
VMCAI 2019 Winter School

Abstract Interpretation
Semantics, Verification, and Analysis

Patrick Cousot
pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Friday, 01/11/2019, 09:00 – 12:30

“Abstract Interpretation, Semantics, Verification, and Analysis” – 1/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

mailto:pcousot@cs.nyu.edu
http://cs.nyu.edu/~pcousot

Content
1. Semantics (45 mn)

2. Abstraction (45 mn)

break (30mn)

3. Verification and proofs (45 mn)

4. Analysis (45 mn)
• Numerical abstraction: see the VMCAI invited talk by Sylvie Putot (École

polytechnique, France) on “Zonotopic abstract domains for numerical program
analysis”

• Symbolic abstraction: dependency analysis

“Abstract Interpretation, Semantics, Verification, and Analysis” – 2/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/
http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/

Part 1

Semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 3/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Syntax

“Abstract Interpretation, Semantics, Verification, and Analysis” – 4/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Context-free syntax of expressions

x, y,… ∈ V variables (V not empty)
A ∈ A ∶∶= 1 | x | A1 - A2 arithmetic expressions
B ∈ B ∶∶= A1 < A2 | B1 nand B2 boolean expressions
E ∈ E ∶∶= A | B expressions

“Abstract Interpretation, Semantics, Verification, and Analysis” – 5/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Context-free syntax of program statements
S ∶∶= statement S ∈ S

x = A ; assignment
| ; skip
| if (B) S conditional
| if (B) S else S
| while (B) S iteration
| break ; iteration break
| { Sl } compound statement

Sl ∶∶= Sl S | 𝜖 statement list
P ∶∶= Sl program P ∈ P

“Abstract Interpretation, Semantics, Verification, and Analysis” – 6/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Program labels
• To designate program points of program components, not part of the language
• Labels are unique
• atJSK label at entry of statement S
• afterJSK label after exit of statement S
• escapeJSK is it possible to break out of the statement S?
• break-toJSK where to break (exit label of enclosing loop)
• inJSK labels in statement S (excluding afterJSK and break-toJSK)
• labsJSK ≜ inJSK ∪ {afterJSK}
• labxJSK ≜ labsJSK ∪ (escapeJSK ? {break-toJSK} : ∅)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 7/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Axiomatic definition of program labelling
• We never define labels, just the properties they must satisfy
• Example S ≜ if (B) S𝑡 else S𝑓:

inJSK ≜ atJSK ∪ inJS𝑡K ∪ inJS𝑓K
atJSK ∉ inJS𝑡K ∪ inJS𝑓K
inJS𝑡K ∩ inJS𝑓K = ∅
afterJS𝑡K = afterJS𝑓K = afterJSK

“Abstract Interpretation, Semantics, Verification, and Analysis” – 8/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefix trace semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 9/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Trace of a hand computation

“Abstract Interpretation, Semantics, Verification, and Analysis” – 10/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefix trace
• A prefix trace is a finite observation of the program execution from entry
• A trace is a finite sequence of labels separated by actions (no memory state)

ℓ1
𝑎1−−−−−→ ℓ2

𝑎3−−−−−→ ℓ3
𝑎3−−−−−→ ℓ4

𝑎4−−−−−→ ℓ3
𝑎5−−−−−→ ℓ6⋯

• labels ℓ𝑖: next action to be executed
• actions 𝑎𝑖: records the computation done by a program step

“Abstract Interpretation, Semantics, Verification, and Analysis” – 11/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of prefix trace
• default initialization to 0
ℓ1 x = x + 1 ; (4.4)
while ℓ2 (tt) {
ℓ3 x = x + 1 ;
if ℓ4 (x > 2) ℓ5 break ;}ℓ6;ℓ7

• ℓ1 x = x + 1 = 1−−−−−−−−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = x + 1 = 2−−−−−−−−−−−−−−−−−−−−−→ ℓ4
¬(x > 2)
−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 (6.1)

