15. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

8 2011/6/21

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 follows the idea introduced by [14]

of widening functions by widening the domain of their parameters
with a domain widening Ȯ

v
d and then their results with a range

widening Ȯ
v

r . So the blocks of the partitioned domains of ⌫1 and
⌫2 are first widened using e.g. interval widening Ȯ

v
d (possibly with

thresholds) of the blocks with respect to their neiborghs.

Example 13. An interval widening for a two-dimensions domain
hx, yi 2 Z2 yields

Then the range-widening Ȯ
v

r

Example 14.

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 15. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

8 2011/6/21

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor e�ciency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 first widens the blocks of the parti-

tioned domains of ⌫1 and ⌫2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

8 2011/6/21

r

11.1.2 Piecewise linear variant abstract transformers
The abstract transformer �]

 � mv
⌧ JPK abstracting the concrete trans-

former � � mv
⌧ JPK of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . (x 2
[�1,+1] ? ?) indicates potential non-termination. The test splits
the block [�1,+1] into [�1, 0] and [1,+1].

/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */
if (x <= 0) {

/* � x . (x 2 [�1,+1] ? 0) */
exit;

/* � x . (x 2 [�1,+1] ? ?) */
}

else

{ /* � x . (x 2 [�1,+1] ? ?) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �1 � 2 = �1 and +1 + 2 =
+1.)

/* � x . (x 2 [�1, 2] ? 1 : x 2 [3,+1] ? ?) */
x = x - 2;
/* � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?) */

11.1.3 Piecewise linear variant abstract order
The abstract order vv first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ? is the infimum and > is
the supremum (so that the domain comparison is done implicitly
by the fact that ? is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ⌫1 ṫ
v
⌫2 first unifies blocks of the partitioned

domains of ⌫1 and ⌫2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i 2 [1, n], ji 2 [1,mi] of

the partition such that 8i 2 [1, n], 8xi 2 [` ji
i , `

ji+1
i), 8~a 0 2 Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a 0.~x =) ~a.~x 6 ~a 0.~x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor e�ciency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ⌫1 Ȯ
v
⌫2 first widens the blocks of the parti-

tioned domains of ⌫1 and ⌫2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P Ȯ
v

Q first unifies blocks of the parti-
tioned domains of ⌫1 and ⌫2 into a common coarser partition. The
linear expression of each block of the coarser partition for ⌫1Ȯ

v
⌫2 is

obtained by joining the sub-blocks of of ⌫1 and ⌫2 it originates from.
Then the linear expressions of each block of ⌫1 Ȯ

v
⌫2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to >.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

⌫0
A = � x . (x 2 [�1,+1] ? ?)
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? x
2
+ 1)

⌫4
A = ⌫3

A .

The over-approximation ⌫ of in Ex. 6, by ⌫A is as follows

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o↵er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

8 2011/6/21

d

To enforce convergence, the widening may have to skip to finitely
many given thresholds of gradients before abandoning the constraint
to >.

Example 17. We use two loop unrollings to stabilize iterations
before widening [56].

⌫0
A = � x 2 [�1,+1] .?
⌫1

A = � x . (x 2 [�1, 0] ? 0 : x 2 [1,+1] ? ?)
⌫2

A = � x 2 [�1, 0] . 0 [̇ � x 2 [1, 2] . 1 [̇ � x 2 [3,+1] .?
⌫03A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3, 4] ? 2

: x 2 [5,+1] ? ?)
⌫3

A = ⌫
2
A Ȯ

v
⌫03A

⌫04A = � x . (x 2 [�1, 0] ? 0 : x 2 [1, 2] ? 1 : x 2 [3,+1] ? x
2
+ 1)

⌫4
A = ⌫

3
A .

The over-approximation of ⌫ in Ex. 7, by ⌫A is as follows

x

y
!A(x)

!(x)

[

[

[)

[

[

)

)

)

)
! "

"

x

y
νA(x)

ν(x)

[

[

[)

[

[

)

)

)

)
"!

"

.

Notice that the domain of termination is widened which is an over-
approximation which might include non-termination cases. However,
the iterates with widening stop at a post-fixpoint ⌫A

�]
 � mv
⌧ JPK(⌫A) vv

⌫A

which, by definition of the abstract partial order vv ensures that
⌫A is decreasing on blocks for which it is defined. Termination is
therefore proven for blocks with either 0 or a strictly decreasing
variant. By undecidability, there might be blocks which variant value
is > indicating insu�cient precision to conclude.

12.2 Non-linear variant abstraction
Besides classical linear relational abstractions (e.g. octagons [46],
polyhedra [31], etc.) which can be used pointwise as in Sect. 12.1,
the variant function in each block of the partition can also be non-
linear (e.g. polynomials [47], exponentials [39], etc.).

13. Relational variant semantics
To use relational abstractions for static termination analysis, we can
further abstract variant functions into relations.

13.1 Relational variant abstraction
A variant function ⌫ can be abstracted as the pair of an abstraction
of its domain dom(⌫) by a set abstraction (such as e.g. intervals) and
an abstraction of its value by (a relational abstraction of) the down-
closed relation r which over-approximates the variant function on
its domain that is 8s 2 dom(⌫),w 2 ⌃ : hs, wi 2 r =) w 4 ⌫(s).
The abstraction is therefore (the first component is redundant but
useful for static analysis)

↵rv(⌫) , hdom(⌫), ↵#({hs, ⌫(s)i | s 2 dom(⌫)})i
where the down-closure of a relation r 2 }(⌃ ⇥W) is

↵#(r) , {hs, w0i | 9w : w0 4 w ^ hs, wi 2 r} .
Observe that the e↵ect of the down-closure is to replace equalities
by inequalities for which numerous abstract domains are available.
Moreover, an over-approximation of the first component is known
by Sect. 9 but for correction we either need an under-approximation
or prove termination for this over-approximation, which is the usual
option. For the second component, an over-approximation is correct
(this over-estimates the termination time). We have31

h⌃ 67!W, vvi ����! ����
↵v

�v

h}(⌃) ⇥ ↵#[}(⌃ ⇥W)], ✓ ⇥ ✓i .

13.2 Relational variant semantics
The relational variant semantics of a program P is

⌧mrvJPK , ↵rv(⌧mvJPK) potential termination relational variant
⌧MrvJPK , ↵rv(⌧MtJPK) definite termination relational variant.

31 6⇥v is the componentwise partial order hx, yi 6 ⇥ v hx0, y0i () x 6
x0 ^ y v y0.

partitioning

41

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Objection 1: Turing/Floyd's method goes
forward not backward!

• An analysis can be inverted using auxiliary variables

int x, x0;
while (c(x)) {
 x0 := x;
 x := f(x)
}

Backward variant ν: Forward variant ν:
ν(x0) = ν(x) + 1

ν(x0) = ν(f(x0)) + 1

before
after

ν(xbefore) = ν(xafter) + 1

ν(xbefore) = ν(f(xbefore)) + 1

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

42

(*)

(*)

int x;
while (c(x)) {
 x := f(x)
}

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• Example: x := ?; while (x >= 0) do x := x - 1 od

• Ranking:

• To avoid transfinite ordinals/well-founded orders (*) for
unbounded non-determinism, the computations need
to be structured!

Objection II: you need ordinals!

0

0

0
0

1

1

1

2 n

n-1...

... ...

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

↵rk

;

!

0

43

... ...

