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Content
1. Semantics (45 mn)

2. Abstraction (45 mn)

break (30mn)

3. Verification and proofs (45 mn)

4. Analysis (45 mn)
• Numerical abstraction: see the VMCAI invited talk by Sylvie Putot (École

polytechnique, France) on “Zonotopic abstract domains for numerical program
analysis”

• Symbolic abstraction: dependency analysis
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Part 1

Semantics
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Syntax
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Context-free syntax of expressions

x, y,… ∈ V variables (V not empty)
A ∈ A ∶∶= 1 | x | A1 - A2 arithmetic expressions
B ∈ B ∶∶= A1 < A2 | B1 nand B2 boolean expressions
E ∈ E ∶∶= A | B expressions
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Context-free syntax of program statements
S ∶∶= statement S ∈ S

x = A ; assignment
| ; skip
| if (B) S conditional
| if (B) S else S
| while (B) S iteration
| break ; iteration break
| { Sl } compound statement

Sl ∶∶= Sl S | 𝜖 statement list
P ∶∶= Sl program P ∈ P
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Program labels
• To designate program points of program components, not part of the language
• Labels are unique
• atJSK label at entry of statement S
• afterJSK label after exit of statement S
• escapeJSK is it possible to break out of the statement S?
• break-toJSK where to break (exit label of enclosing loop)
• inJSK labels in statement S (excluding afterJSK and break-toJSK)
• labsJSK ≜ inJSK ∪ {afterJSK}
• labxJSK ≜ labsJSK ∪ ( escapeJSK ? {break-toJSK} : ∅ )
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Axiomatic definition of program labelling
• We never define labels, just the properties they must satisfy
• Example S ≜ if (B) S𝑡 else S𝑓:

inJSK ≜ atJSK ∪ inJS𝑡K ∪ inJS𝑓K
atJSK ∉ inJS𝑡K ∪ inJS𝑓K
inJS𝑡K ∩ inJS𝑓K = ∅
afterJS𝑡K = afterJS𝑓K = afterJSK
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Prefix trace semantics
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Trace of a hand computation

“Abstract Interpretation, Semantics, Verification, and Analysis” – 10/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Prefix trace
• A prefix trace is a finite observation of the program execution from entry
• A trace is a finite sequence of labels separated by actions (no memory state)

ℓ1
𝑎1−−−−−→ ℓ2

𝑎3−−−−−→ ℓ3
𝑎3−−−−−→ ℓ4

𝑎4−−−−−→ ℓ3
𝑎5−−−−−→ ℓ6⋯

• labels ℓ𝑖: next action to be executed
• actions 𝑎𝑖: records the computation done by a program step
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Example of prefix trace
• default initialization to 0
ℓ1 x = x + 1 ; (4.4)
while ℓ2 (tt) {
ℓ3 x = x + 1 ;
if ℓ4 (x > 2) ℓ5 break ;}ℓ6;ℓ7

• ℓ1 x = x + 1 = 1−−−−−−−−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = x + 1 = 2−−−−−−−−−−−−−−−−−−−−−→ ℓ4
¬(x > 2)
−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 (6.1)

• ℓ1 x = x + 1 = 1−−−−−−−−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = x + 1 = 2−−−−−−−−−−−−−−−−−−−−−→ ℓ4
¬(x > 2)
−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = x + 1 = 3−−−−−−−−−−−−−−−−−−−−−→

ℓ4
x > 2−−−−−−−−−−→ ℓ5 break−−−−−−−−−−−→ ℓ6

skip
−−−−−−−−→ ℓ7
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Values of variables
• Go back in the past to look for the last recorded assigned value (or 0 at

initialization)

𝝆(𝜋ℓ x = E = 𝜈−−−−−−−−−−−−−−−−→ ℓ′)x ≜ 𝜈 (6.2)
𝝆(𝜋ℓ …−−−−−−→ ℓ′)x ≜ 𝝆(𝜋ℓ) otherwise

𝝆(ℓ)x ≜ 0
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Prefix trace semantics
• Given a trace 𝜋0 arriving atJSK,

the prefix trace semantics 𝓢∗JSK of S specifies
the trace 𝜋1 of the execution of S from atJSK with initial values defined by 𝜋0

𝜋0−−−−−−−−−−−−−−−−−−−−→ atJSK 𝜋1−−−−−−−−−−−−−−−−−−−−→ ℓ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈ 𝓢∗JSK(𝜋0atJSK)
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Structural rule-based defini-
tion of the prefix trace semantics
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Structural prefix trace semantics at a statement
Prefix trace at a statement S

•
atJSK ∈ �̂�∗JSK(𝜋1atJSK) (6.7)

A prefix continuation of the traces 𝜋1atJSK arriving at a program, statement or
statement list S can be reduced to the program point atJSK at this program,
statement or statement list S.
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Semantics of arithmetic expressions
• An environment 𝜌 ∈ Ev where Ev ≜ V → Z is a function 𝜌 mapping a variable x to

its value 𝜌(x) in the set Z of all mathematical integers.
• Semantics of arithmetic expressions:

𝓐J1K𝜌 ≜ 1 (3.4)
𝓐JxK𝜌 ≜ 𝜌(x)

𝓐JA1 - A2K𝜌 ≜ 𝓐JA1K𝜌 −𝓐JA2K𝜌
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Structural prefix trace semantics of an assignment statement
Prefix traces of an assignment statement S ∶∶= ℓ x = A ;

•
𝑣 =𝓐JAK𝝆(𝜋ℓ)

ℓ x = A = 𝑣−−−−−−−−−−−−−−−→ afterJSK ∈ �̂�∗JSK(𝜋ℓ)
A prefix finite trace of an assignment ℓ x = E ; continuing some trace 𝜋ℓ is ℓ followed
by the event x = 𝑣 where 𝑣 is the last value of x previously assigned to x on 𝜋ℓ
(otherwise initialized to 0) and finishing at the label afterJSK after the assignment.
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Structural prefix trace semantics of a conditional statement
Prefix traces of a conditional statement S ∶∶= if ℓ (B) S𝑡

•
𝓑JBK𝝆(𝜋1ℓ) = ff

ℓ
¬(B)
−−−−−−−−−→ afterJSK ∈ �̂�∗JSK(𝜋1ℓ) (6.14)

•
𝓑JBK𝝆(𝜋1ℓ) = tt, 𝜋2 ∈ �̂�∗JS𝑡K(𝜋1ℓ B−−−−→ atJS𝑡K)

ℓ B−−−−→ atJS𝑡K ⌢⋅ 𝜋2 ∈ �̂�∗JSK(𝜋1ℓ) (6.15)

⌢⋅ is trace concatenation
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Structural prefix trace semantics of an empty statement list
Prefix traces of an empty statement list Sl ∶∶= 𝜖

•
atJSlK ∈ �̂�∗JSlK(𝜋atJSlK) (6.11)

• A prefix/maximal trace 𝜋 of the empty statement list 𝜖 continuing some trace is
reduced to the program label atJSlK at that empty statement.

• This case is redundant and already covered by (6.7).
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Structural prefix trace semantics of a statement list
Prefix traces of a statement list Sl ∶∶= Sl′ S

•
𝜋2 ∈ �̂�∗JSl′K(𝜋1)
𝜋2 ∈ �̂�∗JSlK(𝜋1) (6.9)

•
𝜋2 ∈ �̂�+JSl′K(𝜋1), 𝜋3 ∈ �̂�∗JSK(𝜋1 ⌢⋅ 𝜋2)

𝜋2 ⌢⋅ 𝜋3 ∈ �̂�∗JSlK(𝜋1) (6.10)

A prefix trace of Sl′ S continuing an initial trace 𝜋1 can be a prefix trace of Sl′ or a
finite maximal trace of Sl′ followed by a prefix trace of S.
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Structural prefix trace semantics of an iteration statement
Prefix traces of an iteration statement S ∶∶= while ℓ (B) S𝑏

•
ℓ ∈ �̂�∗JSK(𝜋1ℓ) (6.20)

•
ℓ𝜋2ℓ ∈ �̂�∗JSK(𝜋1ℓ), 𝓑JBK𝝆(𝜋1ℓ𝜋2ℓ) = ff

ℓ𝜋2ℓ
¬(B)
−−−−−−−−−→ afterJSK ∈ �̂�∗JSK(𝜋1ℓ) (6.21)

•

ℓ𝜋2ℓ ∈ �̂�∗JSK(𝜋1ℓ), 𝓑JBK𝝆(𝜋1ℓ𝜋2ℓ) = tt,
𝜋3 ∈ �̂�∗JS𝑏K(𝜋1ℓ𝜋2ℓ B−−−−→ atJS𝑏K)
ℓ𝜋2ℓ

B−−−−→ atJS𝑏K ⌢⋅ 𝜋3 ∈ �̂�∗JSK(𝜋1ℓ) (6.22)

This is a forward, left recursive definition where 𝑛 + 1 iterations are 𝑛 iterations
followed by one more iteration.
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Structural prefix trace semantics of an iteration statement
Prefix traces of an iteration statement S ∶∶= while ℓ (B) S𝑏

•
ℓ ∈ �̂�∗JSK(𝜋1ℓ) (6.20)

•
ℓ𝜋2ℓ ∈ �̂�∗JSK(𝜋1ℓ) , 𝓑JBK𝝆(𝜋1ℓ𝜋2ℓ) = ff

ℓ𝜋2ℓ
¬(B)
−−−−−−−−−→ afterJSK ∈ �̂�∗JSK(𝜋1ℓ) (6.21)

•

ℓ𝜋2ℓ ∈ �̂�∗JSK(𝜋1ℓ) , 𝓑JBK𝝆(𝜋1ℓ𝜋2ℓ) = tt,
𝜋3 ∈ �̂�∗JS𝑏K(𝜋1ℓ𝜋2ℓ B−−−−→ atJS𝑏K)
ℓ𝜋2ℓ

B−−−−→ atJS𝑏K ⌢⋅ 𝜋3 ∈ �̂�∗JSK(𝜋1ℓ) (6.22)

The definition is structural (depends on the already defined semantics of
sub-components) and recursive (depends on itself) → might not be well-defined.
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Structural prefix trace semantics of a break statement
Prefix traces of a break statement S ∶∶= ℓ break ;

•
ℓ break−−−−−−−−−−−→ break-toJSK ∈ �̂�∗JSK(𝜋ℓ) (6.25)

A prefix finite trace of a break ℓ break ; continuing some initial trace 𝜋ℓ is the trace
ℓ followed by the break ; event and ending at the break label break-toJSK (which is
the exit label of the closest enclosing iteration loop or else the program exit).
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Structural fixpoint definition
of the prefix trace semantics
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Examples of fixpoints 𝑥 such that 𝑓(𝑥) = 𝑥

f(x)

x
x0

f(x0) = x0

f(x1) = x1

x10 1⩽

⩽

f

lfp f

gfp f

⊑

increasing function 𝑓

f
⊑

non-increasing function 𝑓
• As shown by Alfred Tarski, an increasing function on a complete lattice has at least

one fixpoint and has a least one.
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Tarski fixpoint theorem

Theorem (13.5, Tarski fixpoint theorem) An increasing function 𝑓 ∈ 𝐿 ↗⟶𝐿 on
a complete lattice ⟨𝐿, ⊑, ⊥, ⊤, ⊓, ⊔⟩ has a least fixpoint lfp⊑ 𝑓 = ⨅{𝑥 ∈ 𝐿 ∣ 𝑓(𝑥) ⊑ 𝑥}.
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Tarski iterative fixpoint theorem
Theorem (13.14, Tarski iterative fixpoint)
• Let 𝑓 ∈ 𝑃 ↗⟶𝑃 be an increasing function on a poset ⟨𝑃, ⊑, ⊥⟩ with infimum ⊥.
• Define the iterates of 𝑓 to be the sequence 𝑓 0 = ⊥ and 𝑓 𝑛+1 = 𝑓(𝑓 𝑛) for 𝑛 ∈ N.
• Assume that the least upper bound ⨆{𝑓 𝑛 ∣ 𝑛 ∈ N} exists and 𝑓(⨆{𝑓 𝑛 ∣ 𝑛 ∈

N}) = ⨆{𝑓(𝑓 𝑛) ∣ 𝑛 ∈ N}
• Then 𝑓 has a least fixpoint lfp⊑ 𝑓 = ⨆{𝑓 𝑛 ∣ 𝑛 ∈ N}.

f 0=⊥
f 1
f 2
f 3 

… f ∞ = ⨆i f i =f(f ∞) 

f

f

f
f 0=⊥
f 1
f 2
f 3 

… f ∞ = ⨆i f i
f ∞+1

f

f
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Fixpoint prefix trace semantics of an assignment statement

Fixpoint prefix trace semantics of an assignment statement S ∶∶= ℓ x = E ;

�̂�∗JSK(𝜋ℓ) = {ℓ} ∪ {ℓ x = E = 𝑣−−−−−−−−−−−−−−−→ afterJSK ∣ 𝑣 = 𝓔JEK𝝆(𝜋ℓ)}
• Example of basic case
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Fixpoint prefix trace semantics of a statement list

Prefix traces of a statement list Sl ∶∶= Sl′ S

�̂�∗JSlK(𝜋1) = �̂�∗JSl′K(𝜋1) ∪ (15.2)
{𝜋2 ⌢⋅ 𝜋3 ∣ 𝜋2 ∈ �̂�+JSl′K(𝜋1) ∧ 𝜋3 ∈ �̂�∗JSK(𝜋1 ⌢⋅ 𝜋2)}

• �̂�+JSl′K contains the finite maximal traces of �̂�∗JSl′K
• Example of inductive case (�̂�∗JSlK defined in terms of �̂�+JSl′K and �̂�∗JSK with

Sl′ ⊲ Sl and S ⊲ Sl where ⊲ is the strict component relation)
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Fixpoint prefix trace semantics of an iteration

Prefix traces of an iteration statement S ∶∶= while ℓ (B) S𝑏

𝓢∗Jwhile ℓ (B) S𝑏K = lfp ⊆̇𝓕∗Jwhile ℓ (B) S𝑏K (15.3)

𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)(𝜋1ℓ′) ≜ ∅ when ℓ′ ≠ ℓ

𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)(𝜋1ℓ) ≜ {ℓ} (a)