• ℓ1 x = x + 1 = 1−−−−−−−−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = x + 1 = 2−−−−−−−−−−−−−−−−−−−−−→ ℓ4
¬(x > 2)
−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = x + 1 = 3−−−−−−−−−−−−−−−−−−−−−→

ℓ4
x > 2−−−−−−−−−−→ ℓ5 break−−−−−−−−−−−→ ℓ6

skip
−−−−−−−−→ ℓ7

“Abstract Interpretation, Semantics, Verification, and Analysis” – 12/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Values of variables
• Go back in the past to look for the last recorded assigned value (or 0 at

initialization)

𝝆(𝜋ℓ x = E = 𝜈−−−−−−−−−−−−−−−−→ ℓ′)x ≜ 𝜈 (6.2)
𝝆(𝜋ℓ …−−−−−−→ ℓ′)x ≜ 𝝆(𝜋ℓ) otherwise

𝝆(ℓ)x ≜ 0

“Abstract Interpretation, Semantics, Verification, and Analysis” – 13/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefix trace semantics
• Given a trace 𝜋0 arriving atJSK,

the prefix trace semantics 𝓢∗JSK of S specifies
the trace 𝜋1 of the execution of S from atJSK with initial values defined by 𝜋0

𝜋0−−−−−−−−−−−−−−−−−−−−→ atJSK 𝜋1−−−−−−−−−−−−−−−−−−−−→ ℓ⏟⏟⏟
∈ 𝓢∗JSK(𝜋0atJSK)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 14/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural rule-based defini-
tion of the prefix trace semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 15/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics at a statement
Prefix trace at a statement S

•
atJSK ∈ �̂�∗JSK(𝜋1atJSK) (6.7)

A prefix continuation of the traces 𝜋1atJSK arriving at a program, statement or
statement list S can be reduced to the program point atJSK at this program,
statement or statement list S.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 16/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Semantics of arithmetic expressions
• An environment 𝜌 ∈ Ev where Ev ≜ V → Z is a function 𝜌 mapping a variable x to

its value 𝜌(x) in the set Z of all mathematical integers.
• Semantics of arithmetic expressions:

𝓐J1K𝜌 ≜ 1 (3.4)
𝓐JxK𝜌 ≜ 𝜌(x)

𝓐JA1 - A2K𝜌 ≜ 𝓐JA1K𝜌 −𝓐JA2K𝜌

“Abstract Interpretation, Semantics, Verification, and Analysis” – 17/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of an assignment statement
Prefix traces of an assignment statement S ∶∶= ℓ x = A ;

•
𝑣 =𝓐JAK𝝆(𝜋ℓ)

ℓ x = A = 𝑣−−−−−−−−−−−−−−−→ afterJSK ∈ �̂�∗JSK(𝜋ℓ)
A prefix finite trace of an assignment ℓ x = E ; continuing some trace 𝜋ℓ is ℓ followed
by the event x = 𝑣 where 𝑣 is the last value of x previously assigned to x on 𝜋ℓ
(otherwise initialized to 0) and finishing at the label afterJSK after the assignment.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 18/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of a conditional statement
Prefix traces of a conditional statement S ∶∶= if ℓ (B) S𝑡

•
𝓑JBK𝝆(𝜋1ℓ) = ff

ℓ
¬(B)
−−−−−−−−−→ afterJSK ∈ �̂�∗JSK(𝜋1ℓ) (6.14)

•
𝓑JBK𝝆(𝜋1ℓ) = tt, 𝜋2 ∈ �̂�∗JS𝑡K(𝜋1ℓ B−−−−→ atJS𝑡K)

ℓ B−−−−→ atJS𝑡K ⌢⋅ 𝜋2 ∈ �̂�∗JSK(𝜋1ℓ) (6.15)

⌢⋅ is trace concatenation

“Abstract Interpretation, Semantics, Verification, and Analysis” – 19/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of an empty statement list
Prefix traces of an empty statement list Sl ∶∶= 𝜖

•
atJSlK ∈ �̂�∗JSlK(𝜋atJSlK) (6.11)

• A prefix/maximal trace 𝜋 of the empty statement list 𝜖 continuing some trace is
reduced to the program label atJSlK at that empty statement.