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

(*)

(*)

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Structuring trace
semantics with

segments

44

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Floyd/Turing termination proof method

• Trivial postfix structuring of traces into segments

• Also used for termination of straight-line code (no
need for variant functions)

45

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• The trace semantics is recursively structured in
segments according to loop nesting

(equivalent to lexicographic orderings)

Floyd with nested loops

15.2 Examples of semantic structural induction
15.2.1 Loop invariants and variants
In Floyd’s total correctness proof method,
one typically provides a loop invariant and
a loop variant function for termination. It
is not necessary for the variant function
to strictly decrease at each program step
but only once around each loop iterate.
This corresponds to a cover of the states
of the loop according to their control
component which induces a decomposition
of executions into trace segments for the
loop containing trace segments for the
loop body considered as one step in the
inductive reasoning on loop iterations.

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011Moreover a di↵erent variant function is used for each loop so that

this decomposition is applied recursively for nested loops.

15.2.2 Hoare logic
Inductive definition/verification in the form of structural induction
on the program syntax originates from axiomatic semantics [43],
denotational semantics [57], and operational semantics [51].

Hoare logic for a structured imperative language [43], and
its extension to total correctness [44], can be understood as the
inductive state cover based on the control states of a command
(ignoring its memory states). For example, a while loop can be
covered by the states which control is in the condition and the states
which control is in the loop body. The states of the loop body can
themselves be covered recursively, by structural induction on the
program syntax. This structural induction on the program syntax
can be understood as induction on a state cover which itself induces
a cover of the execution traces by segments which states are in a
block of the state cover. A termination proof by structural induction
on the program syntax [44] has the advantage, a.o., to be able to
handle unbounded non-determinism without requiring transfinite
ordinals (equivalent to a lexicographic ordering on nested loops).

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b

c

B

F

L
E

P

…

P

L F

E D

C

D

a

B C

{ P, PF, PL, PLE, PLD,
PLDB, PLDC }

15.2.3 Burstall intermittent assertion proof method
Burstall’s total correctness proof method [3, 29] can be understood
as an inductive reasoning by recurrence on data (as well as control
as in Floyd/Turing and Hoare’s methods). Although Burstall’s proof
method [3] is equivalent in power to Floyd/Turing’s method [25],
it is much easier to use in practice. The formalization of Burstall’s
total correctness proof method [3] in [25] can be understood as
a tree cover on both control and data. The example below shows
how hand-simulation/symbolic execution (HS) and lemmas (L1, L2)
apply to a particular execution trace.

HS!
HS" HS#

L!
0

!L"

!-1
L"

L"
0

P

HS! HS" HS#

λ-1L!

L!
0

η-1
L"

L"
0

P

L!
λ

L"
η

L!
!

!-1L!

The inductive cover contains the pro-
gram P, the hand-simulation/symbol-
ic execution blocks P HS 1, P HS 2,
P HS 3, and two lemmas with re-
spective blocks P L�1, P L�1 L��1

1 ,
P L�1 L��1

1 · · · L0
1 and P L⌘2, P L⌘2 L⌘�1

2 ,
. . . , P L⌘2 L⌘�1

2 · · · L0
2 corresponding to

proofs by recurrence on the data with
respective ranks � and ⌘.

HS!
HS" HS#

L!
0

!L" !-1
L"

L"
0

P

HS! HS" HS#
λ-1L!

L!
0

L"
η-1

L"

L"
0

P

L!
λ η

Observe that the termination analysis method of [9] can be seen as
implicitly relying on Burstall’s proof method.

15.3 Trace-based semantic structural induction
The previous examples of Sect. 15.2 show the need to go beyond
purely syntactic, language-dependent induction and that induction
on states can be generalized to induction on trace segments. Con-
sequently, we introduce a general form of inductive reasoning on
the semantic structure of computations, first starting by induction
on blocks of trace segments and then their abstractions in Sect. 16.

15.3.1 Trace segment abstraction
We first observe that considering segments of traces is an abstraction.
The segment abstraction h}(⌃+1), ✓i ����! ����

↵+

�+

h}(⌃+1), ✓i
↵+(T) , {� 2 ⌃+1 | 9�0 2 ⌃⇤,�00 2 ⌃⇤1 : �0��00 2 T }

is the set of segments of traces of T . If T,T 0 2 }(⌃+1), we define
T F T 0 , T ✓ ↵+(T 0) = 8� 2 T : 9�0,�00 : �0��00 2 T 0

to mean that all traces of T are segments of the traces of T 0. We
define the join
]

i 2�
Ti , �+

⇣

[

i 2�
Ti

⌘

= {�i1 . . .�in | 8k 2 [1, n] : �ik 2 Tik }

to be the set of all the traces made out of segments in the Ti, i 2 �.

15.3.2 Inductive trace segment cover
Definition 2. An inductive trace segment cover of a non-empty set
� 2 }(⌃+1) of traces is a set C 2 C(�) of sequences S of members
B of }(↵+(�)) such that

1. if S S 0 2 C then S 2 C (prefix-closure)
2. if S 2 C then 9S 0 : S = �S 0 (root)
3. if S BB0 2 C then B E B0 (well-foundedness)
4. if S BB0 2 C then B ✓

]

S BB02C
B0 (cover).

Example 19. An example of inductive trace segment cover is trace
partitioning [56].

Example 20. A variant function ⌫ 2 ⌃ 67! N defines a trivial
inductive trace cover. Each value v 2 codom(⌫) defines segments
starting with states � such that ⌫(�) = v of length at most v.

The following definitions are classical for trees C 2 C(�).
root(C) , �

leaves(C) , {B 2 }(�) | 9S : S B 2 C ^ 8S 0 : S BS 0 < C}
inner(C) , {B 2 }(�) | 9S , B0, S 0 : S BB0S 0 2 C}

nodes(C) , leaves(C) [inner(C)
sonsC(B) , {B0 2 nodes(C) | 9S , S 0 : S BB0S 0 2 C} .

Prove termination of outer loop
assuming termination of body/
nested inner loops

15.2 Examples of semantic structural induction
15.2.1 Loop invariants and variants
In Floyd’s total correctness proof method,
one typically provides a loop invariant and
a loop variant function for termination. It
is not necessary for the variant function
to strictly decrease at each program step
but only once around each loop iterate.
This corresponds to a cover of the states
of the loop according to their control
component which induces a decomposition
of executions into trace segments for the
loop containing trace segments for the
loop body considered as one step in the
inductive reasoning on loop iterations.

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011Moreover a di↵erent variant function is used for each loop so that

this decomposition is applied recursively for nested loops.

15.2.2 Hoare logic
Inductive definition/verification in the form of structural induction
on the program syntax originates from axiomatic semantics [43],
denotational semantics [57], and operational semantics [51].

Hoare logic for a structured imperative language [43], and
its extension to total correctness [44], can be understood as the
inductive state cover based on the control states of a command
(ignoring its memory states). For example, a while loop can be
covered by the states which control is in the condition and the states
which control is in the loop body. The states of the loop body can
themselves be covered recursively, by structural induction on the
program syntax. This structural induction on the program syntax
can be understood as induction on a state cover which itself induces
a cover of the execution traces by segments which states are in a
block of the state cover. A termination proof by structural induction
on the program syntax [44] has the advantage, a.o., to be able to
handle unbounded non-determinism without requiring transfinite
ordinals (equivalent to a lexicographic ordering on nested loops).