∪ {ℓ′𝜋2ℓ′
¬(B)
−−−−−−−−−→ afterJSK | ℓ′𝜋2ℓ′ ∈ 𝑋(𝜋1ℓ′) ∧

𝓑JBK𝝆(𝜋1ℓ′𝜋2ℓ′) = ff ∧ ℓ′ = ℓ} (b)
∪ {ℓ′𝜋2ℓ′

B−−−−→ atJS𝑏K ⌢⋅ 𝜋3 | ℓ′𝜋2ℓ′ ∈ 𝑋(𝜋1ℓ′) ∧𝓑JBK𝝆(𝜋1ℓ′𝜋2ℓ′) = tt
∧ 𝜋3 ∈ 𝓢∗JS𝑏K(𝜋1ℓ′𝜋2ℓ′ B−−−−→ atJS𝑏K) ∧ ℓ′ = ℓ} (c)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 31/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



• Example of inductive fixpoint case
• inductive: 𝓢∗Jwhile ℓ (B) S𝑏K defined in terms of 𝓢∗JS𝑏K with

S𝑏 ⊲ while ℓ (B) S𝑏
• fixpoint: 𝓢∗Jwhile ℓ (B) S𝑏K recursively defined in terms of itself (𝑛 + 1

iterations are 1 iteration plus 𝑛 iterations)
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Maximal trace semantics
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Maximal trace semantics, informally
• The maximal trace semantics 𝓢+∞JSK = 𝓢+JSK ∪𝓢∞JSK is derived from the prefix

trace semantics 𝓢∗JSK by
• keeping the longest finite traces 𝓢+JSK, and
• passing to the limit 𝓢∞JSK of prefix-closed traces for infinite traces.
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Finite maximal trace semantics

• 𝓢+JSK(𝜋1atJSK) ≜ {𝜋2ℓ ∈ 𝓢∗JSK(𝜋1atJSK) ∣ ℓ = afterJSK}
• 𝓢+JSK(𝜋1ℓ) = ∅ when ℓ ≠ atJSK

• 𝓢+JSK(𝜋1atJSK) is the set of maximal finite traces atJSK𝜋2afterJSK of S continuing
the trace 𝜋1atJSK and reaching afterJSK.
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Prefixes of a trace
• If 𝜋 = ℓ0

𝑒0−−−−−→ … ℓ𝑖
𝑒𝑖−−−−→ … ℓ𝑛 is a finite trace then its prefix 𝜋[0..𝑝] at 𝑝 is

• 𝜋 when 𝑝 ⩾ 𝑛
• ℓ0
𝑒0−−−−−→ … ℓ𝑗

𝑒𝑗−−−−→ … ℓ𝑝 when 0 ⩽ 𝑝 ⩽ 𝑛.

• If 𝜋 = ℓ0
𝑒0−−−−−→ … ℓ𝑖

𝑒𝑖−−−−→ … is an infinite trace then its prefix 𝜋[0..𝑝] at 𝑝 is
ℓ0
𝑒0−−−−−→ … ℓ𝑗

𝑒𝑗−−−−→ … ℓ𝑝.
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Limit of prefix traces
• The limit limT of a set of traces T is the set of infinite traces which prefixes can

be extended to a trace in T.
limT ≜ {𝜋 ∈ 𝕋∞ ∣ ∀𝑛 ∈ N . ∃𝑝 ⩾ 𝑛 . 𝜋[0..𝑝] ∈ T} .

• Let S be an iteration. ⟨𝜋, 𝜋′⟩ ∈ lim𝓢∗JSK where 𝜋′ is infinite if and only if,
whenever we take a prefix 𝜋′[0..𝑛] of 𝜋′, it is a possible finite observation of the
execution of S and so belongs to the prefix trace semantics ⟨𝜋, 𝜋′[0..𝑛]⟩ ∈ 𝓢∗JSK.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 37/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Infinite maximal trace semantics

𝓢∞JSK ≜ lim(𝓢∗JSK)
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Memory abstraction
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Memory abstraction
• Abstraction from traces 𝜋 ∈ 𝕋+ to environments 𝜌 ∈ Ev ≜ V → 𝕍 mapping variables

x ∈ V to their value 𝜌(x) ∈ 𝕍
• 𝛼(𝜋) = 𝝆(𝜋)

where

𝝆(𝜋ℓ x = E = 𝜈−−−−−−−−−−−−−−−−→ ℓ′)x ≜ 𝜈 (6.2)
𝝆(𝜋ℓ …−−−−−−→ ℓ′)x ≜ 𝝆(𝜋ℓ) otherwise

𝝆(ℓ)x ≜ 0
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Properties
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Formal property
• A property is the set of elements that satisfy this property.
• Examples:

• {2𝑘 + 1 ∣ 𝑘 ∈ N} is the property “to be an odd natural”
• {2𝑘 ∣ 𝑘 ∈ Z} is the property “to be an even integer”

• Formally:
• 𝔈 is a set of entities
• A property of these entities is an element of ℘(𝔈)
• Examples:

• ∅ is false (ff)
• 𝔈 is true (tt)
• 𝑒 ∈ 𝑃, 𝑃 ∈ ℘(𝔈) means “𝑒 has property 𝑃”
• 𝑃 ⊆ 𝑃′ is implication ⇒ (𝑃 is stronger that 𝑃′, 𝑃′ is weaker that 𝑃)
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Program property
• Syntactic point of view: a program property is the set of all programs which have

this property (e.g. Rice theorem)
• Semantic point of view: : a program property is the set of all semantic of programs

which have this property.
• By [program] property, we mean the semantic point of view.
• A program semantics is a set of traces (in ℘(𝕋+)) so a program property is a set of

sets of traces (in ℘(℘(𝕋+)))1

1sometimes called “hyperproperties”
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The complete (boolean) lattice of formal properties
⟨℘(𝔈), ⊆, ∅, 𝔈, ∪, ∩, ¬⟩

• ℘(𝔈) properties of entities belonging to 𝔈
• ⊆ implication
• ∅ false
• 𝔈 true
• ∪ disjonction, or
• ∩ conjunction, and
• ¬ negation, ¬𝑃 ≜ 𝔈 ⧵ 𝑃

(the definition of “complete lattice” is forthcoming)
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Posets and complete lattices
• A poset ⟨ℙ, ⊑⟩ is a set equipped with a binary relation ⊑ which is (forall
𝑥, 𝑦, 𝑧 ∈ ℙ)

• reflexive: 𝑥 ⊑ 𝑥
• antisymmetric: 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦
• transitive: 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧

• A subset 𝑆 ∈ ℘(ℙ) has a least upper bound (denoted ⊔𝑆) if and only if
• ⊔𝑆 ∈ ℙ
• ∀𝑥 ∈ 𝑆 . 𝑥 ⊑ ⊔𝑆
• ∀𝑥 ∈ 𝑆 . 𝑥 ⊑ 𝑢 ⇒ ⊔𝑆 ⊑ 𝑢

• A complete lattice is a poset ⟨ℙ, ⊑⟩ in which any subset 𝑆 ∈ ℘(ℙ) has a lub/join
⊔𝑆 (not only the finite ones).
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Collecting semantics
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Collecting semantics
• The strongest semantic property of program P

𝓢ℂJPK ≜ {𝓢∗JPK} . (8.5)

• Program P has property 𝑃 ∈ ℘(℘(𝕋+∞)) is
• 𝓢∗JPK ∈ 𝑃, or equivalently
• {𝓢∗JPK} ⊆ 𝑃 i.e. 𝑃 is implied by the collecting semantics of program P.

• So we can use implication ⊆ (⇒) instead of ∈ (with no direct equivalent for
predicates in logic).

• Program verification {𝓢∗JPK} ⊆ 𝑃 is undecidable (Rice theorem)
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The End of Part 1
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Part 2

Abstraction
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Abstraction
• We formalize the abstraction and approximation of program properties

• We show how a structural rule-based/fixpoint abstract semantics can be derived
from the collecting semantics by calculational design.
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Informal introduction to abstraction
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Abstraction, informally
• Let be ⟨℘(𝔈), ⊆⟩ be properties of entities (so called the concrete domain)

• Consider a subset A ⊆ ℘(𝔈) of properties of interest ⟨A, ⊆⟩
• Encode these properties of interest in an abstract domain ⟨𝐴, ⊑⟩
• The decoding function 𝛾 ∈ 𝐴 → A is called the concretization function
• Make proofs using abstract properties only
• So any concrete property must be over-approximated by a abstract property in
A = 𝛾(𝐴)

• If the abstract proof succeeds, it is valid in the concrete (soundness)
• If the abstract proof fails, you missed some property in ℘(𝔈) ⧵A which is essential

in the concrete proof (incompleteness)
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Brahmagupta

• Brahmagupta (born c. 598, died after 665) was an Indian mathematician and
astronomer;
• Invented the rule of signs (including to compute with zero);
• We explain his rule of sign as an abstract interpretation;
• Probably the very first example of abstract interpretation.
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Structural collecting semantics
• Semantics

𝓐JAK ∈ (V → Z) → Z

𝓐J1K𝜌 ≜ 1
𝓐JxK𝜌 ≜ 𝜌(x)

𝓐JA1 - A2K𝜌 ≜ 𝓐JA1K𝜌 −𝓐JA2K𝜌
• Collecting semantics

𝓢ℂJAK ∈ ℘((V → Z) → Z)
𝓢ℂJ1K = {𝜆 𝜌 ∈ . 1}
𝓢ℂJxK = {𝜆 𝜌 ∈ (V → Z) . 𝜌(x)}

𝓢ℂJA1 - A2K = {𝜆 𝜌 ∈ (V → Z) .𝑓1(𝜌) − 𝑓2(𝜌) ∣ 𝑓1 ∈ 𝓢ℂJA1K ∧ 𝑓2 ∈ 𝓢ℂJA2K}

𝜆𝑥 . 𝑡 is the function 𝑓 such that for parameter 𝑥, the value 𝑓(𝑥) of 𝑓 at 𝑥 is equal to the
value of the term 𝑡 (depending upon 𝑥). 𝜆𝑥 ∈ 𝑋 . 𝑡 states that 𝑓 is undefined when 𝑥 ∉ 𝑋.
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Sign abstraction
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Sign property (of an individual variable)

∅

{𝑧 ∣ 𝑧 < 0} {0} {𝑧 ∣ 𝑧 > 0}

{𝑧 ∣ 𝑧 ⩽ 0} {𝑧 ∣ 𝑧 ≠ 0} {𝑧 ∣ 𝑧 ⩾ 0}

Z

ℙ± =

Example of Hasse diagram.
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Encoding of sign properties (of an individual variable)

⊥±

<0 =0 >0

⩽0 ≠0 ⩾0

⊤±

ℙ± =

Concretization function:
𝛾±(⊥±) ≜ ∅ 𝛾±(⩽0) ≜ {𝑧 ∣ 𝑧 ⩽ 0}
𝛾±(<0) ≜ {𝑧 ∣ 𝑧 < 0} 𝛾±(≠0) ≜ {𝑧 ∣ 𝑧 ≠ 0}
𝛾±(=0) ≜ {0} 𝛾±(⩾0) ≜ {𝑧 ∣ 𝑧 ⩾ 0}
𝛾±(>0) ≜ {𝑧 ∣ 𝑧 > 0} 𝛾±(⊤±) ≜ Z
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Encoding of sign properties (of an individual variable)

⊥±

<0 =0 >0

⩽0 ≠0 ⩾0

⊤±

ℙ± =

⊑ is the partial order in ℙ±

⨆ is the least upper bound in ℙ±
e.g. ⨆{⩽0, ≠0} = ⊤±, ⨆∅ = ⊥±

⨅ is the greatest lower bound in ℙ±
e.g. ⨅{⩽0, ≠0} = <0, ⨅∅ = ⊤±

Abstraction function: 𝛼±(𝑃) ≜ (𝑃 ⊆ ∅ ? ⊥± (3.28)
| 𝑃 ⊆ {𝑧 ∣ 𝑧 < 0} ? <0
| 𝑃 ⊆ {0} ? =0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 > 0} ? >0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ⩽ 0} ? ⩽0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ≠ 0} ? ≠0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ⩾ 0} ? ⩾0
: ⊤± )
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Galois connection
• The pair ⟨𝛼±, 𝛾±⟩ of functions satisfies 𝛼±(𝑃) ⊑ 𝑄 ⇔ 𝑃 ⊆ 𝛾±(𝑄)
𝛼±(𝑃) ⊑ 𝑄
⇔ 𝛼±(𝑃) ⊑ ≠0 Hin case 𝑄 = ≠0, other cases are similarI
⇔ 𝛼±(𝑃) ∈ {⊥±, <0, ≠0, >0} Hdef. I
⇔ 𝑃 ⊆ ∅ ∨ 𝑃 ⊆ {𝑧 ∣ 𝑧 < 0} ∨ 𝑃 ⊆ {𝑧 ∣ 𝑧 > 0} ∨ 𝑃 ⊆ {𝑧 ∣ 𝑧 ≠ 0} Hdef. 𝛼±I
⇔ 𝑃 ⊆ {𝑧 ∣ 𝑧 ≠ 0} Hdef. ⊆I
⇔ 𝑃 ⊆ 𝛾±(≠0) Hdef. 𝛾±I
⇔ 𝑃 ⊆ 𝛾±(𝑄) Hcase 𝑄 = ≠0I

• This is the definition of a Galois connection

• We write ⟨℘(Z), ⊆⟩ −−−−−→←−−−−−𝛼±
𝛾±
⟨ℙ±, ⊑⟩

• This will be further generalized.
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Sign abstract semantics
SJAK ∈ (V → ℙ±) → ℙ±

SJ1K𝑃 ≜ >0
SJxK𝑃 ≜ 𝑃(x)

SJA1 - A2K𝑃 ≜ SJA1K𝑃 -± SJA2K𝑃}
𝑥 -± 𝑦 𝑦

⊥± <0 =0 >0 ⩽0 ≠0 ⩾0 ⊤±
⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥±
<0 ⊥± ⊤± <0 <0 ⊤± ⊤± <0 ⊤±
=0 ⊥± >0 =0 <0 ⩾0 ≠0 ⩽0 ⊤±

𝑥 >0 ⊥± >0 >0 ⊤± >0 ⊤± ⊤± ⊤±
⩽0 ⊥± >0 ⩽0 ⊤± ⊤± ⊤± ⩽0 ⊤±
≠0 ⊥± ⊤± ≠0 ⊤± ⊤± ⊤± ⊤± ⊤±
⩾0 ⊥± >0 ⩾0 ⊤± ⩾0 ⊤± ⊤± ⊤±
⊤± ⊥± ⊤± ⊤± ⊤± ⊤± ⊤± ⊤± ⊤±
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Calculational design of the rule of signs