• This case is redundant and already covered by (6.7).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 20/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of a statement list
Prefix traces of a statement list Sl ∶∶= Sl′ S

•
𝜋2 ∈ �̂�∗JSl′K(𝜋1)
𝜋2 ∈ �̂�∗JSlK(𝜋1) (6.9)

•
𝜋2 ∈ �̂�+JSl′K(𝜋1), 𝜋3 ∈ �̂�∗JSK(𝜋1 ⌢⋅ 𝜋2)

𝜋2 ⌢⋅ 𝜋3 ∈ �̂�∗JSlK(𝜋1) (6.10)

A prefix trace of Sl′ S continuing an initial trace 𝜋1 can be a prefix trace of Sl′ or a
finite maximal trace of Sl′ followed by a prefix trace of S.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 21/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of an iteration statement
Prefix traces of an iteration statement S ∶∶= while ℓ (B) S𝑏

•
ℓ ∈ �̂�∗JSK(𝜋1ℓ) (6.20)

•
ℓ𝜋2ℓ ∈ �̂�∗JSK(𝜋1ℓ), 𝓑JBK𝝆(𝜋1ℓ𝜋2ℓ) = ff

ℓ𝜋2ℓ
¬(B)
−−−−−−−−−→ afterJSK ∈ �̂�∗JSK(𝜋1ℓ) (6.21)

•

ℓ𝜋2ℓ ∈ �̂�∗JSK(𝜋1ℓ), 𝓑JBK𝝆(𝜋1ℓ𝜋2ℓ) = tt,
𝜋3 ∈ �̂�∗JS𝑏K(𝜋1ℓ𝜋2ℓ B−−−−→ atJS𝑏K)
ℓ𝜋2ℓ

B−−−−→ atJS𝑏K ⌢⋅ 𝜋3 ∈ �̂�∗JSK(𝜋1ℓ) (6.22)

This is a forward, left recursive definition where 𝑛 + 1 iterations are 𝑛 iterations
followed by one more iteration.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 22/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of an iteration statement
Prefix traces of an iteration statement S ∶∶= while ℓ (B) S𝑏

•
ℓ ∈ �̂�∗JSK(𝜋1ℓ) (6.20)

•
ℓ𝜋2ℓ ∈ �̂�∗JSK(𝜋1ℓ) , 𝓑JBK𝝆(𝜋1ℓ𝜋2ℓ) = ff

ℓ𝜋2ℓ
¬(B)
−−−−−−−−−→ afterJSK ∈ �̂�∗JSK(𝜋1ℓ) (6.21)

•

ℓ𝜋2ℓ ∈ �̂�∗JSK(𝜋1ℓ) , 𝓑JBK𝝆(𝜋1ℓ𝜋2ℓ) = tt,
𝜋3 ∈ �̂�∗JS𝑏K(𝜋1ℓ𝜋2ℓ B−−−−→ atJS𝑏K)
ℓ𝜋2ℓ

B−−−−→ atJS𝑏K ⌢⋅ 𝜋3 ∈ �̂�∗JSK(𝜋1ℓ) (6.22)

The definition is structural (depends on the already defined semantics of
sub-components) and recursive (depends on itself) → might not be well-defined.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 23/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural prefix trace semantics of a break statement
Prefix traces of a break statement S ∶∶= ℓ break ;

•
ℓ break−−−−−−−−−−−→ break-toJSK ∈ �̂�∗JSK(𝜋ℓ) (6.25)