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b

c

B

F

L
E

P

…

P

L F

E D

C

D

a

B C

{ P, PF, PL, PLE, PLD,
PLDB, PLDC }

15.2.3 Burstall intermittent assertion proof method
Burstall’s total correctness proof method [3, 29] can be understood
as an inductive reasoning by recurrence on data (as well as control
as in Floyd/Turing and Hoare’s methods). Although Burstall’s proof
method [3] is equivalent in power to Floyd/Turing’s method [25],
it is much easier to use in practice. The formalization of Burstall’s
total correctness proof method [3] in [25] can be understood as
a tree cover on both control and data. The example below shows
how hand-simulation/symbolic execution (HS) and lemmas (L1, L2)
apply to a particular execution trace.

HS!
HS" HS#

L!
0

!L"

!-1
L"

L"
0

P

HS! HS" HS#

λ-1L!

L!
0

η-1
L"

L"
0

P

L!
λ

L"
η

L!
!

!-1L!

The inductive cover contains the pro-
gram P, the hand-simulation/symbol-
ic execution blocks P HS 1, P HS 2,
P HS 3, and two lemmas with re-
spective blocks P L�1, P L�1 L��1

1 ,
P L�1 L��1

1 · · · L0
1 and P L⌘2, P L⌘2 L⌘�1

2 ,
. . . , P L⌘2 L⌘�1

2 · · · L0
2 corresponding to

proofs by recurrence on the data with
respective ranks � and ⌘.

HS!
HS" HS#

L!
0

!L" !-1
L"

L"
0

P

HS! HS" HS#
λ-1L!

L!
0

L"
η-1

L"

L"
0

P

L!
λ η

Observe that the termination analysis method of [9] can be seen as
implicitly relying on Burstall’s proof method.

15.3 Trace-based semantic structural induction
The previous examples of Sect. 15.2 show the need to go beyond
purely syntactic, language-dependent induction and that induction
on states can be generalized to induction on trace segments. Con-
sequently, we introduce a general form of inductive reasoning on
the semantic structure of computations, first starting by induction
on blocks of trace segments and then their abstractions in Sect. 16.

15.3.1 Trace segment abstraction
We first observe that considering segments of traces is an abstraction.
The segment abstraction h}(⌃+1), ✓i ����! ����

↵+

�+

h}(⌃+1), ✓i
↵+(T) , {� 2 ⌃+1 | 9�0 2 ⌃⇤,�00 2 ⌃⇤1 : �0��00 2 T }

is the set of segments of traces of T . If T,T 0 2 }(⌃+1), we define
T F T 0 , T ✓ ↵+(T 0) = 8� 2 T : 9�0,�00 : �0��00 2 T 0

to mean that all traces of T are segments of the traces of T 0. We
define the join
]

i 2�
Ti , �+

⇣

[

i 2�
Ti

⌘

= {�i1 . . .�in | 8k 2 [1, n] : �ik 2 Tik }

to be the set of all the traces made out of segments in the Ti, i 2 �.

15.3.2 Inductive trace segment cover
Definition 2. An inductive trace segment cover of a non-empty set
� 2 }(⌃+1) of traces is a set C 2 C(�) of sequences S of members
B of }(↵+(�)) such that

1. if S S 0 2 C then S 2 C (prefix-closure)
2. if S 2 C then 9S 0 : S = �S 0 (root)
3. if S BB0 2 C then B E B0 (well-foundedness)
4. if S BB0 2 C then B ✓

]

S BB02C
B0 (cover).

Example 19. An example of inductive trace segment cover is trace
partitioning [56].

Example 20. A variant function ⌫ 2 ⌃ 67! N defines a trivial
inductive trace cover. Each value v 2 codom(⌫) defines segments
starting with states � such that ⌫(�) = v of length at most v.

The following definitions are classical for trees C 2 C(�).
root(C) , �

leaves(C) , {B 2 }(�) | 9S : S B 2 C ^ 8S 0 : S BS 0 < C}
inner(C) , {B 2 }(�) | 9S , B0, S 0 : S BB0S 0 2 C}

nodes(C) , leaves(C) [inner(C)
sonsC(B) , {B0 2 nodes(C) | 9S , S 0 : S BB0S 0 2 C} .

46

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Hoare logic
• The trace semantics is recursively structured in

segments according to the program syntax

• while (c) { b; a }...

15.2 Examples of semantic structural induction
15.2.1 Loop invariants and variants
In Floyd’s total correctness proof method,
one typically provides a loop invariant and
a loop variant function for termination. It
is not necessary for the variant function
to strictly decrease at each program step
but only once around each loop iterate.
This corresponds to a cover of the states
of the loop according to their control
component which induces a decomposition
of executions into trace segments for the
loop containing trace segments for the
loop body considered as one step in the
inductive reasoning on loop iterations.

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011Moreover a di↵erent variant function is used for each loop so that

this decomposition is applied recursively for nested loops.

15.2.2 Hoare logic
Inductive definition/verification in the form of structural induction
on the program syntax originates from axiomatic semantics [43],
denotational semantics [57], and operational semantics [51].

Hoare logic for a structured imperative language [43], and
its extension to total correctness [44], can be understood as the
inductive state cover based on the control states of a command
(ignoring its memory states). For example, a while loop can be
covered by the states which control is in the condition and the states
which control is in the loop body. The states of the loop body can
themselves be covered recursively, by structural induction on the
program syntax. This structural induction on the program syntax
can be understood as induction on a state cover which itself induces
a cover of the execution traces by segments which states are in a
block of the state cover. A termination proof by structural induction
on the program syntax [44] has the advantage, a.o., to be able to
handle unbounded non-determinism without requiring transfinite
ordinals (equivalent to a lexicographic ordering on nested loops).

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b

c

B

F

L
E

P

…

P

L F

E D

C

D

a

B C

{ P, PF, PL, PLE, PLD,
PLDB, PLDC }

15.2.3 Burstall intermittent assertion proof method
Burstall’s total correctness proof method [3, 29] can be understood
as an inductive reasoning by recurrence on data (as well as control
as in Floyd/Turing and Hoare’s methods). Although Burstall’s proof
method [3] is equivalent in power to Floyd/Turing’s method [25],
it is much easier to use in practice. The formalization of Burstall’s
total correctness proof method [3] in [25] can be understood as
a tree cover on both control and data. The example below shows
how hand-simulation/symbolic execution (HS) and lemmas (L1, L2)
apply to a particular execution trace.

HS!
HS" HS#

L!
0

!L"

!-1
L"

L"
0

P

HS! HS" HS#

λ-1L!

L!
0

η-1
L"

L"
0

P

L!
λ

L"
η

L!
!

!-1L!

The inductive cover contains the pro-
gram P, the hand-simulation/symbol-
ic execution blocks P HS 1, P HS 2,
P HS 3, and two lemmas with re-
spective blocks P L�1, P L�1 L��1

1 ,
P L�1 L��1

1 · · · L0
1 and P L⌘2, P L⌘2 L⌘�1

2 ,
. . . , P L⌘2 L⌘�1

2 · · · L0
2 corresponding to

proofs by recurrence on the data with
respective ranks � and ⌘.

HS!
HS" HS#

L!
0

!L" !-1
L"

L"
0

P

HS! HS" HS#
λ-1L!

L!
0

L"
η-1

L"

L"
0

P

L!
λ η

Observe that the termination analysis method of [9] can be seen as
implicitly relying on Burstall’s proof method.

15.3 Trace-based semantic structural induction
The previous examples of Sect. 15.2 show the need to go beyond
purely syntactic, language-dependent induction and that induction
on states can be generalized to induction on trace segments. Con-
sequently, we introduce a general form of inductive reasoning on
the semantic structure of computations, first starting by induction
on blocks of trace segments and then their abstractions in Sect. 16.