>0 -± ⩽0
≜ 𝛼±({𝑥 − 𝑦 ∣ 𝑥 ∈ 𝛾±(>0) ∧ 𝑦 ∈ 𝛾±(⩽0)}
= 𝛼±({𝑥 − 𝑦 ∣ 𝑥 > 0 ∧ 𝑦 ⩽ 0})
= 𝛼±({𝑥 − 𝑦 ∣ 𝑥 > 0 ∧ −𝑦 ⩾ 0})
⊆ 𝛼±({𝑥 − 𝑦 ∣ 𝑥 − 𝑦 > 0})
= 𝛼±({𝑧 ∣ 𝑧 > 0})
= >0

Same calculus for all other cases (can be automated with a theorem prover, so called
predicate abstraction).
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Sign abstract semantics (revisited)
• If a variable y has sign ⊥±, then 𝛾±(⊥±) = ∅ so the expression is not evaluated hence

returns no value
• Define ↧±[𝑃]𝑠 ≜ (∃y ∈ V . 𝑃(y) = ⊥± ? ⊥± : 𝑠 ) to force returning ⊥± if a variable has

abstract value ⊥±
• The following sign abstract semantics is more precise:

𝓢±J1K𝑃 = ↧±[𝑃](>0) (3.19)
𝓢±JxK𝑃 = ↧±[𝑃](𝑃(x))

𝓢±JA1 - A2K𝑃 = (𝓢±JA1K𝑃) -± (𝓢±JA2K𝑃)
• It follows that ∃x ∈ V . 𝑃(x) = ⊥± implies 𝓢±JAK𝑃 = ⊥±.
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Soundness
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Sign concretization
• Sign

𝛾±(⊥±) ≜ ∅ 𝛾±(⩽0) ≜ {𝑧 ∈ Z ∣ 𝑧 ⩽ 0} (3.21)
𝛾±(<0) ≜ {𝑧 ∈ Z ∣ 𝑧 < 0} 𝛾±(≠0) ≜ {𝑧 ∈ Z ∣ 𝑧 ≠ 0}
𝛾±(=0) ≜ {0} 𝛾±(⩾0) ≜ {𝑧 ∈ Z ∣ 𝑧 ⩾ 0}
𝛾±(>0) ≜ {𝑧 ∈ Z ∣ 𝑧 > 0} 𝛾±(⊤±) ≜ Z

• Sign environment

̇𝛾±( ±𝜌) ≜ {𝜌 ∈ V → Z ∣ ∀x ∈ V . 𝜌(x) ∈ 𝛾±( ±𝜌(x))} (3.22)

• Sign abstract property

̈𝛾±(𝑃) ≜ {𝓢 ∈ (V → Z) → Z ∣ ∀ ±𝜌 ∈ V → ℙ± . ∀𝜌 ∈ ̇𝛾±( ±𝜌) . 𝓢(𝜌) ∈ 𝛾±(𝑃( ±𝜌))} (3.23)
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Sign abstraction
• Value property

𝛼±(𝑃) ≜ (𝑃 ⊆ ∅ ? ⊥± (3.28)
| 𝑃 ⊆ {𝑧 ∣ 𝑧 < 0} ? <0
| 𝑃 ⊆ {0} ? =0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 > 0} ? >0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ⩽ 0} ? ⩽0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ≠ 0} ? ≠0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ⩾ 0} ? ⩾0
: ⊤± )

• Environment property
�̇�±(𝑃) ≜ 𝜆 x ∈V .𝛼±({𝜌(x) ∣ 𝜌 ∈ 𝑃}) (3.31)

• Semantics property
�̈�±(𝑃) ≜ 𝜆 ±𝜌 ∈V → ℙ± .𝛼±({𝓢(𝜌) ∣ 𝓢 ∈ 𝑃 ∧ 𝜌 ∈ ̇𝛾±( ±𝜌)}) (3.32)
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Example of environment property abstraction
• The property of environments such that x is equal to 1:

{𝜌 ∈ V → Z ∣ 𝜌(x) = 1}
• Sign abstraction:
�̇�±({𝜌 ∈ V → Z ∣ 𝜌(x) = 1})
≜ 𝜆 y ∈V .𝛼±({𝜌(y) ∣ 𝜌 ∈ {𝜌 ∈ V → Z ∣ 𝜌(x) = 1}})
= 𝜆 y ∈V . ( y = x ? 𝛼±({1}) : 𝛼±(Z) )
= 𝜆 y ∈V . ( y = x ? >0 : ⊤± )

• Sign concretization:
̇𝛾±(𝜆 y ∈V . ( y = x ? >0 : ⊤± ))

≜ {𝜌 ∈ V → Z ∣ ∀z ∈ V . 𝜌(z) ∈ 𝛾±(𝜆 y ∈V . ( y = x ? >0 : ⊤± )(z))}
= {𝜌 ∈ V → Z ∣ 𝜌(x) > 0}
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Galois connections
• Value to sign

⟨℘(Z), ⊆⟩ −−−−−→←−−−−−𝛼±
𝛾±
⟨ℙ±, ⊑⟩

• Value environment to sign environment
⟨℘(V → Z), ⊆⟩ −−−−−→←−−−−−�̇�±

̇𝛾±
⟨V → ℙ±, ⊑̇±⟩

• Semantic to sign abstract semantic property
⟨℘((V → Z) → Z), ⊆⟩ −−−−−→←−−−−−�̈�±

̈𝛾±
⟨(V → ℙ±) → ℙ±, ⊑̇±⟩
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Soundness of the abstract sign semantics
• The abstract sign semantics is an abstraction of the collecting property

𝓢ℂJAK ⊆ ̈𝛾±(𝓢±JAK)
⇔ �̈�±(𝓢ℂJAK) ⊑̈ 𝓢±JAK

• Precision loss: if the sign of x is ⩽0 then the sign of x - x is ⊤± not =0
• The absolute value is abstracted away
• No precision loss for multiplication ×
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Calculational design of the sign semantics
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Case when ∃x ∈ V . ±𝜌(x) = ⊥± so that ̇𝛾±( ±𝜌) = ∅

�̈�±(𝓢ℂJAK) ±𝜌
= 𝛼±({𝓢(𝜌) ∣ 𝓢 ∈ 𝓢ℂJAK ∧ 𝜌 ∈ ̇𝛾±( ±𝜌)}) Hdef. (3.32) of �̈�±I
= 𝛼±({𝓐JAK(𝜌) ∣ 𝜌 ∈ ̇𝛾±( ±𝜌)}) Hdef. (3.11) of 𝓢ℂJAKI
= 𝛼±(∅) H∃x ∈ V . ±𝜌(x) = ⊥± so that ̇𝛾±( ±𝜌) = ∅I
= ⊥± Hdef. (3.28) of 𝛼±I
≜ 𝓢±JAK ±𝜌Hin accordance with (3.19) such that ∃x ∈ V . ±𝜌(x) = ⊥± implies 𝓢±JAK ±𝜌 = ⊥±.I
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Homework: Case of a variable x
�̈�±(𝓢ℂJxK) ±𝜌

= 𝛼±({𝓢(𝜌) ∣ 𝓢 ∈ 𝓢ℂJxK ∧ 𝜌 ∈ ̇𝛾±( ±𝜌)}) Hdef. (3.32) of �̈�±I
= 𝛼±({𝓐JxK(𝜌) ∣ 𝜌 ∈ ̇𝛾±( ±𝜌)}) Hdef. (3.11) of 𝓢ℂJxKI
= 𝛼±({𝜌(x) ∣ 𝜌 ∈ ̇𝛾±( ±𝜌)}) Hdef. (3.4) of 𝓐JxKI
= 𝛼±({𝜌(x) ∣ ∀y ∈ V . 𝜌(y) ∈ 𝛾±( ±𝜌(y))}) Hdef. (3.22) of ̇𝛾±I
= 𝛼±({𝜌(x) ∣ 𝜌(x) ∈ 𝛾±( ±𝜌(x))})Hsince 𝛾±( ±𝜌(y)) is not empty so for y ≠ x, 𝜌(y) can be chosen arbitrarily to

satisfy 𝜌(y) ∈ 𝛾±( ±𝜌(y))I
= 𝛼±({𝑥 ∣ 𝑥 ∈ 𝛾±( ±𝜌(x))}) Hletting 𝑥 = 𝜌(x)I
= 𝛼±(𝛾±( ±𝜌(x))) Hsince 𝑆 = {𝑥 ∣ 𝑧 ∈ 𝑆} for any set 𝑆I
= ±𝜌(x) Hby (3.35), 𝛼± ∘ 𝛾± is the identityI
≜ 𝓢±JxK ±𝜌 Hin accordance with (3.19) when ∀y ∈ V . ±𝜌(y) ≠ ⊥±I
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Other cases
• similar for �̈�±(𝓢ℂJ1K) ±𝜌
• by structural induction for �̈�±(𝓢ℂJA1 - A2K)
• See the course notes in the appendix.
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Chapter 11

Galois Connections and Abstraction
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Galois connections
• Given posets ⟨C, ⊑⟩ (the concrete domain) and ⟨A, ≼⟩ (the abstract domain), the

pair ⟨𝛼, 𝛾⟩ of functions 𝛼 ∈ C→ A (the lower adjoint or abstraction) and 𝛾 ∈ A→ C
(the upper-adjoint or concretization) is a Galois connection (GC) if and only if

∀𝑃 ∈ C . ∀𝑃 ∈ A . 𝛼(𝑃) ≼ 𝑃 ⇔ 𝑃 ⊑ 𝛾(𝑃) (11.1)

which we write

⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩ .
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Example: homomorphic/partition abstraction
• Let 𝐶 and 𝐴 be sets, ℎ ∈ 𝐶 → 𝐴
• 𝛼ℎ(𝑆) ≜ {ℎ(𝑒) ∣ 𝑒 ∈ 𝑆}
• 𝛾ℎ(𝑆) ≜ {𝑒 ∈ 𝑆 ∣ ℎ(𝑒) ∈ 𝑆}
• ⟨℘(𝐶), ⊆⟩ −−−−−→←−−−−−𝛼ℎ

𝛾ℎ ⟨℘(𝐴), ⊆⟩

Proof
𝛼ℎ(𝑆) ⊆ 𝑆
⇔ {ℎ(𝑒) ∣ 𝑒 ∈ 𝑆} ⊆ 𝑆 Hdef. 𝛼ℎI
⇔ ∀𝑒 ∈ 𝑆 . ℎ(𝑒) ∈ 𝑆 Hdef. ⊆I
⇔ 𝑆 ⊆ {𝑒 ∣ ℎ(𝑒) ∈ 𝑆} Hdef. ⊆I
⇔ 𝑆 ⊆ 𝛾ℎ(𝑆) Hdef. 𝛾ℎI �
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Duality in order theory
• The properties derived for ⊑, ⊥, ⊤, ⊔, max, ⊓, min, etc. are valid for the dual ⊒, ⊤,
⊥, ⊓, min, ⊔, max, etc.

• Intuition:

⟘

s
⨆S 

min S

⟙

⨅S 
s

max S⟙

⟘

!

!
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Dual of a Galois connection
• The dual of a Galois connection ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ is the Galois connection ⟨A,

≼⟩ −−−−→←−−−−𝛾
𝛼 ⟨C, ⊑⟩

Proof ⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩

⇔ 𝛼(𝑥) ≼ 𝑦 ⇔ 𝑥 ⊑ 𝛾(𝑦) Hdef. Galois connectionI
𝛼(𝑥) ≽ 𝑦 ⇔ 𝑥 ⊒ 𝛾(𝑦) Hdual statementI
⇔ 𝛾(𝑦) ⊑ 𝑥 ⇔ 𝑦 ≼ 𝛼(𝑥) Hinverse order 𝑥 ⊒ 𝑦 ⇔ 𝑦 ⊑ 𝑥I
⇔ 𝛾(𝑥) ⊑ 𝑦 ⇔ 𝑥 ≼ 𝛼(𝑦) Hdummy variable renamingI
⇔ ⟨A, ≼⟩ −−−−→←−−−−𝛾

𝛼 ⟨C, ⊑⟩ Hdef. Galois connectionI �
• Dualization of a statement involving Galois connections consists in exchanging the

adjoints
• If an adjoint has a property, its adjoint has the dual property
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Example of dualization
Lemma 1 If ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ then 𝛼 is increasing. �

Proof Assume 𝑃 ⊑ 𝑃′. By 𝛼(𝑃′) ≼ 𝛼(𝑃′) we have 𝑃′ ⊑ 𝛾(𝛼(𝑃′)) so 𝑃 ⊑ 𝛾(𝛼(𝑃′)) by
transitivity hence 𝛼(𝑃) ⊑ 𝛼(𝑃′) by definition of a GC, proving that 𝛼 is increasing. �
Lemma 2 If ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ then 𝛾 is increasing. �

Proof By duality (increasing is self-dual so the dual of “𝛼 is increasing” is “𝛾 is
increasing”). �
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Example of dualization
• In a Galois connection ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ we have 𝛼 ∘ 𝛾 ∘ 𝛼 = 𝛼

Proof homework For all 𝑥 ∈ C and 𝑦 ∈ A,
𝛼(𝑥) ≼ 𝛼(𝑥) HreflexivityI
⇒ 𝑥 ⊑ 𝛾(𝛼(𝑥)) Hdef. GCI
⇒ 𝛼(𝑥) ≼ 𝛼(𝛾(𝛼(𝑥))) H𝛼 increasingI
𝛾(𝑦) ⊑ 𝛾(𝑦) HreflexivityI
⇒ 𝛼(𝛾(𝑦)) ≼ 𝑦 Hdef. GCI
⇒ 𝛼(𝛾(𝛼(𝑥))) ≼ 𝛼(𝑥) Hfor 𝑦 = 𝛼(𝑥)I
𝛼(𝑥) = 𝛼(𝛾(𝛼(𝑥))) HantisymmetryI �

• The dual is 𝛾 ∘ 𝛼 ∘ 𝛾 = 𝛾.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 81/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Equivalent definition of Galois connections
• ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ if and only if 𝛼 ∈ C→ A and 𝛾 ∈ A→ C satisfy

(1) 𝛼 is increasing;
(2) 𝛾 is increasing;
(3) ∀𝑥 ∈ C . 𝑥 ⊑ 𝛾 ∘ 𝛼(𝑥) (i.e. 𝛾 ∘ 𝛼 is extensive)
(4) ∀𝑦 ∈ A . 𝛼 ∘ 𝛾(𝑦) ≼ 𝑦 (i.e. 𝛼 ∘ 𝛾 is reductive) �
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𝛼 preserves existing lubs