A prefix finite trace of a break ℓ break ; continuing some initial trace 𝜋ℓ is the trace
ℓ followed by the break ; event and ending at the break label break-toJSK (which is
the exit label of the closest enclosing iteration loop or else the program exit).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 24/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Structural fixpoint definition
of the prefix trace semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 25/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of fixpoints 𝑥 such that 𝑓(𝑥) = 𝑥

f(x)

x
x0

f(x0) = x0

f(x1) = x1

x10 1⩽

⩽

f

lfp f

gfp f

⊑

increasing function 𝑓

f
⊑

non-increasing function 𝑓
• As shown by Alfred Tarski, an increasing function on a complete lattice has at least

one fixpoint and has a least one.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 26/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Tarski fixpoint theorem

Theorem (13.5, Tarski fixpoint theorem) An increasing function 𝑓 ∈ 𝐿 ↗⟶𝐿 on
a complete lattice ⟨𝐿, ⊑, ⊥, ⊤, ⊓, ⊔⟩ has a least fixpoint lfp⊑ 𝑓 = ⨅{𝑥 ∈ 𝐿 ∣ 𝑓(𝑥) ⊑ 𝑥}.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 27/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Tarski iterative fixpoint theorem
Theorem (13.14, Tarski iterative fixpoint)
• Let 𝑓 ∈ 𝑃 ↗⟶𝑃 be an increasing function on a poset ⟨𝑃, ⊑, ⊥⟩ with infimum ⊥.
• Define the iterates of 𝑓 to be the sequence 𝑓 0 = ⊥ and 𝑓 𝑛+1 = 𝑓(𝑓 𝑛) for 𝑛 ∈ N.
• Assume that the least upper bound ⨆{𝑓 𝑛 ∣ 𝑛 ∈ N} exists and 𝑓(⨆{𝑓 𝑛 ∣ 𝑛 ∈

N}) = ⨆{𝑓(𝑓 𝑛) ∣ 𝑛 ∈ N}
• Then 𝑓 has a least fixpoint lfp⊑ 𝑓 = ⨆{𝑓 𝑛 ∣ 𝑛 ∈ N}.

f 0=⊥
f 1
f 2
f 3

… f ∞ = ⨆i f i =f(f ∞)

f

f

f
f 0=⊥
f 1
f 2
f 3

… f ∞ = ⨆i f i
f ∞+1

f

f

“Abstract Interpretation, Semantics, Verification, and Analysis” – 28/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint prefix trace semantics of an assignment statement

Fixpoint prefix trace semantics of an assignment statement S ∶∶= ℓ x = E ;

�̂�∗JSK(𝜋ℓ) = {ℓ} ∪ {ℓ x = E = 𝑣−−−−−−−−−−−−−−−→ afterJSK ∣ 𝑣 = 𝓔JEK𝝆(𝜋ℓ)}
• Example of basic case

“Abstract Interpretation, Semantics, Verification, and Analysis” – 29/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint prefix trace semantics of a statement list

Prefix traces of a statement list Sl ∶∶= Sl′ S

�̂�∗JSlK(𝜋1) = �̂�∗JSl′K(𝜋1) ∪ (15.2)
{𝜋2 ⌢⋅ 𝜋3 ∣ 𝜋2 ∈ �̂�+JSl′K(𝜋1) ∧ 𝜋3 ∈ �̂�∗JSK(𝜋1 ⌢⋅ 𝜋2)}

• �̂�+JSl′K contains the finite maximal traces of �̂�∗JSl′K
• Example of inductive case (�̂�∗JSlK defined in terms of �̂�+JSl′K and �̂�∗JSK with

Sl′ ⊲ Sl and S ⊲ Sl where ⊲ is the strict component relation)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 30/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint prefix trace semantics of an iteration

Prefix traces of an iteration statement S ∶∶= while ℓ (B) S𝑏

𝓢∗Jwhile ℓ (B) S𝑏K = lfp ⊆̇𝓕∗Jwhile ℓ (B) S𝑏K (15.3)

𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)(𝜋1ℓ′) ≜ ∅ when ℓ′ ≠ ℓ

𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)(𝜋1ℓ) ≜ {ℓ} (a)

∪ {ℓ′𝜋2ℓ′
¬(B)
−−−−−−−−−→ afterJSK | ℓ′𝜋2ℓ′ ∈ 𝑋(𝜋1ℓ′) ∧

𝓑JBK𝝆(𝜋1ℓ′𝜋2ℓ′) = ff ∧ ℓ′ = ℓ} (b)
∪ {ℓ′𝜋2ℓ′

B−−−−→ atJS𝑏K ⌢⋅ 𝜋3 | ℓ′𝜋2ℓ′ ∈ 𝑋(𝜋1ℓ′) ∧𝓑JBK𝝆(𝜋1ℓ′𝜋2ℓ′) = tt
∧ 𝜋3 ∈ 𝓢∗JS𝑏K(𝜋1ℓ′𝜋2ℓ′ B−−−−→ atJS𝑏K) ∧ ℓ′ = ℓ} (c)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 31/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

• Example of inductive fixpoint case
• inductive: 𝓢∗Jwhile ℓ (B) S𝑏K defined in terms of 𝓢∗JS𝑏K with

S𝑏 ⊲ while ℓ (B) S𝑏
• fixpoint: 𝓢∗Jwhile ℓ (B) S𝑏K recursively defined in terms of itself (𝑛 + 1

iterations are 1 iteration plus 𝑛 iterations)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 32/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Maximal trace semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 33/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Maximal trace semantics, informally
• The maximal trace semantics 𝓢+∞JSK = 𝓢+JSK ∪𝓢∞JSK is derived from the prefix

trace semantics 𝓢∗JSK by
• keeping the longest finite traces 𝓢+JSK, and
• passing to the limit 𝓢∞JSK of prefix-closed traces for infinite traces.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 34/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Finite maximal trace semantics

• 𝓢+JSK(𝜋1atJSK) ≜ {𝜋2ℓ ∈ 𝓢∗JSK(𝜋1atJSK) ∣ ℓ = afterJSK}
• 𝓢+JSK(𝜋1ℓ) = ∅ when ℓ ≠ atJSK

• 𝓢+JSK(𝜋1atJSK) is the set of maximal finite traces atJSK𝜋2afterJSK of S continuing
the trace 𝜋1atJSK and reaching afterJSK.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 35/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefixes of a trace
• If 𝜋 = ℓ0

𝑒0−−−−−→ … ℓ𝑖
𝑒𝑖−−−−→ … ℓ𝑛 is a finite trace then its prefix 𝜋[0..𝑝] at 𝑝 is

• 𝜋 when 𝑝 ⩾ 𝑛
• ℓ0
𝑒0−−−−−→ … ℓ𝑗

𝑒𝑗−−−−→ … ℓ𝑝 when 0 ⩽ 𝑝 ⩽ 𝑛.

• If 𝜋 = ℓ0
𝑒0−−−−−→ … ℓ𝑖

𝑒𝑖−−−−→ … is an infinite trace then its prefix 𝜋[0..𝑝] at 𝑝 is
ℓ0
𝑒0−−−−−→ … ℓ𝑗

𝑒𝑗−−−−→ … ℓ𝑝.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 36/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Limit of prefix traces
• The limit limT of a set of traces T is the set of infinite traces which prefixes can

be extended to a trace in T.
limT ≜ {𝜋 ∈ 𝕋∞ ∣ ∀𝑛 ∈ N . ∃𝑝 ⩾ 𝑛 . 𝜋[0..𝑝] ∈ T} .