15.3.1 Trace segment abstraction
We first observe that considering segments of traces is an abstraction.
The segment abstraction h}(⌃+1), ✓i ����! ����

↵+

�+

h}(⌃+1), ✓i
↵+(T) , {� 2 ⌃+1 | 9�0 2 ⌃⇤,�00 2 ⌃⇤1 : �0��00 2 T }

is the set of segments of traces of T . If T,T 0 2 }(⌃+1), we define
T F T 0 , T ✓ ↵+(T 0) = 8� 2 T : 9�0,�00 : �0��00 2 T 0

to mean that all traces of T are segments of the traces of T 0. We
define the join
]

i 2�
Ti , �+

⇣

[

i 2�
Ti

⌘

= {�i1 . . .�in | 8k 2 [1, n] : �ik 2 Tik }

to be the set of all the traces made out of segments in the Ti, i 2 �.

15.3.2 Inductive trace segment cover
Definition 2. An inductive trace segment cover of a non-empty set
� 2 }(⌃+1) of traces is a set C 2 C(�) of sequences S of members
B of }(↵+(�)) such that

1. if S S 0 2 C then S 2 C (prefix-closure)
2. if S 2 C then 9S 0 : S = �S 0 (root)
3. if S BB0 2 C then B E B0 (well-foundedness)
4. if S BB0 2 C then B ✓

]

S BB02C
B0 (cover).

Example 19. An example of inductive trace segment cover is trace
partitioning [56].

Example 20. A variant function ⌫ 2 ⌃ 67! N defines a trivial
inductive trace cover. Each value v 2 codom(⌫) defines segments
starting with states � such that ⌫(�) = v of length at most v.

The following definitions are classical for trees C 2 C(�).
root(C) , �

leaves(C) , {B 2 }(�) | 9S : S B 2 C ^ 8S 0 : S BS 0 < C}
inner(C) , {B 2 }(�) | 9S , B0, S 0 : S BB0S 0 2 C}

nodes(C) , leaves(C) [inner(C)
sonsC(B) , {B0 2 nodes(C) | 9S , S 0 : S BB0S 0 2 C} .

15.2 Examples of semantic structural induction
15.2.1 Loop invariants and variants
In Floyd’s total correctness proof method,
one typically provides a loop invariant and
a loop variant function for termination. It
is not necessary for the variant function
to strictly decrease at each program step
but only once around each loop iterate.
This corresponds to a cover of the states
of the loop according to their control
component which induces a decomposition
of executions into trace segments for the
loop containing trace segments for the
loop body considered as one step in the
inductive reasoning on loop iterations.

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011Moreover a di↵erent variant function is used for each loop so that

this decomposition is applied recursively for nested loops.

15.2.2 Hoare logic
Inductive definition/verification in the form of structural induction
on the program syntax originates from axiomatic semantics [43],
denotational semantics [57], and operational semantics [51].

Hoare logic for a structured imperative language [43], and
its extension to total correctness [44], can be understood as the
inductive state cover based on the control states of a command
(ignoring its memory states). For example, a while loop can be
covered by the states which control is in the condition and the states
which control is in the loop body. The states of the loop body can
themselves be covered recursively, by structural induction on the
program syntax. This structural induction on the program syntax
can be understood as induction on a state cover which itself induces
a cover of the execution traces by segments which states are in a
block of the state cover. A termination proof by structural induction
on the program syntax [44] has the advantage, a.o., to be able to
handle unbounded non-determinism without requiring transfinite
ordinals (equivalent to a lexicographic ordering on nested loops).

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b

c

B

F

L
E

P

…

P

L F

E D

C

D

a

B C

{ P, PF, PL, PLE, PLD,
PLDB, PLDC }

15.2.3 Burstall intermittent assertion proof method
Burstall’s total correctness proof method [3, 29] can be understood
as an inductive reasoning by recurrence on data (as well as control
as in Floyd/Turing and Hoare’s methods). Although Burstall’s proof
method [3] is equivalent in power to Floyd/Turing’s method [25],
it is much easier to use in practice. The formalization of Burstall’s
total correctness proof method [3] in [25] can be understood as
a tree cover on both control and data. The example below shows
how hand-simulation/symbolic execution (HS) and lemmas (L1, L2)
apply to a particular execution trace.

HS!
HS" HS#

L!
0

!L"

!-1
L"

L"
0

P

HS! HS" HS#

λ-1L!

L!
0

η-1
L"

L"
0

P

L!
λ

L"
η

L!
!

!-1L!

The inductive cover contains the pro-
gram P, the hand-simulation/symbol-
ic execution blocks P HS 1, P HS 2,
P HS 3, and two lemmas with re-
spective blocks P L�1, P L�1 L��1

1 ,
P L�1 L��1

1 · · · L0
1 and P L⌘2, P L⌘2 L⌘�1

2 ,
. . . , P L⌘2 L⌘�1

2 · · · L0
2 corresponding to

proofs by recurrence on the data with
respective ranks � and ⌘.

HS!
HS" HS#

L!
0

!L" !-1
L"

L"
0

P

HS! HS" HS#
λ-1L!

L!
0

L"
η-1

L"

L"
0

P

L!
λ η

Observe that the termination analysis method of [9] can be seen as
implicitly relying on Burstall’s proof method.

15.3 Trace-based semantic structural induction
The previous examples of Sect. 15.2 show the need to go beyond
purely syntactic, language-dependent induction and that induction
on states can be generalized to induction on trace segments. Con-
sequently, we introduce a general form of inductive reasoning on
the semantic structure of computations, first starting by induction
on blocks of trace segments and then their abstractions in Sect. 16.

15.3.1 Trace segment abstraction
We first observe that considering segments of traces is an abstraction.
The segment abstraction h}(⌃+1), ✓i ����! ����

↵+

�+

h}(⌃+1), ✓i
↵+(T) , {� 2 ⌃+1 | 9�0 2 ⌃⇤,�00 2 ⌃⇤1 : �0��00 2 T }

is the set of segments of traces of T . If T,T 0 2 }(⌃+1), we define
T F T 0 , T ✓ ↵+(T 0) = 8� 2 T : 9�0,�00 : �0��00 2 T 0

to mean that all traces of T are segments of the traces of T 0. We
define the join
]

i 2�
Ti , �+

⇣

[

i 2�
Ti

⌘

= {�i1 . . .�in | 8k 2 [1, n] : �ik 2 Tik }

to be the set of all the traces made out of segments in the Ti, i 2 �.

15.3.2 Inductive trace segment cover
Definition 2. An inductive trace segment cover of a non-empty set
� 2 }(⌃+1) of traces is a set C 2 C(�) of sequences S of members
B of }(↵+(�)) such that

1. if S S 0 2 C then S 2 C (prefix-closure)
2. if S 2 C then 9S 0 : S = �S 0 (root)
3. if S BB0 2 C then B E B0 (well-foundedness)
4. if S BB0 2 C then B ✓

]

S BB02C
B0 (cover).

Example 19. An example of inductive trace segment cover is trace
partitioning [56].

Example 20. A variant function ⌫ 2 ⌃ 67! N defines a trivial
inductive trace cover. Each value v 2 codom(⌫) defines segments
starting with states � such that ⌫(�) = v of length at most v.

The following definitions are classical for trees C 2 C(�).
root(C) , �

leaves(C) , {B 2 }(�) | 9S : S B 2 C ^ 8S 0 : S BS 0 < C}
inner(C) , {B 2 }(�) | 9S , B0, S 0 : S BB0S 0 2 C}

nodes(C) , leaves(C) [inner(C)
sonsC(B) , {B0 2 nodes(C) | 9S , S 0 : S BB0S 0 2 C} .