Lemma 3 If ⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩ then 𝛼 preserves lubs that may exist in Ci.e.

let ⊔ be the partially defined lub for ⊑ in C and ⋎ be the partially defined lub
for ≼ in A. Let 𝑆 ∈ ℘(C) be any subset of C. If ⨆𝑆 exists in C then the upper
bound ⋎{𝛼(𝑒) ∣ 𝑒 ∈ 𝑆} exists in C and is equal to 𝛼(⨆ 𝑆). �

Proof By existence and definition of the lub ⨆𝑆, we have ∀𝑒 ∈ 𝑆 . 𝑒 ⊑ ⨆ 𝑆 so
𝛼(𝑒) ≼ 𝛼(⨆ 𝑆) since 𝛼 is increasing. It follows that 𝛼(⨆ 𝑆) is an upper bound of
{𝛼(𝑒) ∣ 𝑒 ∈ 𝑆}. Let 𝑢 be any upper bound of this set {𝛼(𝑒) ∣ 𝑒 ∈ 𝑆} so that
∀𝑒 ∈ 𝑆 . 𝛼(𝑒) ≼ 𝑢. By definition of a GC, ∀𝑒 ∈ 𝑆 . 𝑒 ⊑ 𝛾(𝑢). So 𝛾(𝑢) is an upper
bound of 𝑆. By existence and definition of the lub ⨆𝑆, ⨆𝑆 ⊑ 𝛾(𝑢) so 𝛼(⨆ 𝑆) ≼ 𝑢
proving that 𝛼(⨆ 𝑆), which exists since 𝛼 is a total function, is the lub of
{𝛼(𝑒) ∣ 𝑒 ∈ 𝑆} denoted ⋎{𝛼(𝑒) ∣ 𝑒 ∈ 𝑆}. �

• By duality 𝛾 preserves existing meets.
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lub-preserving 𝛼

Lemma 4 If 𝛼 preserves existing lubs and 𝛾(𝑦) ≜ ⨆{𝑥 ∈ C ∣ 𝛼(𝑥) ≼ 𝑦} is well-
defined then ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩. �

Proof 𝑥 ⊑ 𝛾(𝑦)
⇒ 𝑥 ⊑ ⨆{𝑥′ ∈ C ∣ 𝛼(𝑥′) ≼ 𝑦} Hdef. 𝛾I
⇒ 𝛼(𝑥) ≼ 𝛼(⨆{𝑥′ ∈ C ∣ 𝛼(𝑥′) ≼ 𝑦}) H𝛼 preserves existing lubs so is increasingI
⇒ 𝛼(𝑥) ≼⋎{𝛼(𝑥′) ∣ 𝑥′ ∈ C ∧ 𝛼(𝑥′) ≼ 𝑦}) H𝛼 preserves existing lubsI
⇒ 𝛼(𝑥) ≼ 𝑦Hsince 𝑦 is an upper bound of {𝛼(𝑥′) ∣ 𝛼(𝑥′) ≼ 𝑦} greater than or equal to the

lub ⋎{𝛼(𝑥′) ∣ 𝛼(𝑥′) ≼ 𝑦}I
⇒ 𝑥 ≼ ⨆{𝑥′ ∈ C ∣ 𝛼(𝑥′) ≼ 𝑦} Hsince 𝑥 ∈ {𝑥′ ∈ C ∣ 𝛼(𝑥′) ≼ 𝑦}I
⇒ 𝑥 ≼ 𝛾(𝑦) Hdef. 𝛾I �
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Uniqueness of adjoints

Lemma 5 In a Galois connection one adjoint uniquely determines the other. �
Proof Observe that ∀𝑃 ∈ C . 𝛼(𝑃) = ⊓{𝑃 ∣ 𝛼(𝑃) ≼ 𝑃} so, by definition of a GC,
𝛼(𝑃) = ⊓{𝑃 ∣ 𝑃 ⊑ 𝛾(𝑃)} i.e. 𝛾 uniquely determines 𝛼. Dually 𝛼 uniquely determines 𝛾
since ∀𝑃 ∈ A . 𝛾(𝑃) = ⊔{𝑃 ∣ 𝛼(𝑃) ≼ 𝑃}. �

• This lemma is useful in situations where only one adjoint is defined explicitly since
then the other is also uniquely determined.

• Note: for given concrete and abstract partial orders
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Galois retraction (surjection/insertion)
• If ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ then

• 𝛼 is surjective, if and only if
• 𝛾 is injective, if and only if
• ∀𝑃 ∈ A . 𝛼 ∘ 𝛾(𝑃) = 𝑃.

• This is denoted ⟨C, ⊑⟩ −−−−→⟶←−−−−−−𝛼
𝛾
⟨A, ≼⟩ and called a Galois retraction (Galois

surjection, insertion, etc.).
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Abstraction
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Sound abstraction
• Assume ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩

• We say that 𝑃 ∈ A is a sound abstraction of 𝑃 ∈ C if and only if
𝑃 ⊑ 𝛾(𝑃)
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Examples of sound abstractions

⊥±

⩽0 ⩾0

⊤±

⟨ℙ±, ⊑±⟩ =

𝛾±(⊥±) ≜ ∅
𝛾±(⩽0) ≜ {𝑧 ∣ 𝑧 ⩽ 0}
𝛾±(⩾0) ≜ {𝑧 ∣ 𝑧 ⩾ 0}
𝛾±(⊤±) ≜ Z

property sound abstractions best abstraction
{1, 42} ⩾0 and ⊤± ⩾0

{0} ⩽0, ⩾0, and ⊤± none

• There is no Galois connection between ⟨℘(Z), ⊆⟩ and ⟨ℙ±, ⊑±⟩.
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Better abstraction
• Assume ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩

• Let 𝑃1, 𝑃2 ∈ A be sound abstractions of the concrete property 𝑃 ∈ C.
• We say that 𝑃1 is better/more precise/stronger/less abstract than 𝑃2 if and only if
𝑃1 ≼ 𝑃2.
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Best abstraction
• Assume ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩

• Then 𝛼(𝑃) is the best/most precise/strongest/least abstract property which is a
sound abstraction of the concrete property 𝑃.

Proof
• 𝛼(𝑃) is a sound abstraction of 𝑃 since 𝑃 ⊑ 𝛾(𝛼(𝑃)).
• 𝛼(𝑃) is the least sound abstraction of 𝑃 since 𝛼(𝑃) = ⨅{𝑃 ∣ 𝑃 ⊑ 𝛾(𝑃)}. �
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Examples of best abstractions

⊥±

⩽0 ⩾0

⊤±

⟨ℙ±, ⊑±⟩ =

𝛾±(⊥±) ≜ ∅
𝛾±(⩽0) ≜ {𝑧 ∣ 𝑧 ⩽ 0}
𝛾±(⩾0) ≜ {𝑧 ∣ 𝑧 ⩾ 0}
𝛾±(⊤±) ≜ Z

property sound abstractions best abstraction
{1, 42} ⩾0 and ⊤± ⩾0

{0} ⩽0, ⩾0, and ⊤± none

• There is no Galois connection between ⟨℘(Z), ⊆⟩ and ⟨ℙ±, ⊑±⟩.
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Combination of Galois connections
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Composition of Galois connections
• The composition of Galois connections ⟨P1, ⊑⟩ −−−−−→←−−−−−𝛼1

𝛾1 ⟨P2, ≼⟩ and ⟨P2,

≼⟩ −−−−−→←−−−−−
𝛼2

𝛾2
⟨P3, ⊴⟩ is the Galois connection ⟨P1, ⊑⟩ −−−−−−−→←−−−−−−−

𝛼2∘𝛼1

𝛾1∘𝛾2 ⟨P3, ⊴⟩.
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Galois connections pairs
• Let ⟨C1, ⊑1⟩ −−−−−→←−−−−−𝛼1

𝛾1 ⟨A1, ≼1⟩ and ⟨C2, ⊑2⟩ −−−−−→←−−−−−𝛼2
𝛾2 ⟨A, ≼2⟩;

• ⟨C1 × C2, ⊑̇⟩ −−−−→←−−−−𝛼
𝛾
⟨A1 ×A2, ≼̇⟩, where

• 𝛼(⟨𝑥, 𝑦⟩) = ⟨𝛼1(𝑥), 𝛼2(𝑦)⟩,
• 𝛾(⟨𝑥, 𝑦⟩) = ⟨𝛾1(𝑥), 𝛾2(𝑦)⟩, and

• ⊑̇ and ≼̇ are componentwise.
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Higher-order Galois connections
• Let ⟨C1, ⊑1⟩ −−−−−→←−−−−−𝛼1

𝛾1 ⟨A1, ≼1⟩ and ⟨C2, ⊑2⟩ −−−−−→←−−−−−𝛼2
𝛾2 ⟨A, ≼2⟩;

• ⟨C1 ↗⟶C2, ⊑̇2⟩ −−−−→←−−−−𝛼
𝛾
⟨A1 ↗⟶A2, ≼̇2⟩, where

• 𝛼 = 𝜆𝑓 .𝛼2 ∘ 𝑓 ∘ 𝛾1, and
• 𝛾 = 𝜆𝑓 . 𝛾2 ∘ 𝑓 ∘ 𝛼1.

C1

A1

C2

A2

𝑓

𝑓

𝛾1 𝛼1 𝛾2 𝛼2
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Conclusion on abstraction by Galois connections
• We can represent abstract program properties by posets and establish the

correspondence with the concrete properties using a Galois connection.
• The concrete order structure is preserved in the abstract and inversely.
• Otherwise stated concrete and abstract implications coincide up to the Galois

connection.
• So proofs in the abstract domain ⟨A, ≼⟩ using the abstract implication/order ≼ is

valid in the concrete ⟨C, ⊑⟩ for ⊑, up to this GC.
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The End of Part 2, 30mn break
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Part 3

Verification and proofs
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Verification and proofs
• We show that verification methods and program logics are (non-computable)

abstractions of the program collecting semantics.
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Program properties
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Program semantic properties
• The entities are semantics of program P i.e. sets of maximal traces 𝔈 = ℘(𝕋+∞)
• The properties are sets of semantics of program P i.e. sets of sets of maximal traces
℘(𝔈) = ℘(℘(𝕋+∞))2

2also called “hyperproperties”
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Example of program semantic property (Cont’d)
𝑃 ≜ ℘({𝜋 ∈ 𝕋+ ∣ 𝝆(𝜋)x = 0}) ∪ ℘({𝜋 ∈ 𝕋+ ∣ 𝝆(𝜋)x = 1}) ∈ ℘(℘(𝕋+∞))

• 𝑃 means “all executions of P always terminate with x = 0 or all executions of P
always terminate with x = 1”.

𝑃 =

x=1
x=1

x=1……x=0x=0
x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… ……
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Example of program semantic property (Cont’d)

𝑃 =

x=1
x=1

x=1……x=0x=0
x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… ……

• Assume program P has this property 𝑃 so 𝓢+∞JPK ∈ 𝑃.
• Executing program P once, we know the result of all other executions.
• If the execution terminates with x = 0 (respectively x = 1) the property 𝑃 implies

that all other possible executions will always terminate with x = 0 (respectively
x = 1).
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Collecting semantics
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Collecting semantics (for maximal traces)
• The strongest semantic property of program P

𝓢ℂJPK ≜ {𝓢+∞JPK} . (8.5)

• Program P has property 𝑃 ∈ ℘(℘(𝕋+∞)) is
• 𝓢+∞JPK ∈ 𝑃, or equivalently
• {𝓢+∞JPK} ⊆ 𝑃 i.e. 𝑃 is implied by the collecting semantics of program P.

• So we can use implication ⊆ (⇒) instead of ∈ (with no direct equivalent for
predicates in logic).
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Trace properties
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Trace properties
• By “program property” or “semantic property” most computer scientists refer to

“trace properties”
• elements 𝔈 = 𝕋+∞, traces
• trace properties ℘(𝔈) = ℘(𝕋+∞)
• safety and liveness are trace properties
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Example of trace properties
• the program trace semantics 𝓢+∞JPK ∈ ℘(𝕋+∞) is a trace property.
• {𝜋 ∈ 𝕋+ ∣ 𝝆(𝜋)x = 0} ∈ ℘(𝕋+∞) is the trace property of “terminating with x=0”.
• 𝑃 = {𝜋 ∈ 𝕋+ ∣ 𝝆(𝜋)x ∈ {0, 1}} ∈ ℘(𝕋+∞) is the trace property of “terminating with

x=0 or x=1”.

𝑃 =

x=1
x=1

x=1……x=0x=0
x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… ……

• Trace properties in ℘(𝕋+∞) are less expressive than semantic properties in
℘(℘(𝕋+∞))
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Abstraction of a semantic property into a trace property (Cont’d)
• Any semantic property 𝑃 can be abstracted into a less precise trace property 𝛼𝕋(𝑃)

defined as
𝛼𝕋 ∈ ℘(℘(𝕋+∞)) → ℘(𝕋+∞) 𝛾𝕋 ∈ ℘(𝕋+∞) → ℘(℘(𝕋+∞))
𝛼𝕋(𝑃) = ⋃𝑃 𝛾𝕋(𝑃) = ℘(𝑃)

𝑃 =
x=1

x=1
x=1……x=0x=0

x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… …… 𝑃=𝛼𝕋(𝑃) =
x=1

x=1
x=1……x=0x=0

x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… ……

• 𝑃 and 𝑃 both express that program executions always terminate with a boolean
value for x.