• Let S be an iteration. ⟨𝜋, 𝜋′⟩ ∈ lim𝓢∗JSK where 𝜋′ is infinite if and only if,
whenever we take a prefix 𝜋′[0..𝑛] of 𝜋′, it is a possible finite observation of the
execution of S and so belongs to the prefix trace semantics ⟨𝜋, 𝜋′[0..𝑛]⟩ ∈ 𝓢∗JSK.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 37/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Infinite maximal trace semantics

𝓢∞JSK ≜ lim(𝓢∗JSK)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 38/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Memory abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 39/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Memory abstraction
• Abstraction from traces 𝜋 ∈ 𝕋+ to environments 𝜌 ∈ Ev ≜ V → 𝕍 mapping variables

x ∈ V to their value 𝜌(x) ∈ 𝕍
• 𝛼(𝜋) = 𝝆(𝜋)

where

𝝆(𝜋ℓ x = E = 𝜈−−−−−−−−−−−−−−−−→ ℓ′)x ≜ 𝜈 (6.2)
𝝆(𝜋ℓ …−−−−−−→ ℓ′)x ≜ 𝝆(𝜋ℓ) otherwise

𝝆(ℓ)x ≜ 0

“Abstract Interpretation, Semantics, Verification, and Analysis” – 40/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Properties

“Abstract Interpretation, Semantics, Verification, and Analysis” – 41/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Formal property
• A property is the set of elements that satisfy this property.
• Examples:

• {2𝑘 + 1 ∣ 𝑘 ∈ N} is the property “to be an odd natural”
• {2𝑘 ∣ 𝑘 ∈ Z} is the property “to be an even integer”

• Formally:
• 𝔈 is a set of entities
• A property of these entities is an element of ℘(𝔈)
• Examples:

• ∅ is false (ff)
• 𝔈 is true (tt)
• 𝑒 ∈ 𝑃, 𝑃 ∈ ℘(𝔈) means “𝑒 has property 𝑃”
• 𝑃 ⊆ 𝑃′ is implication ⇒ (𝑃 is stronger that 𝑃′, 𝑃′ is weaker that 𝑃)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 42/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Program property
• Syntactic point of view: a program property is the set of all programs which have

this property (e.g. Rice theorem)
• Semantic point of view: : a program property is the set of all semantic of programs

which have this property.
• By [program] property, we mean the semantic point of view.
• A program semantics is a set of traces (in ℘(𝕋+)) so a program property is a set of

sets of traces (in ℘(℘(𝕋+)))1

1sometimes called “hyperproperties”
“Abstract Interpretation, Semantics, Verification, and Analysis” – 43/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The complete (boolean) lattice of formal properties
⟨℘(𝔈), ⊆, ∅, 𝔈, ∪, ∩, ¬⟩

• ℘(𝔈) properties of entities belonging to 𝔈
• ⊆ implication
• ∅ false
• 𝔈 true
• ∪ disjonction, or
• ∩ conjunction, and
• ¬ negation, ¬𝑃 ≜ 𝔈 ⧵ 𝑃

(the definition of “complete lattice” is forthcoming)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 44/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Posets and complete lattices
• A poset ⟨ℙ, ⊑⟩ is a set equipped with a binary relation ⊑ which is (forall
𝑥, 𝑦, 𝑧 ∈ ℙ)

• reflexive: 𝑥 ⊑ 𝑥
• antisymmetric: 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦
• transitive: 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧

• A subset 𝑆 ∈ ℘(ℙ) has a least upper bound (denoted ⊔𝑆) if and only if
• ⊔𝑆 ∈ ℙ
• ∀𝑥 ∈ 𝑆 . 𝑥 ⊑ ⊔𝑆
• ∀𝑥 ∈ 𝑆 . 𝑥 ⊑ 𝑢 ⇒ ⊔𝑆 ⊑ 𝑢

• A complete lattice is a poset ⟨ℙ, ⊑⟩ in which any subset 𝑆 ∈ ℘(ℙ) has a lub/join
⊔𝑆 (not only the finite ones).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 45/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Collecting semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 46/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Collecting semantics
• The strongest semantic property of program P

𝓢ℂJPK ≜ {𝓢∗JPK} . (8.5)

• Program P has property 𝑃 ∈ ℘(℘(𝕋+∞)) is
• 𝓢∗JPK ∈ 𝑃, or equivalently
• {𝓢∗JPK} ⊆ 𝑃 i.e. 𝑃 is implied by the collecting semantics of program P.