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

47

tree structure
of the segmentation:

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Burstall’s proof method by
hand-simulation and a little induction

• Program

• Proof chart

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

48

POPL 2012, An Abstract Interpretation Framework for Termination © P. Cousot & R. Cousot

Burstall’s proof method by
hand-simulation and a little induction

• Program

• Proof chart

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

do odd(x) and x ≥ 3 → x := x+1
□ even (x) and x ≥ 2 → x := x/2
od

45

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Well-founded tree structure of the trace segmentation

49

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• Iterative program but recursive proof structur

• Inductive trace cover by segments

• Example:

Burstall’s proof method by
hand-simulation and a little induction

50

15.2 Examples of semantic structural induction
15.2.1 Loop invariants and variants
In Floyd’s total correctness proof method,
one typically provides a loop invariant and
a loop variant function for termination. It
is not necessary for the variant function
to strictly decrease at each program step
but only once around each loop iterate.
This corresponds to a cover of the states
of the loop according to their control
component which induces a decomposition
of executions into trace segments for the
loop containing trace segments for the
loop body considered as one step in the
inductive reasoning on loop iterations.

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011Moreover a di↵erent variant function is used for each loop so that

this decomposition is applied recursively for nested loops.

15.2.2 Hoare logic
Inductive definition/verification in the form of structural induction
on the program syntax originates from axiomatic semantics [43],
denotational semantics [57], and operational semantics [51].

Hoare logic for a structured imperative language [43], and
its extension to total correctness [44], can be understood as the
inductive state cover based on the control states of a command
(ignoring its memory states). For example, a while loop can be
covered by the states which control is in the condition and the states
which control is in the loop body. The states of the loop body can
themselves be covered recursively, by structural induction on the
program syntax. This structural induction on the program syntax
can be understood as induction on a state cover which itself induces
a cover of the execution traces by segments which states are in a
block of the state cover. A termination proof by structural induction
on the program syntax [44] has the advantage, a.o., to be able to
handle unbounded non-determinism without requiring transfinite
ordinals (equivalent to a lexicographic ordering on nested loops).

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b

c

B

F

L
E

P

…

P

L F

E D

C

D

a

B C

{ P, PF, PL, PLE, PLD,
PLDB, PLDC }

15.2.3 Burstall intermittent assertion proof method
Burstall’s total correctness proof method [3, 29] can be understood
as an inductive reasoning by recurrence on data (as well as control
as in Floyd/Turing and Hoare’s methods). Although Burstall’s proof
method [3] is equivalent in power to Floyd/Turing’s method [25],
it is much easier to use in practice. The formalization of Burstall’s
total correctness proof method [3] in [25] can be understood as
a tree cover on both control and data. The example below shows
how hand-simulation/symbolic execution (HS) and lemmas (L1, L2)
apply to a particular execution trace.

HS!
HS" HS#

L!
0

!L"

!-1
L"

L"
0

P

HS! HS" HS#

λ-1L!

L!
0

η-1
L"

L"
0

P

L!
λ

L"
η

L!
!

!-1L!

The inductive cover contains the pro-
gram P, the hand-simulation/symbol-
ic execution blocks P HS 1, P HS 2,
P HS 3, and two lemmas with re-
spective blocks P L�1, P L�1 L��1

1 ,
P L�1 L��1

1 · · · L0
1 and P L⌘2, P L⌘2 L⌘�1

2 ,
. . . , P L⌘2 L⌘�1

2 · · · L0
2 corresponding to

proofs by recurrence on the data with
respective ranks � and ⌘.

HS!
HS" HS#

L!
0

!L" !-1
L"

L"
0

P

HS! HS" HS#
λ-1L!

L!
0

L"
η-1

L"

L"
0

P

L!
λ η

Observe that the termination analysis method of [9] can be seen as
implicitly relying on Burstall’s proof method.

15.3 Trace-based semantic structural induction
The previous examples of Sect. 15.2 show the need to go beyond
purely syntactic, language-dependent induction and that induction
on states can be generalized to induction on trace segments. Con-
sequently, we introduce a general form of inductive reasoning on
the semantic structure of computations, first starting by induction
on blocks of trace segments and then their abstractions in Sect. 16.

15.3.1 Trace segment abstraction
We first observe that considering segments of traces is an abstraction.
The segment abstraction h}(⌃+1), ✓i ����! ����

↵+

�+

h}(⌃+1), ✓i
↵+(T) , {� 2 ⌃+1 | 9�0 2 ⌃⇤,�00 2 ⌃⇤1 : �0��00 2 T }

is the set of segments of traces of T . If T,T 0 2 }(⌃+1), we define
T F T 0 , T ✓ ↵+(T 0) = 8� 2 T : 9�0,�00 : �0��00 2 T 0

to mean that all traces of T are segments of the traces of T 0. We
define the join
]

i 2�
Ti , �+

⇣

[

i 2�
Ti

⌘

= {�i1 . . .�in | 8k 2 [1, n] : �ik 2 Tik }

to be the set of all the traces made out of segments in the Ti, i 2 �.

15.3.2 Inductive trace segment cover
Definition 2. An inductive trace segment cover of a non-empty set
� 2 }(⌃+1) of traces is a set C 2 C(�) of sequences S of members
B of }(↵+(�)) such that

1. if S S 0 2 C then S 2 C (prefix-closure)
2. if S 2 C then 9S 0 : S = �S 0 (root)
3. if S BB0 2 C then B E B0 (well-foundedness)
4. if S BB0 2 C then B ✓

]

S BB02C
B0 (cover).

Example 19. An example of inductive trace segment cover is trace
partitioning [56].

Example 20. A variant function ⌫ 2 ⌃ 67! N defines a trivial
inductive trace cover. Each value v 2 codom(⌫) defines segments
starting with states � such that ⌫(�) = v of length at most v.

The following definitions are classical for trees C 2 C(�).
root(C) , �

leaves(C) , {B 2 }(�) | 9S : S B 2 C ^ 8S 0 : S BS 0 < C}
inner(C) , {B 2 }(�) | 9S , B0, S 0 : S BB0S 0 2 C}

nodes(C) , leaves(C) [inner(C)
sonsC(B) , {B0 2 nodes(C) | 9S , S 0 : S BB0S 0 2 C} .

15.2 Examples of semantic structural induction
15.2.1 Loop invariants and variants
In Floyd’s total correctness proof method,
one typically provides a loop invariant and
a loop variant function for termination. It
is not necessary for the variant function
to strictly decrease at each program step
but only once around each loop iterate.
This corresponds to a cover of the states
of the loop according to their control
component which induces a decomposition
of executions into trace segments for the
loop containing trace segments for the
loop body considered as one step in the
inductive reasoning on loop iterations.

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011Moreover a di↵erent variant function is used for each loop so that

this decomposition is applied recursively for nested loops.

15.2.2 Hoare logic
Inductive definition/verification in the form of structural induction
on the program syntax originates from axiomatic semantics [43],
denotational semantics [57], and operational semantics [51].

Hoare logic for a structured imperative language [43], and
its extension to total correctness [44], can be understood as the
inductive state cover based on the control states of a command
(ignoring its memory states). For example, a while loop can be
covered by the states which control is in the condition and the states
which control is in the loop body. The states of the loop body can
themselves be covered recursively, by structural induction on the
program syntax. This structural induction on the program syntax
can be understood as induction on a state cover which itself induces
a cover of the execution traces by segments which states are in a
block of the state cover. A termination proof by structural induction
on the program syntax [44] has the advantage, a.o., to be able to
handle unbounded non-determinism without requiring transfinite
ordinals (equivalent to a lexicographic ordering on nested loops).