• 𝑃 is stronger since it expresses that the result is always the same while 𝑃 doesn’t.
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Abstraction of a semantic property into a trace property (Cont’d)

• Galois connection ⟨℘(℘(𝕋+∞)), ⊆⟩ −−−−−→⟶←−−−−−−−
𝛼𝕋

𝛾𝕋
⟨℘(𝕋+∞), ⊆⟩

• Proof:
𝛼𝕋(𝑃) ⊆ 𝑃
⇔ ⋃𝑃 ⊆ 𝑃 Hdef. 𝛼𝕋I
⇔ {𝑥 ∣ ∃𝑋 ∈ 𝑃 . 𝑥 ∈ 𝑋} ⊆ 𝑃 Hdef. ⋃I
⇔ ∀𝑋 ∈ 𝑃 . ∀𝑥 ∈ 𝑋 . 𝑥 ∈ 𝑃 Hdef. ⊆I
⇔ ∀𝑋 ∈ 𝑃 . 𝑋 ⊆ 𝑃 Hdef. ⊆I
⇔ 𝑃 ⊆ {𝑋 ∣ 𝑋 ⊆ 𝑃} Hdef. ⊆I
⇔ 𝑃 ⊆ ℘(𝑃) Hdef. ℘I
⇔ 𝑃 ⊆ 𝛾𝕋(𝑃) Hdef. 𝛾𝕋.I

• 𝛼𝕋 is surjective (since 𝛼𝕋({𝑃}) = 𝑃).
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Reachability properties
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Reachability property
A relation I(ℓ) between values of variables attached to each program point ℓ that holds
whenever the program point ℓ is reached during execution
ℓ1 /* 𝑥 = 0 */

x = x + 1 ;
while ℓ2 (tt) /* 1 ⩽ 𝑥 ⩽ 2 */ {

ℓ3 /* 1 ⩽ 𝑥 ⩽ 2 */
x = x + 1 ;
if ℓ4 (x > 2) /* 2 ⩽ 𝑥 ⩽ 3 */

ℓ5 /* 𝑥 = 3 */
break ;

}
ℓ6 /* 𝑥 = 3 */

;
ℓ7 /* 𝑥 = 3 */

I(ℓ1)≜{𝜌 ∈ Ev ∣ ∀y ∈ V . 𝜌(y) = 0}
I(ℓ2)≜I(ℓ3)≜{𝜌 ∈ Ev ∣ 1 ⩽ 𝜌(x) ⩽ 2 ∧ ∀y ∈ V ⧵ {x} . 𝜌(y) = 0}

I(ℓ4)≜{𝜌 ∈ Ev ∣ 2 ⩽ 𝜌(x) ⩽ 3 ∧ ∀y ∈ V ⧵ {x} . 𝜌(y) = 0}
I(ℓ5)≜I(ℓ6)≜I(ℓ7)≜{𝜌 ∈ Ev ∣ 𝜌(x) = 3 ∧ ∀y ∈ V ⧵ {x} . 𝜌(y) = 0}
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Abstraction of a trace property into a reachability property (Cont’d)

𝛼𝕀 ∈ ℘(𝕋+∞) → (L→ ℘(Ev)) (8.12)
𝛼𝕀(Π) ≜ 𝜆 ℓ . {𝝆(𝜋ℓ) ∣ ∃𝜋′ . 𝜋ℓ𝜋′ ∈ Π}

collects at each program point ℓ of each trace the possible values of the variables at
that point.
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Abstraction of a trace property into a reachability property (Cont’d)

• Galois connection ⟨℘(𝕋+∞), ⊆⟩ −−−−−→←−−−−−
𝛼𝕀

𝛾𝕀
⟨(L→ ℘(Ev)), ⊆̇⟩

• Proof:
𝛼𝕀(Π) ⊆̇ I
⇔ 𝜆 ℓ . {𝝆(𝜋ℓ) ∣ ∃𝜋′ . 𝜋ℓ𝜋′ ∈ Π} ⊆̇ I Hdef. 𝛼𝕀I
⇔ ∀ℓ . {𝝆(𝜋ℓ) ∣ ∃𝜋′ . 𝜋ℓ𝜋′ ∈ Π} ⊆ I(ℓ) Hpointwise def. ⊆̇I
⇔ ∀ℓ . {𝝆(𝜋ℓ) ∣ ∃𝜋 ∈ Π . ∃𝜋′ . 𝜋 = 𝜋ℓ𝜋′} ⊆ I(ℓ) Hdef. ∈I
⇔ ∀ℓ . ∀𝜋 ∈ Π . ∀𝜋′ . 𝜋 = 𝜋ℓ𝜋′ ⇒ 𝝆(𝜋ℓ) ∈ I(ℓ) Hdef. ⊆I
⇔ ∀𝜋 ∈ Π . ∀𝜋′ . ∀ℓ . 𝜋 = 𝜋ℓ𝜋′ ⇒ 𝝆(𝜋ℓ) ∈ I(ℓ) Hdef. ∀I
⇔ Π ⊆ {𝜋 ∣ ∀𝜋′ . ∀ℓ . 𝜋 = 𝜋ℓ𝜋′ ⇒ 𝝆(𝜋ℓ) ∈ I(ℓ)} Hdef. ⊆I
⇔ Π ⊆ 𝛾𝕀(I)
by defining 𝛾𝕀(I) ≜ {𝜋 ∣ ∀𝜋′ . ∀ℓ . 𝜋 = 𝜋ℓ𝜋′ ⇒ 𝝆(𝜋ℓ) ∈ I(ℓ)}.
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Hierarchy of program properties
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Hierarchy of program properties/semantics

•
℘(℘(𝕋+∞)) 𝓢ℂJPK ≜ {𝓢+∞JPK}, collecting semantics

• ℘(𝕋+∞) 𝓢𝕋JPK = 𝓢+∞JPK
= 𝛼𝕋(𝓢ℂJPK) trace semantics

• L→ ℘(Ev)
𝓢𝕀JPK = 𝛼𝕀(𝓢𝕋JPK)
= 𝛼𝕀 ∘ 𝛼𝕋(𝓢ℂJPK) invariance/

reachability
semantics

𝛾𝕋 𝛼𝕋

𝛾𝕀 𝛼𝕀

𝛼𝕀 ∘ 𝛼𝕋

𝛾𝕋 ∘ 𝛾𝕀
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Chapter 16

Fixpoint abstraction
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Fixpoint abstraction
• C is a concrete domain
• 𝑓 ∈ C ↗⟶C is an increasing concrete transformer
• ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ is an abstraction into A

• Problem: abstract lfp⊑ 𝑓
• first abstract the concrete transformer 𝑓 into an abstract transformer
𝑓 ∈ A ↗⟶A

• then abstract 𝛼(lfp⊑ 𝑓) into lfp≼ 𝑓.
• This abstraction may be

• exact i.e. 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓
• or sound but imprecise, in which case we get an overapproximation
𝛼(lfp⊑ 𝑓) ≼ lfp≼ 𝑓.
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Example of fixpoint abstraction
f

… 

f 0=⊥
f 1

f 2
f 3 

f ∞ = ⨆i f i

f ∞+1

f 4 

… 

α

γ
α

α

α

γ

γ

f 0=α (⊥)

f 1

f 2
f 3 =f ( f 3

 )

f

γ

f

f

C A

exact fixpoint abstraction

f

… 

f 0=⊥
f 1

f 2
f 3 

f ∞ = ⨆i f i

f ∞+1

f 4 

… 

α

γ
α

α

α

γ

γ

f 0=α (⊥)

f 2 =f ( f 2
 )

f 1

f

γ

f

f

C A

imprecise fixpoint abstraction
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Transformer abstraction
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Transformer abstraction
• To abstract a fixpoint 𝛼(lfp⊑ 𝑓), we first abstract its transformer 𝑓.
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f
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Theorem (16.1, transformer abstraction) If ⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩ then ⟨C ↗⟶

C, ⊑̇⟩ −−−−→←−−−−⃗𝛼
⃗𝛾 ⟨A ↗⟶A, ≼̇⟩ where ⊑̇ and ≼̇ are pointwise (i.e. 𝑓 ⊑̇ 𝑔 if and only if

∀𝑥 ∈ C . 𝑓(𝑥) ⊑ 𝑔(𝑥)), �⃗�(𝑓) = 𝛼 ∘ 𝑓 ∘ 𝛾, and �⃗�(𝑓) = 𝛾 ∘ 𝑓 ∘ 𝛼.
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Fixpoint over-approximation
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Fixpoint over-approximation (cont’d)
• In general abstracting the fixpoint transformer by a larger one yields a fixpoint

over-approximation.
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𝑓 ⊑̇ 𝑓 ∀𝑥 . 𝑓(𝑥) ⊑ 𝑥 ⇒ 𝑓(𝑥) ⊑ 𝑥 ∀𝑥 ⊑ lfp⊑ 𝑓 . 𝑓(𝑥) ⊑ 𝑓(𝑥)

fixpoint over-approximation
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Fixpoint over-approximation (cont’d)
Theorem (16.3, pointwise fixpoint over-approximation) Assume that ⟨C, ⊑,
⊥, ⊤, ⊔, ⊓⟩ is a complete lattice, 𝑓, 𝑔 ∈ C ↗⟶C are increasing, and 𝑓 ⊑̇ 𝑔 then
lfp⊑ 𝑓 ⊑ lfp⊑ 𝑔.

• Also valid for cpos.
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Sound fixpoint abstraction (cont’d)
• An abstract fixpoint lfp≼ 𝑓 is a sound fixpoint abstraction of a concrete fixpoint

lfp⊑ 𝑓 whenever 𝛼(lfp⊑ 𝑓) ≼ lfp≼ 𝑓.

Theorem (16.6, fixpoint over-approximation in a complete lattice) Assume
that ⟨C, ⊑, ⊥, ⊤, ⊔, ⊓⟩ and ⟨A, ≼, 0, 1, ⋎, ⋏⟩ are complete lattices, ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A,

≼⟩, and 𝑓 ∈ C ↗⟶C is increasing. Then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝛼 ∘ 𝑓 ∘ 𝛾).
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Sound fixpoint abstraction (cont’d)

Corollary (16.8, fixpoint approximation by transformer over-approximation)
Assume that ⟨C, ⊑, ⊥, ⊤, ⊔, ⊓⟩ and ⟨A, ≼, 0, 1, ⋎, ⋏⟩ are complete lattices, ⟨C,
⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩, 𝑓 ∈ C ↗⟶C and 𝑓 ∈ A ↗⟶A are increasing, and 𝛼 ∘ 𝑓 ∘ 𝛾 ≼̇ 𝑓.

Then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝑓).
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also in a cpo
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Theorem (16.12, fixpoint over-approximation in a cpo) Assume that ⟨C, ⊑,
⊥, ⊔⟩ is a cpo and ⟨A, ≼, 0, ⋏⟩ are cpos, ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩, and 𝑓 ∈ C 𝑢𝑐−−−→ C

is upper continuous.
Then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝛼 ∘ 𝑓 ∘ 𝛾).
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Corollary (16.10, fixpoint approximation by semi-commuting transformer)
Under the hypotheses of Corollary 16.8 assume instead that 𝛼 ∘ 𝑓 ≼̇ 𝑓 ∘ 𝛼 (semi-
commutation). Then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝑓).
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Exact fixpoint abstraction
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Exact versus sound fixpoint abstraction
• A sound fixpoint abstraction 𝛼(lfp⊑ 𝑓) ≼ lfp≼ 𝑓 is

• exact when 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓.
• It is sound but approximate (or imprecise) when 𝛼(lfp⊑ 𝑓) ≺ lfp≼ 𝑓.
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Exact fixpoint abstraction (cont’d)
Theorem (16.15, exact fixpoint abstraction in a complete lattice) Assume
that ⟨C, ⊑, ⊥, ⊤, ⊔, ⊓⟩ and ⟨A, ≼, 0, 1, ⋎, ⋏⟩ are complete lattices, 𝑓 ∈ C ↗⟶C

is increasing, ⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩, 𝑓 ∈ A ↗⟶A is increasing, and 𝛼 ∘ 𝑓 = 𝑓 ∘ 𝛼

(commutation property). Then 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓.
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Exact fixpoint abstraction (cont’d)
Theorem (16.16, exact fixpoint abstraction in a cpo) Assume that ⟨C, ⊑,
⊥, ⊔⟩ is a cpo, 𝑓 ∈ C 𝑢𝑐−−−→ C is upper continuous, ⟨C, ⊑⟩ −−−−→⟶←−−−−−−𝛼

𝛾
⟨A, ≼⟩ is a Galois

retraction, and 𝑓 ∈ A→ A satisfies the commutation property 𝛼 ∘ 𝑓 = 𝑓 ∘ 𝛼.
Then 𝑓 = 𝛼 ∘ 𝑓 ∘ 𝛾 is increasing and 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓 = ⋎

𝑛∈N
𝑓 𝑛(𝛼(⊥)).
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Reachability semantics
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Reachability abstraction
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Assertional abstraction

post ⃗r(𝓢)R0 ℓ ≜ {𝝆(𝜋0ℓ0𝜋1ℓ′) ∣ 𝝆(𝜋0ℓ0) ∈ R0 ∧
ℓ0𝜋1ℓ′ ∈ 𝓢(𝜋0ℓ0) ∧ ℓ′ = ℓ}

(18.1)

𝜋0

∈ 𝓢(𝜋0ℓ0)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
ℓ0
| 𝜋1

ℓ

| 𝜋2

𝝆(𝜋0ℓ0) ∈ R0 𝝆(𝜋0ℓ0𝜋1ℓ) ∈ post ⃗r(𝓢)R0 ℓ

⟨𝕋+ → ℘(𝕋+), ⊆̇⟩ −−−−−−−→←−−−−−−−
post ⃗r
𝛾 ⃗r
⟨℘(Ev) → L↦ ℘(Ev), ⊆̇⟩
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Assertional abstraction, Example
ℓ1 x = x + 1 ; (4.4)
while ℓ2 (tt) {
ℓ3 x = x + 1 ;
if ℓ4 (x > 2) ℓ5 break ;}ℓ6;ℓ7

We assume that all variables are initialized to 0. Maximal trace semantics

𝓢 ≜ {ℓ1 x = 1−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = 2−−−−−−−−−−→ ℓ4
¬(x > 2)
−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = 3−−−−−−−−−−→ ℓ4 x > 2−−−−−−−−−−→

ℓ5
break−−−−−−−−−−−→ ℓ6

skip
−−−−−−−−→ ℓ7}

(6.1)

The reachable states are
ℓ post ⃗r(𝓢)R0 ℓ
ℓ1 R0 = {𝜌 ∈ Ev ∣ ∀y ∈ V . 𝜌(y) = 0}
ℓ2, ℓ3 {𝜌[𝑥 ← 𝑖] ∣ 𝜌 ∈ R0 ∧ 𝑖 ∈ [1, 2]}
ℓ4 {𝜌[𝑥 ← 𝑖] ∣ 𝜌 ∈ R0 ∧ 𝑖 ∈ [2, 3]}

ℓ5, ℓ6, ℓ7 {𝜌[𝑥 ← 3] ∣ 𝜌 ∈ R0} �
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Calculational design of
the reachability semantics
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Calculational design of the reachability semantics
• by structural induction
• by calculating the exact reachability transformer from the prefix trace transformer
• by applying the exact fixpoint abstraction 16.15 for the iteration
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Reachability semantics of the assignment

Reachability of an assignment statement S ∶∶= x = A ;