• So we can use implication ⊆ (⇒) instead of ∈ (with no direct equivalent for
predicates in logic).

• Program verification {𝓢∗JPK} ⊆ 𝑃 is undecidable (Rice theorem)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 47/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Bibliography on semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 48/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References I
Cousot, Patrick (2002). “Constructive design of a hierarchy of semantics of a transition

system by abstract interpretation”. Theor. Comput. Sci. 277.1-2, pp. 47–103 (5, 10,
3, 16).

Cousot, Patrick and Radhia Cousot (1979). “Constructive Versions of Tarski’s Fixed
Point Theorems”. Pacific Journal of Mathematics 81.1, pp. 43–57 (7, 5, 3).

– (1992). “Inductive Definitions, Semantics and Abstract Interpretation”. In: POPL.
ACM Press, pp. 83–94 (5, 10).

– (1995). “Compositional and Inductive Semantic Definitions in Fixpoint, Equational,
Constraint, Closure-condition, Rule-based and Game-Theoretic Form”. In: CAV.
Vol. 939. Lecture Notes in Computer Science. Springer, pp. 293–308 (10, 29).

– (2009). “Bi-inductive structural semantics”. Inf. Comput. 207.2, pp. 258–283 (5, 10,
3, 8).

Plotkin, Gordon D. (2004). “A structural approach to operational semantics”. J. Log.
Algebr. Program. 60-61, pp. 17–139 (10).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 49/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The End of Part 1

“Abstract Interpretation, Semantics, Verification, and Analysis” – 50/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Part 2

Abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 51/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction
• We formalize the abstraction and approximation of program properties

• We show how a structural rule-based/fixpoint abstract semantics can be derived
from the collecting semantics by calculational design.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 52/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Informal introduction to abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 53/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally
• Let be ⟨℘(𝔈), ⊆⟩ be properties of entities (so called the concrete domain)

• Consider a subset A ⊆ ℘(𝔈) of properties of interest ⟨A, ⊆⟩
• Encode these properties of interest in an abstract domain ⟨𝐴, ⊑⟩
• The decoding function 𝛾 ∈ 𝐴 → A is called the concretization function
• Make proofs using abstract properties only
• So any concrete property must be over-approximated by a abstract property in
A = 𝛾(𝐴)

• If the abstract proof succeeds, it is valid in the concrete (soundness)
• If the abstract proof fails, you missed some property in ℘(𝔈) ⧵A which is essential

in the concrete proof (incompleteness)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 54/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally
• Let be ⟨℘(𝔈), ⊆⟩ be properties of entities (so called the concrete domain)
• Consider a subset A ⊆ ℘(𝔈) of properties of interest ⟨A, ⊆⟩

• Encode these properties of interest in an abstract domain ⟨𝐴, ⊑⟩
• The decoding function 𝛾 ∈ 𝐴 → A is called the concretization function
• Make proofs using abstract properties only
• So any concrete property must be over-approximated by a abstract property in
A = 𝛾(𝐴)

• If the abstract proof succeeds, it is valid in the concrete (soundness)
• If the abstract proof fails, you missed some property in ℘(𝔈) ⧵A which is essential

in the concrete proof (incompleteness)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 54/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally
• Let be ⟨℘(𝔈), ⊆⟩ be properties of entities (so called the concrete domain)
• Consider a subset A ⊆ ℘(𝔈) of properties of interest ⟨A, ⊆⟩
• Encode these properties of interest in an abstract domain ⟨𝐴, ⊑⟩

• The decoding function 𝛾 ∈ 𝐴 → A is called the concretization function
• Make proofs using abstract properties only
• So any concrete property must be over-approximated by a abstract property in
A = 𝛾(𝐴)