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b

c

B

F

L
E

P

…

P

L F

E D

C

D

a

B C

{ P, PF, PL, PLE, PLD,
PLDB, PLDC }

15.2.3 Burstall intermittent assertion proof method
Burstall’s total correctness proof method [3, 29] can be understood
as an inductive reasoning by recurrence on data (as well as control
as in Floyd/Turing and Hoare’s methods). Although Burstall’s proof
method [3] is equivalent in power to Floyd/Turing’s method [25],
it is much easier to use in practice. The formalization of Burstall’s
total correctness proof method [3] in [25] can be understood as
a tree cover on both control and data. The example below shows
how hand-simulation/symbolic execution (HS) and lemmas (L1, L2)
apply to a particular execution trace.

HS!
HS" HS#

L!
0

!L"

!-1
L"

L"
0

P

HS! HS" HS#

λ-1L!

L!
0

η-1
L"

L"
0

P

L!
λ

L"
η

L!
!

!-1L!

The inductive cover contains the pro-
gram P, the hand-simulation/symbol-
ic execution blocks P HS 1, P HS 2,
P HS 3, and two lemmas with re-
spective blocks P L�1, P L�1 L��1

1 ,
P L�1 L��1

1 · · · L0
1 and P L⌘2, P L⌘2 L⌘�1

2 ,
. . . , P L⌘2 L⌘�1

2 · · · L0
2 corresponding to

proofs by recurrence on the data with
respective ranks � and ⌘.

HS!
HS" HS#

L!
0

!L" !-1
L"

L"
0

P

HS! HS" HS#
λ-1L!

L!
0

L"
η-1

L"

L"
0

P

L!
λ η

Observe that the termination analysis method of [9] can be seen as
implicitly relying on Burstall’s proof method.

15.3 Trace-based semantic structural induction
The previous examples of Sect. 15.2 show the need to go beyond
purely syntactic, language-dependent induction and that induction
on states can be generalized to induction on trace segments. Con-
sequently, we introduce a general form of inductive reasoning on
the semantic structure of computations, first starting by induction
on blocks of trace segments and then their abstractions in Sect. 16.

15.3.1 Trace segment abstraction
We first observe that considering segments of traces is an abstraction.
The segment abstraction h}(⌃+1), ✓i ����! ����

↵+

�+

h}(⌃+1), ✓i
↵+(T) , {� 2 ⌃+1 | 9�0 2 ⌃⇤,�00 2 ⌃⇤1 : �0��00 2 T }

is the set of segments of traces of T . If T,T 0 2 }(⌃+1), we define
T F T 0 , T ✓ ↵+(T 0) = 8� 2 T : 9�0,�00 : �0��00 2 T 0

to mean that all traces of T are segments of the traces of T 0. We
define the join
]

i 2�
Ti , �+

⇣

[

i 2�
Ti

⌘

= {�i1 . . .�in | 8k 2 [1, n] : �ik 2 Tik }

to be the set of all the traces made out of segments in the Ti, i 2 �.

15.3.2 Inductive trace segment cover
Definition 2. An inductive trace segment cover of a non-empty set
� 2 }(⌃+1) of traces is a set C 2 C(�) of sequences S of members
B of }(↵+(�)) such that

1. if S S 0 2 C then S 2 C (prefix-closure)
2. if S 2 C then 9S 0 : S = �S 0 (root)
3. if S BB0 2 C then B E B0 (well-foundedness)
4. if S BB0 2 C then B ✓

]

S BB02C
B0 (cover).

Example 19. An example of inductive trace segment cover is trace
partitioning [56].

Example 20. A variant function ⌫ 2 ⌃ 67! N defines a trivial
inductive trace cover. Each value v 2 codom(⌫) defines segments
starting with states � such that ⌫(�) = v of length at most v.

The following definitions are classical for trees C 2 C(�).
root(C) , �

leaves(C) , {B 2 }(�) | 9S : S B 2 C ^ 8S 0 : S BS 0 < C}
inner(C) , {B 2 }(�) | 9S , B0, S 0 : S BB0S 0 2 C}

nodes(C) , leaves(C) [inner(C)
sonsC(B) , {B0 2 nodes(C) | 9S , S 0 : S BB0S 0 2 C} .

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• Transition invariants are abstractions of trace segments
covering the trace semantics by their extremities

• Termination based on Ramsey theorem on colored
edges of a complete graph, no recursive structure

Podelski-Rybalchenko

with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and di↵erent from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].

References
[1] I. Balaban, A. Pnueli, and L. Zuck. Modular ranking abstraction. Int. J. Found.

Comput. Sci., 18(1):5–44, 2007.
[2] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[3] R. Burstall. Program proving as hand simulation with a little induction. Informa-

tion Processing, 308–312. North-Holland, 1974.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[5] M. Clarkson and F. Schneider. Hyperproperties. Journal of Computer Security,

18(6):1157–1210, 2010.
[6] B. Cook and E. Koskinen. Making prophecies with decision predicates. POPL,

399–410, 2011.
[7] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that

programs eventually do something good. POPL, 265–276, 2007.
[8] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving

conditional termination. CAV, LNCS 5123, 328–340, 2008.
[9] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Form. Methods Syst. Des., 35:369–387, 2009.
[10] S. Cook. Soundness and completeness of an axiom system for program verifica-

tion. SIAM J. Comput., 7:70–80, 1978.
[11] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-

xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences math., USMG, Grenoble, 1978.

[12] P. Cousot. Semantic foundations of program analysis. Program Flow Analysis:
Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

[13] P. Cousot. The calculational design of a generic abstract interpreter. M. Broy
and R. Steinbrüggen, eds., Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking. SARA, LNCS
1864, 1–25, 2000.

[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. TCS, 277(1–2):47–103, 2002.

[16] P. Cousot. Verification by abstract interpretation. Proc. Int. Symp. on Verification
– Theory & Practice, LNCS 2772, 243–268, 2003.

[17] P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. VMCAI, LNCS 3385,
1–24, 2005.

[18] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2nd Int. Symp. on Programming, 106–130. Dunod, Paris, 1976.

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL, 238–
252, 1977.

[20] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. Formal Description of Programming Concepts, 237–277. North-
Holland, 1977.

[21] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
POPL, 269–282, 1979.

[22] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
P. J. of Math., 82(1):43–57, 1979.

[23] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. Tools & Notions for Program Construction: an Advanced Course,
75–119. Cambridge University Press, Cambridge, UK, 1982.

[24] P. Cousot and R. Cousot. “À la Floyd” induction principles for proving in-
evitability properties of programs. Algebraic methods in semantics, 277–312.
Cambridge University Press, Cambridge, UK, 1985.

[25] P. Cousot and R. Cousot. Sometime = always + recursion ⌘ always, on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. JLC, 2(4):511–
547, 1992.

[27] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. PLILP, LNCS 631, 269–295, 1992.

[28] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. POPL, 83–94, 1992.

[29] P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induction
principles for proving inevitable ability properties of programs. TCS, 120(1):
123–155, 1993.

[30] P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Int. Conf. on Comp. Lang., 95–112, 1994.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. POPL, 84–97, 1978.

[32] P. Cousot, R. Cousot, and L. Mauborgne. A scalable segmented decision tree
abstract domain. Time for Verification, Essays in Memory of A. Pnueli, LNCS
6200, 72–95, 2010.

[33] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. POPL, 105–118, 2011.