�̂� ⃗rJSKR0 ℓ = ( ℓ = atJSK ? R0 (17.10)
| ℓ = afterJSK ? assign ⃗rJx, AKR0
: ∅ )

assign ⃗rJx, AKR0 ≜ {𝜌[x←𝓐JAK𝜌] ∣ 𝜌 ∈ R0}
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Reachability semantics of the conditional

Reachability of a conditional statement S ∶∶= if (B) S𝑡

�̂� ⃗rJSKR0 ℓ = ( ℓ = atJSK ? R0 (17.18)
| ℓ ∈ inJS𝑡K ? �̂� ⃗rJS𝑡K (test ⃗rJBKR0) ℓ
| ℓ = afterJSK ? �̂� ⃗rJS𝑡K (test ⃗rJBKR0) ℓ ∪ (test ⃗rJBKR0)
: ∅ )

test ⃗rJBKR0 ≜ {𝜌 ∈ R0 ∣𝓑JBK𝜌 = tt}
test ⃗rJBKR0 ≜ {𝜌 ∈ R0 ∣𝓑JBK𝜌 = ff}
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Reachability semantics of the statement list

Reachability of a statement list Sl ∶∶= Sl′ S

�̂� ⃗rJSlKR0 ℓ = ( ℓ ∈ labsJSl′K ⧵ {atJSK} ? �̂� ⃗rJSl′KR0 ℓ (17.20)
| ℓ ∈ labsJSK ? �̂� ⃗rJSK(�̂� ⃗rJSl′KR0 atJSK) ℓ
: ∅ )
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Reachability semantics of the iteration

Reachability of an iteration statement S ∶∶= while ℓ (B) S𝑏

�̂� ⃗rJSKR0 ℓ′ = (lfp ⊆̇𝓕 ⃗rJwhile ℓ (B) S𝑏KR0) ℓ′ (17.14)
𝓕 ⃗rJwhile ℓ (B) S𝑏KR0 𝑋 ℓ′ =

( ℓ′ = ℓ ? R0 ∪ �̂� ⃗rJS𝑏K (test ⃗rJBK𝑋(ℓ)) ℓ
| ℓ′ ∈ inJS𝑏K ⧵ {ℓ} ? �̂� ⃗rJS𝑏K (test ⃗rJBK𝑋(ℓ)) ℓ′
| ℓ′ = afterJSK ? test ⃗rJBK(𝑋(ℓ)) ∪ ⋃

ℓ″∈breaks-ofJS𝑏K
�̂� ⃗rJS𝑏K (test ⃗rJBK𝑋(ℓ)) ℓ″

: ∅ )
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Abstract domain and abstract interpreter
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Abstract domain
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The domain of properties, inclusion (i.e. logical implication), and the structural
definitions of the semantics have the following common structure.

semantics prefix trace �̂� ∗̇ reachability �̂� ⃗r abstract �̂�¤

℘(𝕋+) ↗⟶ (L → ℘(𝕋+)) ℘(Ev) ↗⟶ (L → ℘(Ev)) ℙ¤ ↗⟶ (L → ℙ¤)

domain ℘(𝕋+) ℘(Ev) ℙ¤

inclusion ⊆ ⊆ ⊑¤
abstraction 1℘(𝕋+)

3 �̈�𝝆 𝛼¤
infimum ∅ ∅ ⊥¤
join ∪ ∪ ⊔¤

assignment assign∗̇Jx, AK assign ⃗rJx, AK assign¤Jx, AK
test test∗̇JBK test ⃗rJBK test¤JBK

test∗̇JBK test ⃗rJBK test¤JBK

31𝑆 ≜ 𝜆𝑥∈ 𝑆 .𝑥 is the identity function on the set 𝑆.
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Definition (19.1, Domain well-definedness) We say that a domain

𝔻¤ ≜ ⟨ℙ¤, ⊑¤, ⊥¤, ⊔¤, assign¤Jx, AK, test¤JBK, test¤JBK⟩
is well-defined when ⟨ℙ¤, ⊑¤⟩ is a poset of properties with infimum ⊥¤, the lub ⊔¤ is
well-defined for pairs of properties, and ⊑¤-increasing chains (so ⟨ℙ¤, ⊑¤⟩ is a join-
lattice and a cpo), the assignment assign¤ is well-defined in (V ×E) → ℙ¤ ↗⟶ℙ¤,
and the tests test¤JBK and test¤JBK are well-defined in B→ ℙ¤ ↗⟶ℙ¤.

The abstract domain 𝔻¤ is an algebra while the domain of abstract properties ℙ¤ is a
set. So the mathematical structures are different. However, following mathematicians
that call Z the “ring of integers” where a ring is an algebraic structure and Z is a set,
we often say, by abuse of language, that ℙ¤ an abstract domain.
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Abstract structural semantics/interpreter
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The semantics can be implemented as instances of a generic abstract interpreter
defined below.

• Abstract semantics of a statement list Sl ∶∶= Sl′ S

�̂�¤JSlKR0 ℓ ≜ ( ℓ ∈ labsJSl′K ⧵ {atJSK} ? �̂�¤JSl′KR0 ℓ (19.5)
| ℓ ∈ labsJSK ? �̂�¤JSK(�̂�¤JSl′KR0 atJSK) ℓ
: ⊥¤ )

• Abstract semantics of an empty statement list Sl ∶∶= 𝜖

�̂�¤JSlKR0 ℓ ≜ ( ℓ = atJSlK ? R0 : ⊥¤ ) (19.6)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 155/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



• Abstract semantics of an assignment statement S ∶∶= x = A ;

�̂�¤JSKR0 ℓ = ( ℓ = atJSK ? R0 (19.7)
| ℓ = afterJSK ? assign¤Jx, AKR0
: ⊥¤ )

where assignJx, AK ∘ 𝛾 ⊑ 𝛾 ∘ assign¤Jx, AK.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 156/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



• Abstract semantics of a conditional statement S ∶∶= if (B) S𝑡

�̂�¤JSKR0 ℓ = ( ℓ = atJSK ? R0 (19.9)
| ℓ ∈ inJS𝑡K ? �̂�¤JS𝑡K (test¤JBKR0) ℓ
| ℓ = afterJSK ?

�̂�¤JS𝑡K (test¤JBKR0) ℓ ⊔¤ test¤JBKR0
: ⊥¤ )

where testJBK ∘ 𝛾 ⊑ 𝛾 ∘ test¤JBK and testJBK ∘ 𝛾 ⊑ 𝛾 ∘ test¤JBK.
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• Abstract semantics of an iteration statement S ∶∶= while ℓ (B) S𝑏

�̂�¤JSKR0 ℓ′ = lfp ⊑̇¤ (𝓕¤Jwhile ℓ (B) S𝑏KR0) ℓ′ (19.11)
𝓕¤Jwhile ℓ (B) S𝑏K ∈ ℙ¤ → ((L→ ℙ¤) → (L→ ℙ¤))
𝓕¤Jwhile ℓ (B) S𝑏KR0 𝑋 ℓ′ =

( ℓ′ = ℓ ? R0 ⊔¤ �̂�¤JS𝑏K (test¤JBK𝑋(ℓ)) ℓ
| ℓ′ ∈ inJS𝑏K ⧵ {ℓ} ? �̂�¤JS𝑏K (test¤JBK𝑋(ℓ)) ℓ′
| ℓ′ = afterJSK ? test¤JBK𝑋(ℓ) ⊔¤ ⨆¤

ℓ″∈breaks-ofJS𝑏K
�̂�¤JS𝑏K (test¤JBK𝑋(ℓ)) ℓ″

: ⊥¤ )
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• Abstract semantics of a break statement S ∶∶= ℓ break ;

�̂�¤JSKR0 ℓ = ( ℓ = atJSK ? R0 : ⊥¤ ) (19.12)
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Proof methods
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Invariance proof methods
• Invariance proof methods derive from the reachability semantics

• abstraction to verification conditions → Turing/Floyd/Naur proof method
• abstraction to Hoare triples → Hoare logic
• Fixpoints:

Theorem (22.1, Fixpoint induction) Let 𝑓 ∈ L ↗⟶ L be an increasing
function on a complete lattice ⟨L, ⊑, ⊥, ⊤, ⊓, ⊔⟩ and 𝑃 ∈ L.
We have lfp⊑ 𝑓 ⊑ 𝑃 ⇔ ∃𝐼 ∈ L . 𝑓(𝐼) ⊑ 𝐼 ∧ 𝐼 ⊑ 𝑃.
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Bibliography on verification and proofs
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The End of Part 3
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Part 4

Symbolic abstraction:
dependency analysis
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Motivation
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Dependency
Found in many reasonings on programs:

• Non-interference (confidentiality, integrity)
• Security, privacy
• Program slicing
• Temporal dependencies in synchronous languages (Esterelle, Lustre, Signal, …

called causality there)
• etc.
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Dependency
The existing definitions

• are given a priori (e.g. Cheney, Ahmed, and Acar, 2011; D. E. Denning and
P. J. Denning, 1977),

• without semantics justification (except Assaf, Naumann, Signoles, Totel, and
Tronel, 2017 (“hyper-collecting semantics”), Urban and Müller, 2018)

• are dependencies on program exit only
Our objective is to study principles, not to get a new powerful dependency analysis
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Dependency, informally
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Functional dependency
• A function 𝑓(… , 𝑥,…) depends on its parameter 𝑥 if and only if changing only this

parameter changes the result

∃𝑥1, 𝑥2 . 𝑓(… , 𝑥1,…) ≠ 𝑓(… , 𝑥2,…)

• Example: 𝑓(𝑥, 𝑦) = 𝑥 − (𝑦 − 𝑦) depends on 𝑥 but not on 𝑦
• Definition:

ℱ𝒹𝑛𝑖 ≜ {𝑓 ∣ ∃𝑥1,… , 𝑥𝑛, 𝑥𝑖′ . 𝑓(𝑥1,… , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1,… , 𝑥𝑛) ≠
𝑓(𝑥1,… , 𝑥𝑖−1, 𝑥𝑖′, 𝑥𝑖+1,… , 𝑥𝑛)}. (44.1)

ℱ𝒹 ≜ ⋃
𝑛∈N∗
⋃
1⩽𝑖⩽𝑛

ℱ𝒹𝑛𝑖
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Non-interference
• Given low variables 𝐿 (e.g. “public” respectively “untainted”) and high variables 𝐻

(“private/conf” respectively “tainted”)
• Non-interference (Cohen, 1977; Goguen and Meseguer, 1982, 1984; Mantel, 2003)

is defined as “if executions start with the same values of the low variables then,
upon termination, if ever, the low variables are equal (so changing initial high
variables cannot change final low variables)

• The non-interference property is therefore

𝒩𝒾(𝐿,𝐻) = {Π ∈ ℘(𝕋+ × 𝕋∞) ∣ ∀⟨𝜋0, 𝜋⟩, ⟨𝜋′0, 𝜋′⟩ ∈ Π ∩ (𝕋+ × 𝕋+) .
(∀x ∈ 𝐿 . 𝝆(𝜋0)x = 𝝆(𝜋′0)x) ⇒ (∀x ∈ 𝐿 . 𝝆(𝜋0 ⌢⋅ 𝜋)x = 𝝆(𝜋′0 ⌢⋅ 𝜋′)x)}

• Interference during the computation and non termination are not taken into
account.
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General idea of dependency
• y depends on the initial value 𝑥0 of x at ℓ if and only if changing 𝑥0 changes the

future observations of y at ℓ
• We consider dependency on initial values of variables

More generally, changing an abstraction of the past at ℓ changes an abstraction of
the future after ℓ
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Dependency is local
• ℓ1 y = 0 ;ℓ2 y = x ;ℓ3

• the value of y at ℓ1 is the initial value 𝑦0 of y at ℓ1
Changing the initial value of x does not change the value of y at ℓ1 so
y does not depend on the initial value of x at ℓ1

• the value of y at ℓ2 is 0.
Changing the initial value of x does not change the value of y at ℓ2 so
y does not depend on the initial value of x at ℓ2

• the value of y at ℓ3 is the initial value 𝑥0 of x.
Changing the initial value of x changes the value of y at ℓ3 so
y depends on the initial value of x at ℓ3

⇒ dependency upon the initial value of variables is local (may be different at different
program points).
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Dependency depends on values of variables
{if (x=0) y=x; else y=0;} ℓ

• The value of y at ℓ is always 0, no dependency

{if (x=0) y=x; else y=1;} ℓ
• The value of y at ℓ is

• if 𝑥0 = 0 then “0”
• if 𝑥0 ≠ 0 then “1”

• y at ℓ depends on 𝑥0 (unless (𝑥0 = 0 ∧ 𝑦0 = 0) ∨ (𝑥0 ≠ 0 ∧ 𝑦0 = 1))

⇒ dependency of y upon the initial value 𝑥0 of x depends on the initial and current
values of x and y
⇒ this is ignored in D. E. Denning and P. J. Denning, 1977’s dataflow analysis
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Dependency depends on sequences of observations of values of variables
P𝑢 ≜ while ℓ (0==0) x=x+1;

• One can observe 𝑥0 ⋅ 𝑥0 + 1 ⋅ 𝑥0 + 2 ⋅ 𝑥0 + 17 ⋅ 𝑥0 + 18 ⋅ …𝑥0 + 42 ⋅ 𝑥0 + 43 ⋅ … at ℓ
• changing the initial value 𝑥0 of x changes this observation
• x at ℓ depends upon 𝑥0

P0 ≜ x=0; while ℓ (0==0) x=x+1;
• One can observe 0 ⋅ 1 ⋅ 2 ⋅ …17 ⋅ 18 ⋅ … ⋅ 42 ⋅ 43 ⋅ … at ℓ
• changing the initial value 𝑥0 of x does not change this observation
• x at ℓ does not depend upon 𝑥0

⇒ We must observe the maximal sequence of values successively taken by a variable at
a program point
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Counterfactual dependency: absence of observation
int x,y; if (x=0) { y=x; ℓ}

• Observation of y at ℓ:
• if 𝑥0 = 0 then “0”
• if 𝑥0 ≠ 0 then “” (empty observations: no execution ever reaches ℓ)

⇒ Dependency if empty observations are taken into account
⇒ No dependency if empty observations are not taken into account
⇒ The choice is completely arbitrary!
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Counterfactual value dependency: absence of observation
int x,y,z; if (x=0) { y=x; ℓ}

• Assume that empty observations are taken into account (so y depends on 𝑥0)
• Observation of z at ℓ:

• if 𝑥0 = 0 then “𝑧0” (initial value of z)
• if 𝑥0 ≠ 0 then “” (empty observations: no execution ever reaches ℓ)

• Two different observations at ℓ!
• Should z depends on 𝑥0 at ℓ?
⇒ The choice is completely arbitrary!