[34] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent
assertions and application to contracts on collections. VMCAI, LNCS 6538, 150–
168, 2011.

[35] R. Cousot. Fondements des méthodes de preuve d’invariance et de fatalité de
programmes parallèles. Thèse d’État ès sciences math,̇ INPL, Nancy, 1985.

[36] B. Davey and H. Priestley. Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[37] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. CACM, 18(8):453–457, 1975.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] J. Feret. The arithmetic-geometric progression abstract domain. VMCAI, LNCS

3385, 42–58, 2005.
[40] R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19,

19–32. Amer. Math. Soc., 1967.
[41] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. CAV,

LNCS 1254, 72–83, 1997.
[42] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction.

SAS, LNCS 5673, 69–85, 2009.
[43] C. Hoare. An axiomatic basis for computer programming. Communications of

the Association for Computing Machinery, 12(10):576–580, 1969.
[44] Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.

Acta Inf., 3:243–263, 1974.
[45] K. McMillan and L. Zuck. Invisible invariants and abstract interpretation. SAS,

LNCS 6887, 249–262, 2011.
[46] A. Miné. The octagon abstract domain. HOSC, 19:31–100, 2006.
[47] D. Monniaux. Automatic modular abstractions for template numerical con-

straints. Logical Methods in Comp. Sci., 6(3), 2010.
[48] J. Morris and B. Wegbreit. Subgoal induction. CACM, 20(4):209–222, 1977.
[49] P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
[50] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.

Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures 11 (2) 117–124, 2003.

[51] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[52] A. Pnueli, A. Podelski, and A. Rybalchenko. Separating fairness and well-
foundedness for the analysis of fair discrete systems. TACAS, LNCS 3440, 124–
139, 2005.

[53] A. Podelski and A. Rybalchenko. Transition invariants. LICS, 32–41, 2004.
[54] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. VMCAI, LNCS 2937, 239–251, 2004.
[55] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair

termination. POPL, 132–144, 2005.
[56] X. Rival and L. Mauborgne. The trace partitioning abstract domain. TOPLAS,

29(5), 2007.
[57] D. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. Tech. rep. PRG-6, Oxford Univ. Comp. Lab., 1971.
[58] A. Tarski. A lattice theoretical fixpoint theorem and its applications. P. J. of

Math., 5:285–310, 1955.
[59] R. Turing. Checking a large routine. Con. on High Speed Automatic Calculating

Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

place the argument that the transition relation is contained
in the (transitive) well-founded relation induced by a
ranking function (i.e., if) by
the argument that the transitive closure of is contained in
a union of well-founded relations. I.e., we have

vs.

As outlined in Section 5, our proof rule is a starting
point for the development of automated verification meth-
ods for liveness properties of concurrent programs. This
development is not in the scope of this paper. In [16], we
have started one line of research based on predicate abstrac-
tion as used in the already existing tools for safety proper-
ties [1, 3, 8]; many different other ways are envisageable.
Another line of research are methods to reduce the size of

the transition invariants by encoding relevant specific kinds
of fairness, such as weak and strong fairness, in a more di-
rect way than encoding them in Büchi automata.

Acknowledgments This work started with discussions
with Neil Jones and Chin Soon Lee during their visit in
Saarbrücken in September 2002. We thank Patrick Cousot,
Kedar Namjoshi and Amir Pnueli for their remarks on rank-
ing functions and finite-state abstraction during VMCAI in
January 2003. We thank Amir Pnueli for comments and
suggestions, and for coining the term “disjunctive well-
foundedness”. We thank Bernd Finkbeiner and Konstantin
Korovin for comments and suggestions.

References

[1] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Au-
tomatic predicate abstraction of C programs. In Proc. of
PLDI’2001: Programming Language Design and Imple-

mentation, volume 36 of ACM SIGPLAN Notices, pages
203–213. ACM Press, 2001.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A static analyzer
for large safety-critical software. In Proc. of PLDI’2003:
Programming Language Design and Implementation, pages
196–207. ACM Press, June 7–14 2003.

[3] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Mod-
ular verification of software components in C. In Proc. of
ICSE’2003: Int. Conf. on Software Engineering, pages 385–
395, 2003.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. of POPL’1977: Prin-
ciples of Programming Languages, pages 238–252. ACM
Press, 1977.

[5] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Proc. of POPL’1979: Principles
of Programming Languages, pages 269–282. ACM Press,
1979.

[6] Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness
with invisible ranking. In Steffen and Levi [20], pages 223–
238.

[7] S. Graf and H. Saı̈di. Construction of abstract state graphs
with PVS. In Proc. of CAV’1997: Computer Aided Verifica-
tion, volume 1254 of LNCS, pages 72–83. Springer, 1997.

[8] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
Abstraction. In Proc. of POPL’2002: Principles of Pro-

gramming Languages, pages 58–70. ACM Press, 2002.
[9] N. Klarlund. Progress measures and stack assertions for fair

termination. In Proc. of PODC’1992: Principles of Dis-

tributed Computing, pages 229–240. ACM Press, 1992.
[10] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The

size-change principle for program termination. In Proc. of
POPL’2001: Principles of Programming Languages, vol-
ume 36, 3 of ACM SIGPLAN Notices, pages 81–92. ACM
Press, 2001.

[11] D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, jus-
tice and fairness: The ethics of concurrent termination. In
Proc. of ICALP’1981: Int. Colloq. on Automata, Languages

and Programming, volume 115 of LNCS, pages 264–277.
Springer, 1981.

[12] Z. Manna and A. Pnueli. Axiomatic approach to total cor-
rectness of programs. Acta Informatica, (3):243–263, 1974.

[13] Z. Manna and A. Pnueli. Completing the temporal picture.
Theoretical Computer Science, 83(1):91–130, 1991.

[14] Z. Manna and A. Pnueli. Temporal verification of reactive
systems: Safety. Springer, 1995.

[15] Z. Manna and A. Pnueli. Temporal verification of reactive
systems: Progress. Draft, 1996.

[16] A. Podelski and A. Rybalchenko. Transition predicate ab-
straction. Draft. Available from the authors.

[17] A. Podelski and A. Rybalchenko. A complete method for
the synthesis of linear ranking functions. In Steffen and Levi
[20], pages 239–251.

[18] F. P. Ramsey. On a problem of formal logic. In Proc. London
Math. Soc., volume 30, pages 264–285, 1930.

[19] P. A. Sistla, M. Y. Vardi, and P. Wolper. The complementa-
tion problem for Büchi automata with applications to tempo-
ral logic. Theoretical Computer Science, 49(2–3):217–237,
1987.

[20] B. Steffen and G. Levi, editors. Proc. of VMCAI’2004: Ver-
ification, Model Checking, and Abstract Interpretation, vol-
ume 2937 of LNCS. Springer, 2004.

[21] W. Thomas. Automata on infinite objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Sematics, pages 133–
192. Elsevier and MIT Press, 1990.

[22] A. Tiwari. Termination of linear programs. In Proc. of
CAV’2004: Computer Aided Verification, 2004. To appear.

[23] M. Y. Vardi. Verification of concurrent programs — the
automata-theoretic framework. Annals of Pure and Applied
Logic, 51:79–98, 1991.