• No
• Yes
• Yes if the value of z at ℓ is different from 𝑧0 (D. E. Denning and P. J. Denning,

1977)
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Timing dependency
while ℓ (x > 0) x = x - 1 ;

• Does variable y (s.t. y ≠ x) at ℓ depends on the initial value 𝑥0 of x?
• The observation of y at ℓ is 𝑦0 ⋅ 𝑦0 ⋅ … ⋅ 𝑦0 repeated 𝑥0 + 1 times.
• So changing 𝑥0 changes the observation of y at ℓ

⇒ This is a covert/side channel (Lampson, 1973; Mulder, Eisenbarth, and Schaumont,
2018), more precisely, a timing channel (Russo, Hughes, Naumann, and Sabelfeld,
2006; Sabelfeld and Myers, 2003)

⇒ The choice of ignoring timing channel is arbitrary
⇒ Ignored in the classical definition of dependency D. E. Denning and P. J. Denning,

1977
⇒ One way of ignoring timing channels is to require that observation sequences must

differ by at least one data
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Counterfactual timing dependency
/* x�{0,1} */ while (x != 0) ℓ y = x ;

• If 𝑥0 = 1, the infinite sequence of values of y observed at ℓ is 𝑦0 ⋅ 1 ⋅ 1⋯.
• If 𝑥0 = 0, then the observation at ℓ is the empty sequence ϶.
• Does y at ℓ depends on the initial value 𝑥0 of x?
• This depends on hypotheses on observables. Is an infinite sequence of values

observable? Is the empty sequence ϶ of values observable?
• This is debatable and problem-specific
• For example if a program terminates it is easy to check on program termination

that a program point is never reached. This may be considered impossible with
non-termination.
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Dependency, formally
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Future observations
• initialisation trace 𝜋0 ∈ 𝕋+
• (non empty) continuation trace 𝜋 ∈ 𝕋+∞
• futureJyKℓ(𝜋0, 𝜋) is the sequence of values of y successively observed at program

point point ℓ in the trace 𝜋 continuing 𝜋0 4

futureJyKℓ(𝜋0, ℓ) ≜ 𝝆(𝜋0)y
futureJyKℓ(𝜋0, ℓ′) ≜ ϶

futureJyKℓ(𝜋0, ℓ 𝑎−−−−→ ℓ″𝜋) ≜ 𝝆(𝜋0)y ⋅ futureJyKℓ(𝜋0 ⌢⋅ ℓ 𝑎−−−−→ ℓ″, ℓ″𝜋)
futureJyKℓ(𝜋0, ℓ′ 𝑎−−−−→ ℓ″𝜋) ≜ futureJyKℓ(𝜋0 ⌢⋅ ℓ′ 𝑎−−−−→ ℓ″, ℓ″𝜋)

• futureJyKℓ(𝜋0, 𝜋) is the empty sequence ϶ if ℓ does not appear in 𝜋

4this should be understood as a bi-inductive definition of P. Cousot and R. Cousot, 2009 to properly handle non-termination
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Observations
• An observation ⟨𝜈, 𝜔⟩ of a variable at a program point is a pair of

• an initial value 𝜈 of the variable
• the future observation 𝜔 of this variable from that program point on
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Differences between future observations ⟨𝜈, 𝜔⟩ and ⟨𝜈′, 𝜔′⟩ (I)
(1) Counterfactual timing dependency:

ctdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ 𝜔 ≠ 𝜔′

(empty observations are allowed)

(2) Timing dependency:

tdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ 𝜔 ≠ 𝜔′ ∧ 𝜔 ≠ ϶ ∧ 𝜔′ ≠ ϶

(empty observations are disallowed)
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Differences between future observations ⟨𝜈, 𝜔⟩ and ⟨𝜈′, 𝜔′⟩ (II)
(3) Value dependency:

vdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ ∃𝜔0, 𝜔1, 𝜔′1, 𝜈, 𝜈′ .
𝜔 = 𝜔0 ⋅ 𝜈 ⋅ 𝜔1 ∧ 𝜔′ = 𝜔0 ⋅ 𝜈′ ⋅ 𝜔′1 ∧ 𝜈 ≠ 𝜈′

(different values of the variable must be observed)

Example 6 if ℓ0 (x == 1) { ℓ1 y = x ; ℓ2 } ℓ3
y does not depend on x at ℓ0, ℓ1, and ℓ2 but y depends on x at ℓ3 (unless y = 1 at ℓ0).�

“Abstract Interpretation, Semantics, Verification, and Analysis” – 185/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Differences between future observations ⟨𝜈, 𝜔⟩ and ⟨𝜈′, 𝜔′⟩ (III)
(4) counterfactual value dependency:

cvdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ vdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ∨
(𝜔 = ϶ ∧ 𝜔′ ≠ ϶) ∨ (𝜔 ≠ ϶ ∧ 𝜔′ = ϶)

(an empty observation is allowed)

Example 7 if ℓ0 (x == 1) { ℓ1 y = x ; ℓ2 } ℓ3
y depends on x at ℓ2 (unless y = 1 at ℓ0).
Any variable depends on the initial value of x at ℓ1 and ℓ2. �

“Abstract Interpretation, Semantics, Verification, and Analysis” – 186/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Differences between future observations ⟨𝜈, 𝜔⟩ and ⟨𝜈′, 𝜔′⟩ (IV)
(5) Counterfactual multi-values dependency:

cmvdp(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ vdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ∨
(𝜔 = ϶ ∧ ∃𝜔′0, 𝜈′, 𝜔′1 . 𝜔′ = 𝜔′0 ⋅ 𝜈′ ⋅ 𝜔′1 ∧ 𝜈′ ≠ 𝜈′) ∨
(𝜔′ = ϶ ∧ ∃𝜔0, 𝜈, 𝜔1 . 𝜔 = 𝜔0 ⋅ 𝜈 ⋅ 𝜔1 ∧ 𝜈 ≠ 𝜈)

(an empty observation is allowed for variables which value has changed)

Example 8 if ℓ0 (x == 1) { ℓ1 y = x ; ℓ2 } ℓ3
No variable depends on the initial value of x at ℓ1 and only y at ℓ2 (unless y is
initially 1).
This is D. E. Denning and P. J. Denning, 1977. �
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Formal definition of dependency
• Dependency property:

𝒟dep ℓ⟨x, y⟩ ≜ {Π ∈ ℘(𝕋+ × 𝕋+∞) ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ Π .
(∀z ∈ V ⧵ {x} . 𝝆(𝜋0)z = 𝝆(𝜋′0)z) ∧

dep(⟨𝝆(𝜋0)y, futureJyKℓ(𝜋0, 𝜋1)⟩, ⟨𝝆(𝜋′0)y, futureJyKℓ(𝜋′0, 𝜋′1)⟩)}
• choose dep ∈ {vdep, cmvdp, cvdep, tdep, ctdep} to get 5 different definitions
• y depends on the initial value of x at point ℓ of program P is:

�̂�+∞JPK ∈ 𝒟dep ℓ⟨x, y⟩

• No necessary distinction between explicits and implicits flows as in D. E. Denning
and P. J. Denning, 1977
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Dependency lattice

𝒟vdep

𝒟cmvdp

𝒟cvdep 𝒟tdep

𝒟ctdep

⊆

(??)

• The more differences between observed futures, the more dependencies;
• Not clear with postulated definitions (such as the hydraulic model where

dependency depends on the rules to mix colors)
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Why maximal traces?
• For prefix traces, if a trace is in the semantics, all of its prefixes are also in the

semantics, which introduces artificial timing channels
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Prefix traces for dependency on values
• For value dependencies, the maximal trace semantics can be replaced by the prefix

trace semantics withou problem:

Lemma 𝓢+∞JPK ∈ 𝒟vdep ℓ⟨x, y⟩ ⇔ 𝓢∗JPK ∈ 𝒟vdep ℓ⟨x, y⟩

• Idem if we include empty observations (the prefixes of 𝓢∗JPK𝜋0 are never empty, so
no possible confusion)
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Dependency abstraction
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Abstraction of data dependency
• The abstraction of a semantic property S ∈ ℘(℘(𝕋+ × 𝕋+∞)) into a data dependency

property 𝛼vdep(S) ∈ L→ ℘(V × V ) is:

𝛼vdep((S)ℓ ≜ {⟨x, y⟩ ∣ S ∈ 𝒟vdep ℓ⟨x, y⟩}

• This is a Galois connection:

Lemma 10 ⟨℘(℘(𝕋+ × 𝕋+∞)), ⊆⟩ −−−−−−−→←−−−−−−−
𝛼vdep

𝛾vdep

⟨L→ ℘(V × V ), ⊇ᶁ⟩ where the
concretization of a dependency property 𝐃 ∈ L→ ℘(V × V ) is:

𝛾vdep(𝐃) ≜ ⋂
ℓ∈L
⋂

⟨x, y⟩∈𝐃(ℓ)
𝒟vdep ℓ⟨x, y⟩

(the more semantics, the less dependencies)
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Value dependency static analysis
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Potential value dependency
• 𝛼vdep({𝓢+∞JSK}) = 𝛼vdep({𝓢∗JSK}) is not computable (Rice theorem)
• We design an over-approximation:

Potential value dependency semantics �̂� vdep
∃ :

𝛼vdep({𝓢+∞JSK}) ⊆̇ �̂� vdep
∃ JSK

• The abstraction of D. E. Denning and P. J. Denning, 1977 is purely syntactic (in
dataflow analysis style)

• We do slightly better, by taking values into account, in a very simple way
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Example

if ℓ0 (x == 1) { ℓ1 y = z ;ℓ2 };ℓ3

• we have the potential value dependency:
ℓ ℓ0 ℓ1 ℓ2 ℓ3

�̂�vdep
∃ JSK ℓ {⟨x, x⟩, ⟨y, y⟩, {⟨y, y⟩, {⟨z, y⟩, {⟨x, x⟩, ⟨x, y⟩, ⟨y, y⟩,

⟨z, z⟩} ⟨z, z⟩} ⟨z, z⟩} ⟨z, y⟩, ⟨z, z⟩}

• this is an over-approximation since e.g. z flows to y at ℓ3 only when x = 1 at ℓ0.
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Calculational design
• By calculus (in principle, can be checked with Coq like Jourdan, Laporte, Blazy,

Leroy, and Pichardie, 2015)
• By structural induction on the program syntax
• By fixpoint over-approximation for iterations:

Theorem (over-approximation of fixpoints) If ⟨C, ⊑, ⊥, ⊤, ⊔, ⊓⟩ and ⟨A, ≼, 0,
1, ⋎, ⋏⟩ are complete lattices, ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ is a Galois connection,

𝑓 ∈ C ↗⟶C and 𝑓 ∈ A ↗⟶A are increasing and 𝛼 ∘ 𝑓 ≼̇ 𝑓 ∘ 𝛼 (semi-commutation)
then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝑓).

• Finite domain, no widening needed
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Potential dependency semantics of assignment S ∶∶= x = A ;

�̂� vdep
∃ JSK ℓ = ( ℓ = atJSK ? 1V

| ℓ = afterJSK ? {⟨y, x⟩ ∣ y ∈ �̂� vdep
∃ JAK} ∪

{⟨y, y⟩ ∣ y ≠ x}
: ∅ )

�̂� vdep
∃ JAK ≜ {y ∣ ∃𝜌 ∈ Ev . ∃𝜈 ∈ 𝕍 .𝓐JAK𝜌 ≠𝓐JAK𝜌[y← 𝜈]}
⊆ 𝕧𝕒𝕣𝕤JAK

Example:
• after x = y - y ;, x depends on y.
• after x = y ; x = y - x ;, x depends on the initial values of x and y
• To be more precise we would have to preserve information on the values of

variables (eg. x = y)
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Proof (don’t read ⌣) I
The cases ℓ = atJSK was handled in (44.38) and ℓ ∉ labxJSK in (44.39). It remains the case
ℓ = afterJSK.
𝛼vdep({𝓢+∞JSK}) afterJSK

= 𝛼vdep({𝓢∗JSK}) afterJSK HLemma 44.25I
= {⟨x′, y⟩ ∣ 𝓢∗JSK ∈ 𝒟vdep (afterJSK)⟨x′, y⟩} Hdef. (44.29) of 𝛼vdep and def. ⊆I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ 𝓢∗JSK . ∀z ∈ V ⧵ {x′} . 𝝆(𝜋0)z = 𝝆(𝜋′0)z ∧ vdep(⟨𝝆(𝜋0)y,

futureJyK(afterJSK)(𝜋0, 𝜋1)⟩, ⟨𝝆(𝜋′0)y, futureJyK(afterJSK)(𝜋′0, 𝜋′1)⟩)}Hdef. ∈ and (44.20) of 𝒟vdep ℓ⟨x′, y⟩I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ {⟨𝜋atJSK, atJSK x=𝓐JAK𝝆(𝜋atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩ ∣ 𝜋atJSK ∈
𝕋+} . ∀z ∈ V ⧵ {x′} . 𝝆(𝜋0)z = 𝝆(𝜋′0)z ∧ vdep(⟨𝝆(𝜋0)y, futureJyK(afterJSK)(𝜋0, 𝜋1)⟩, ⟨𝝆(𝜋′0)y,
futureJyK(afterJSK)(𝜋′0, 𝜋′1)⟩)} Hdef. (15.1) of the assignment prefix finite trace semanticsI
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Proof (don’t read ⌣) II
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩, ⟨𝜋′0atJSK, atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→

afterJSK⟩ . ∀z ∈ V ⧵ {x′} . 𝝆(𝜋0atJSK)z = 𝝆(𝜋′0atJSK)z ∧
vdep(⟨𝝆(𝜋0)y, futureJyK(afterJSK)(𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)⟩, ⟨𝝆(𝜋′0)y,
futureJyK(afterJSK)(𝜋′0atJSK, atJSK x=𝓐JAK𝝆(𝜋′0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)⟩)} Hdef. ∈I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩, ⟨𝜋′0atJSK,
atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩ . (∀z ∈ V ⧵{x′} . 𝝆(𝜋0atJSK)z = 𝝆(𝜋′0atJSK)z)∧vdep(⟨𝝆(𝜋0)y,

𝝆(𝜋0atJSK x=𝓐JAK𝝆(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)y⟩, ⟨𝝆(𝜋′0)y, 𝝆(𝜋′0atJSK x=𝓐JAK𝝆(𝜋′0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)y)⟩}Hdef. (44.14) of the future futureJyKI
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩, ⟨𝜋′0atJSK,
atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩ . (∀z ∈ V ⧵ {x′} . 𝝆(𝜋0atJSK)z = 𝝆(𝜋′0atJSK)z) ∧

((𝝆(𝜋0atJSK)y ≠ 𝝆(𝜋′0atJSK)y) ∨ (𝝆(𝜋0atJSK)y = 𝝆(𝜋′0atJSK)y ∧ 𝝆(𝜋0atJSK x=𝓐JAK𝝆(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→

afterJSK)y ≠ 𝝆(𝜋′0atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)y)}
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Proof (don’t read ⌣) III
H(44.18) so that vdep(⟨𝑥, 𝑎 ⋅ 𝑏⟩, ⟨𝑦, 𝑐 ⋅ 𝑑⟩) if and only if (1) 𝑎 ≠ 𝑐 or (2) 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑑.I

= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩, ⟨𝜋′0atJSK,

atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩ . (∀z ∈ V ⧵ {x′} . 𝝆(𝜋0atJSK)z = 𝝆(𝜋′0atJSK)z) ∧ ((y =

x′) ∨ (y = x ∧𝓐JAK𝝆(𝜋0atJSK) ≠𝓐JAK𝝆(𝜋′0atJSK)))} Hdef. (6.2) of 𝝆I
⊆ {⟨x′, y⟩ ∣ ((y = x′) ∨ (y = x ∧ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]))} (11)

Hletting 𝜌 = 𝝆(𝜋0atJSK) and 𝜈 = 𝝆(𝜋′0atJSK)(x′) so that ∀z ∈ V ⧵ {x′} . 𝝆(𝜋0atJSK)z =
𝝆(𝜋′0atJSK)z implies that 𝝆(𝜋′0atJSK) = 𝜌[x′ ← 𝜈].I

= {⟨x′, x′⟩ ∣ x′ ≠ x} ∪ {⟨x′, x⟩ ∣ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]} Hcase analysisI
= {⟨x′, x′⟩ ∣ x′ ≠ x} ∪ {⟨x′, x⟩ ∣ x′ ∈ �̂�vdep

∃ JAK}
Hby defining the functional dependency of an expression A as �̂�vdep

∃ JAK ≜ {x′ ∣ ∃𝜌, 𝜈 .
𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]} in (44.41)I �
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Potential dependency semantics of the conditional S ∶∶= if (B) S𝑡
�̂�vdep
∃ JSK ℓ = ( ℓ = atJSK ? 1V (a)

| ℓ ∈ inJS𝑡K ? �̂�vdep
∃ JS𝑡K ℓ ⌉ nondet(B, B) (b)

| ℓ = afterJSK ?

(c.1)
(c.2)
(c.3)

�̂�vdep
∃ JS𝑡K afterJS𝑡K ⌉ nondet(B, B)
∪ 1V ⌉ nondet(¬B, ¬B)
∪ nondet(¬B, ¬B) ×modJS𝑡K

: ∅ ) (d)
det(B1, B2) ⊆ {x ∣ ∀𝜌, 𝜌′ . (𝓑JB1K𝜌 ∧𝓑JB2K𝜌′) ⇒ (𝜌(x) = 𝜌′(x))} determinacy

nondet(B1, B2) ⊇ V ⧵ det(B1, B2) non-determinacy
modJx = E ;K ≜ {x} modified variables

modJ;K ≜ modJ 𝜖 K ≜ modJbreak ;K ≜ ∅
modJwhile (B) SK = modJif (B) SK ≜ modJSK

modJif (B) S𝑡 else S𝑓K ≜ modJS𝑡K ∪modJS𝑓K
modJ{ Sl }K ≜ modJSlK

modJSl SK ≜ modJSlK ∪modJSK
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• On entry (a), variables in V only depend upon themselves as specified by the
identity relation 1V .

• The reasoning in (b) is that if a variable y depends at ℓ on the initial value of a
variable x at atJS𝑡K, it depends in the same way on that initial value of the variable
x at atJSK since the test B has no side effect.
However, (b) also takes into account that if S𝑡 can only be reached for a unique
value of the variable x and the branch is not taken for all other values of x then the
variable y does not depend on x in S𝑡 since empty observations are disallowed by
vdep.

• (c) determines dependencies after S so compare two possible executions of that
statement. In case (c.1) both executions go through the true branch. In case (c.2)
both executions go through the false branch, while in case (c.3) the executions take
different branches.
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• In case (c.1) when the test is true tt for both executions, the executions of the true
branch S𝑡 terminate and control after S𝑡 reaches the program point after S (recall
that afterJS𝑡K = afterJSK). The dependencies after S𝑡 propagate after S but only in
case of non-determinism, e.g. for variables that are not constant.

• The second case in (c.2) is for those executions for which the test B is false ff.
Variables depend on themselves atJSK and control moves to afterJSK so that
dependencies are the same there, but only for variables that can reach afterJSK with
different values on different executions as indicated by the restriction to
nondet(¬B, ¬B).

• The third case in (c.3) is for pairs of executions, one through the true branch and
the other through the false branch. In that case y depends on x only if x does not
force execution to always take the same branch, meaning that x ∈ nondet(¬B, ¬B). If
y is not modified by the execution through S𝑡 then its value after S is always the
same as its value atJSK (since y is not modified on the false branch either). In that
case changing y atJSK would not change y after S so that, in that situation, y does
not depend on x. Therefore (c.3) requires that y ∈ modJS𝑡K.
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Note on the potential dependency semantics of the conditional
S ∶∶= if (B) S𝑡

• Empty observations are not taken into account
• ℓ0 if (x=0) { y=x; ℓ1} ℓ2

• y does not depend on x at ℓ0 neither at ℓ1
• y depends on x at ℓ2

• As already stated, this is different from D. E. Denning and P. J. Denning, 1977
implicitly allowing for counterfactual multi-values dependency cmvdp.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 205/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Potential dependency semantics of the statement list Sl ∶∶= Sl′ S

�̂� vdep
∃ JSlK ℓ ≜ ( ℓ ∈ labxJSl′K ? �̂� vdep

∃ JSl′K ℓ (a)
| ℓ ∈ labxJSK ⧵ {atJSK} ?

�̂� vdep
∃ JSl′K atJSK # �̂� vdep

∃ JSK ℓ (b)
: ∅ )
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Potential dependency semantics of the iteration S ∶∶= while ℓ (B) S𝑏

�̂� vdep
∃ JSK ℓ′ = (lfp ⊆̇𝓕vdepJwhile ℓ (B) S𝑏K) ℓ′

𝓕vdepJwhile ℓ (B) S𝑏K𝑋 ℓ′ =
( ℓ′ = ℓ ?

1V ∪ (𝑋(ℓ) # (�̂� vdep
∃ JS𝑏K ℓ ⌉ nondet(B, B))) (a)

| ℓ′ ∈ inJS𝑏K ?

𝑋(ℓ) # (�̂� vdep
∃ JS𝑏K ℓ′ ⌉ nondet(B, B)) (b)

| ℓ′ = afterJSK ?
𝑋(ℓ) ∪ (𝑋(ℓ) # (V ×modJS𝑏K)) ∪ (c)

𝑋(ℓ) # (( ⋃
ℓ″∈breaks-ofJS𝑏K

�̂� vdep
∃ JS𝑏K ℓ″) ⌉ nondet(B, B))

: ∅ ) (d)
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Example
S = while ℓ0 (tt) { ℓ1 y = z ;ℓ2 z = x ; }ℓ3.

The system of equations 𝑋 =𝓕ᶁJSK(𝑋) is
{{{
{{{
{

𝑋(ℓ0) = {⟨v, v⟩ ∣ v ∈ V } ∪ (𝑋(ℓ2) # {⟨x, x⟩, ⟨x, z⟩, ⟨y, y⟩})
𝑋(ℓ1) = 𝑋(ℓ0)
𝑋(ℓ2) = 𝑋(ℓ2) ∪ (𝑋(ℓ1) # {⟨x, x⟩, ⟨z, y⟩, ⟨z, z⟩})
𝑋(ℓ3) = ∅

The chaotic iterations are
ℓ ℓ0, ℓ1 ℓ2 ℓ3

𝑋0(ℓ) ∅ ∅ ∅
𝑋1(ℓ) {⟨x, x⟩, ⟨y, y⟩, ⟨z, z⟩} {⟨x, x⟩, ⟨z, y⟩, ⟨z, z⟩} ∅
𝑋2(ℓ) {⟨x, x⟩, ⟨x, z⟩, ⟨y, y⟩, ⟨z, y⟩, ⟨z, z⟩} {⟨x, x⟩, ⟨x, y⟩, ⟨x, z⟩, ⟨z, y⟩, ⟨z, z⟩} ∅
𝑋3(ℓ) {⟨x, x⟩, ⟨x, y⟩, ⟨x, z⟩, ⟨y, y⟩, ⟨z, y⟩, ⟨z, z⟩} {⟨x, x⟩, ⟨x, y⟩, ⟨x, z⟩, ⟨z, y⟩, ⟨z, z⟩} ∅
𝑋4(ℓ) 𝑋3(ℓ0) = 𝑋3(ℓ1) 𝑋3(ℓ2) ∅

• The initial value 𝑥0 of x flows to x at ℓ0 on iteration entry, to z after the first iteration and so to y after the first iteration.• The initial value 𝑦0 of y flows only to y at ℓ0 on iteration entry.• The initial value 𝑧0 of z flows to z at ℓ0 on iteration entry and then to y after the first iteration.
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The potential dependency semantics is not purely structural 5

• Separate analysis of statements:
ℓ0 y = x ; x and y at ℓ1 depend on x at ℓ0.
ℓ1

ℓ1 y = y - x ; x and y at ℓ2 depend on x at ℓ1.
ℓ2

• Dependency analysis of the statement list:

ℓ0 y = x ;
ℓ1 y = y - x ;
ℓ2

y at ℓ2 depends on x at ℓ1 which depends on x at ℓ0 so,
by composition, y at ℓ2 depends on x at ℓ0.

• Yet, y = 0 at ℓ2 and so y at ℓ2 do not depend on x at ℓ0.
• A purely syntactic structural definition of dependency like �̂� vdep

∃ JSK is necessarily
imprecise (since values of variables are not taken into account)

5one would say compositional in denotational semantics.
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Improving precision
• To be more precise, values of variables must be taken into account
• Reduced product with a reachability analysis (for example Cortesi, Ferrara, Halder,

and Zanioli, 2018; Zanioli and Cortesi, 2011)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 210/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019



Examples of derived depen-
dency semantics and analyzes
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Dye instrumented semantics
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Postulated definition of dependency (I)
• dye-tracer tests in hydrology: determine the possible origins of spring discharges or

resurgences by water source coloring and flow tracing
• dye instrumented semantics: decorate the initial values of variables with labels such

as color annotations and to track their diffusion and mixtures to determine
dependencies Cheney, Ahmed, and Acar, 2011.
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Postulated definition of dependency (II)
• This postulated definition of dependency can be proved sound by observing that the

initial color of variables can be designated by the name of these variables and that
the color mix at point ℓ for variable y is

{x ∣ 𝓢+∞JPK ∈ 𝒟dep ℓ⟨x, y⟩}

• Note that in the postulated instrumented semantics, the choice of dep remains
implicit as defined by the arbitrarily selected color mixing rules.

• Like all instrumented semantics Jones and Nielson, 1995, it must be semantically
justified with respect to the non-instrumented semantics, in which case the
non-instrumented semantics can be used as well to justify dependency, as we do.
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Tracking analysis
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• Assume the initial values of variables (more generally inputs) are partitioned into
tracked T and untracked U variables,

V = T ∪U and T ∩U = ∅

• The tracking abstraction 𝛼𝜏(𝐃) of a dependency property 𝐃 ∈ L→ ℘(V × V )
attaches to each program point ℓ the set of variables y which, at that program
point ℓ, depend upon the initial value of at least one tracked variable x ∈ T .

𝛼𝜏(𝐃)ℓ ≜ {y ∣ ∃x ∈ T . ⟨x, y⟩ ∈ 𝐃(ℓ)}

• A tracking analysis is an over-approximation of the abstract tracking semantics

𝓢𝜏JSK ⊇ 𝛼𝜏(𝛼dep({𝓢+∞JSK}))
assigning the each program point ℓ, a set 𝓢𝜏JSKℓ ∈ ℘(V ) of variables potentially
depending on tracked variables.
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Examples of tracking analyses
• taint analysis in privacy/security checks Ferrara, Olivieri, and Spoto, 2018; Li,

Bissyandé, Papadakis, Rasthofer, Bartel, Octeau, Klein, and Traon, 2017 (tracked is
tainted, untracked is untainted);

• binding time analysis in offline partial evaluation Hatcliff, 1998; Jones, Sestoft, and
Søndergaard, 1989 (tracked is dynamic, untracked is static)

• absence of interference Bowman and Ahmed, 2015; Cohen, 1977; Goguen and
Meseguer, 1982, 1984; Volpano, Irvine, and Smith, 1996 (tracked is high
(private/untrusted), untracked is low (public/trusted)).
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Conclusion
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Dependency is an abstract interpretation of the program semantics
• Dependency analysis is an abstract interpretation of the program semantics
• This include non-interference, “taint” analysis, etc.
• Data dependency analysis to detect parallelism in sequential codes Padua and

Wolfe, 1986 is also an abstract interpretation Tzolovski, 1997, Tzolovski, 2002,
Ch. 5.

• We have considered particular cases of dependency.
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Conjecture: all dependencies are abstract interpretations
• The semantics is a set of computations ⟨𝜋ℓ, ℓ𝜋′⟩ (where ℓ ∉ 𝜋).
• We define an abstraction of the past 𝜋ℓ (the initial state in our case)
• We define an abstraction of the future (the sequence of values of a variable y

observées dans ℓ𝜋′ à each point ℓ dans ℓ𝜋′).
• We define a difference on pasts (changing the value of only one variable in our case)
• We define a difference on futures (tdep, ctdep, vdep or cvdep in our case)
• Dependency is then the future abstraction depends on the past abstraction iff a

change of the past changing its abstraction change the abstraction of the future.
• By varying abstractions and the difference we change the notions of dependency

(and we should be able to recover the whole literature in that way).
• Good examples are Giacobazzi and Mastroeni, 2018 for non-interference and

Barthe, Grégoire, and Laporte, 2017 for the protection against side channels attacks
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The End, Thank you
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