[24] M. Y. Vardi. Rank predicates vs. progress measures in
concurrent-program verification. Chicago Journal of The-
oretical Computer Science, 1996.

trace segment

51

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

• Example of abstraction of segments into rely-
guarantee/contracts state properties:

Rely-guarantee

<Rely, Guarantee>

<Rely, Guarantee>

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

52

Joey W. Coleman, Cliff B. Jones: A Structural Proof of the Soundness of Rely/guarantee Rules. J. Log. Comput. 17(4): 807-841 (2007)

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Trace semantics segmentation
• Recursive trace segmentation

• Proof by induction on the possibly infinite but well-
founded trace segmentation tree

• Orthogonal to proofs on segment sets (using variant
functions, Ramsey theorem, etc.)

15.2 Examples of semantic structural induction
15.2.1 Loop invariants and variants
In Floyd’s total correctness proof method,
one typically provides a loop invariant and
a loop variant function for termination. It
is not necessary for the variant function
to strictly decrease at each program step
but only once around each loop iterate.
This corresponds to a cover of the states
of the loop according to their control
component which induces a decomposition
of executions into trace segments for the
loop containing trace segments for the
loop body considered as one step in the
inductive reasoning on loop iterations.

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b B

L

…

...

a

c

d

...

...

...

a b c b b bc c c d…
mercredi 22 juin 2011Moreover a di↵erent variant function is used for each loop so that

this decomposition is applied recursively for nested loops.

15.2.2 Hoare logic
Inductive definition/verification in the form of structural induction
on the program syntax originates from axiomatic semantics [43],
denotational semantics [57], and operational semantics [51].

Hoare logic for a structured imperative language [43], and
its extension to total correctness [44], can be understood as the
inductive state cover based on the control states of a command
(ignoring its memory states). For example, a while loop can be
covered by the states which control is in the condition and the states
which control is in the loop body. The states of the loop body can
themselves be covered recursively, by structural induction on the
program syntax. This structural induction on the program syntax
can be understood as induction on a state cover which itself induces
a cover of the execution traces by segments which states are in a
block of the state cover. A termination proof by structural induction
on the program syntax [44] has the advantage, a.o., to be able to
handle unbounded non-determinism without requiring transfinite
ordinals (equivalent to a lexicographic ordering on nested loops).

b

c

B

F

L
E

P

…

C

D

a

P

L F

E D

B C

b

c

B

F

L
E

P

…

P

L F

E D

C

D

a

B C

{ P, PF, PL, PLE, PLD,
PLDB, PLDC }

15.2.3 Burstall intermittent assertion proof method
Burstall’s total correctness proof method [3, 29] can be understood
as an inductive reasoning by recurrence on data (as well as control
as in Floyd/Turing and Hoare’s methods). Although Burstall’s proof
method [3] is equivalent in power to Floyd/Turing’s method [25],
it is much easier to use in practice. The formalization of Burstall’s
total correctness proof method [3] in [25] can be understood as
a tree cover on both control and data. The example below shows
how hand-simulation/symbolic execution (HS) and lemmas (L1, L2)
apply to a particular execution trace.

HS!
HS" HS#

L!
0

!L"

!-1
L"

L"
0

P

HS! HS" HS#

λ-1L!

L!
0

η-1
L"

L"
0

P

L!
λ

L"
η

L!
!

!-1L!

The inductive cover contains the pro-
gram P, the hand-simulation/symbol-
ic execution blocks P HS 1, P HS 2,
P HS 3, and two lemmas with re-
spective blocks P L�1, P L�1 L��1

1 ,
P L�1 L��1

1 · · · L0
1 and P L⌘2, P L⌘2 L⌘�1

2 ,
. . . , P L⌘2 L⌘�1

2 · · · L0
2 corresponding to

proofs by recurrence on the data with
respective ranks � and ⌘.

HS!
HS" HS#

L!
0

!L" !-1
L"

L"
0

P

HS! HS" HS#
λ-1L!

L!
0

L"
η-1

L"

L"
0

P

L!
λ η

Observe that the termination analysis method of [9] can be seen as
implicitly relying on Burstall’s proof method.

15.3 Trace-based semantic structural induction
The previous examples of Sect. 15.2 show the need to go beyond
purely syntactic, language-dependent induction and that induction
on states can be generalized to induction on trace segments. Con-
sequently, we introduce a general form of inductive reasoning on
the semantic structure of computations, first starting by induction
on blocks of trace segments and then their abstractions in Sect. 16.

15.3.1 Trace segment abstraction
We first observe that considering segments of traces is an abstraction.
The segment abstraction h}(⌃+1), ✓i ����! ����

↵+

�+

h}(⌃+1), ✓i
↵+(T) , {� 2 ⌃+1 | 9�0 2 ⌃⇤,�00 2 ⌃⇤1 : �0��00 2 T }

is the set of segments of traces of T . If T,T 0 2 }(⌃+1), we define
T F T 0 , T ✓ ↵+(T 0) = 8� 2 T : 9�0,�00 : �0��00 2 T 0

to mean that all traces of T are segments of the traces of T 0. We
define the join
]

i 2�
Ti , �+

⇣

[

i 2�
Ti

⌘

= {�i1 . . .�in | 8k 2 [1, n] : �ik 2 Tik }

to be the set of all the traces made out of segments in the Ti, i 2 �.

15.3.2 Inductive trace segment cover
Definition 2. An inductive trace segment cover of a non-empty set
� 2 }(⌃+1) of traces is a set C 2 C(�) of sequences S of members
B of }(↵+(�)) such that

1. if S S 0 2 C then S 2 C (prefix-closure)
2. if S 2 C then 9S 0 : S = �S 0 (root)
3. if S BB0 2 C then B E B0 (well-foundedness)
4. if S BB0 2 C then B ✓

]

S BB02C
B0 (cover).

Example 19. An example of inductive trace segment cover is trace
partitioning [56].

Example 20. A variant function ⌫ 2 ⌃ 67! N defines a trivial
inductive trace cover. Each value v 2 codom(⌫) defines segments
starting with states � such that ⌫(�) = v of length at most v.

The following definitions are classical for trees C 2 C(�).
root(C) , �

leaves(C) , {B 2 }(�) | 9S : S B 2 C ^ 8S 0 : S BS 0 < C}
inner(C) , {B 2 }(�) | 9S , B0, S 0 : S BB0S 0 2 C}

nodes(C) , leaves(C) [inner(C)
sonsC(B) , {B0 2 nodes(C) | 9S , S 0 : S BB0S 0 2 C} .

53

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Conclusion

54

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Presentation based on our POPL‘2012 paper

55

• Patrick Cousot, Radhia Cousot: An abstract interpretation framework for

termination. POPL 2012: 245-258

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

More in the paper
• The paper provides

• More topics (e.g. general safety by abstract
interpretation, abstract trace covers/proofs)

• More technical details (e.g. fixpoint definitions of
the various abstract termination semantics)

• More examples (e.g. a more detailed piecewise
linear termination abstraction)

56

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Contributions
• Formalization of existing termination proof methods

as abstract interpretations

• Pave the way for new backward termination static
analysis methods (going beyond reduction of
termination to safety analyzes)

• The new concept of trace semantics segmentation is
not specific to termination and applies to all
specification/verification/analysis methods

57

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

Future work
• Abstract domains for termination

• Semantic techniques for segmentation inference

• Eventuality verification/static analysis

• (General) liveness verification/static analysis

58

(*)

(*)

Bowen Alpern, Fred B. Schneider: Defining Liveness. Inf. Process. Lett. (IPL) 21(4):181-185
(1985)2EEBowen Alpern, Fred B. Schneider: Defining Liveness. Inf. Process. Lett. (IPL)
21(4):181-185 (1985)

Beyond LTL, as defined in

Venezia, 2012/03/12, Termination proof inference by abstract interpretation © P. Cousot & R. Cousot

The end, thank you

59