• If the abstract proof succeeds, it is valid in the concrete (soundness)
• If the abstract proof fails, you missed some property in ℘(𝔈) ⧵A which is essential

in the concrete proof (incompleteness)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 54/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally
• Let be ⟨℘(𝔈), ⊆⟩ be properties of entities (so called the concrete domain)
• Consider a subset A ⊆ ℘(𝔈) of properties of interest ⟨A, ⊆⟩
• Encode these properties of interest in an abstract domain ⟨𝐴, ⊑⟩
• The decoding function 𝛾 ∈ 𝐴 → A is called the concretization function

• Make proofs using abstract properties only
• So any concrete property must be over-approximated by a abstract property in
A = 𝛾(𝐴)

• If the abstract proof succeeds, it is valid in the concrete (soundness)
• If the abstract proof fails, you missed some property in ℘(𝔈) ⧵A which is essential

in the concrete proof (incompleteness)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 54/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally
• Let be ⟨℘(𝔈), ⊆⟩ be properties of entities (so called the concrete domain)
• Consider a subset A ⊆ ℘(𝔈) of properties of interest ⟨A, ⊆⟩
• Encode these properties of interest in an abstract domain ⟨𝐴, ⊑⟩
• The decoding function 𝛾 ∈ 𝐴 → A is called the concretization function
• Make proofs using abstract properties only

• So any concrete property must be over-approximated by a abstract property in
A = 𝛾(𝐴)

• If the abstract proof succeeds, it is valid in the concrete (soundness)
• If the abstract proof fails, you missed some property in ℘(𝔈) ⧵A which is essential

in the concrete proof (incompleteness)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 54/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally
• Let be ⟨℘(𝔈), ⊆⟩ be properties of entities (so called the concrete domain)
• Consider a subset A ⊆ ℘(𝔈) of properties of interest ⟨A, ⊆⟩
• Encode these properties of interest in an abstract domain ⟨𝐴, ⊑⟩
• The decoding function 𝛾 ∈ 𝐴 → A is called the concretization function
• Make proofs using abstract properties only
• So any concrete property must be over-approximated by a abstract property in
A = 𝛾(𝐴)

• If the abstract proof succeeds, it is valid in the concrete (soundness)
• If the abstract proof fails, you missed some property in ℘(𝔈) ⧵A which is essential

in the concrete proof (incompleteness)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 54/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally
• Let be ⟨℘(𝔈), ⊆⟩ be properties of entities (so called the concrete domain)
• Consider a subset A ⊆ ℘(𝔈) of properties of interest ⟨A, ⊆⟩
• Encode these properties of interest in an abstract domain ⟨𝐴, ⊑⟩
• The decoding function 𝛾 ∈ 𝐴 → A is called the concretization function
• Make proofs using abstract properties only
• So any concrete property must be over-approximated by a abstract property in
A = 𝛾(𝐴)

• If the abstract proof succeeds, it is valid in the concrete (soundness)

• If the abstract proof fails, you missed some property in ℘(𝔈) ⧵A which is essential
in the concrete proof (incompleteness)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 54/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction, informally
• Let be ⟨℘(𝔈), ⊆⟩ be properties of entities (so called the concrete domain)
• Consider a subset A ⊆ ℘(𝔈) of properties of interest ⟨A, ⊆⟩
• Encode these properties of interest in an abstract domain ⟨𝐴, ⊑⟩
• The decoding function 𝛾 ∈ 𝐴 → A is called the concretization function
• Make proofs using abstract properties only
• So any concrete property must be over-approximated by a abstract property in
A = 𝛾(𝐴)

• If the abstract proof succeeds, it is valid in the concrete (soundness)
• If the abstract proof fails, you missed some property in ℘(𝔈) ⧵A which is essential

in the concrete proof (incompleteness)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 54/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Brahmagupta

• Brahmagupta (born c. 598, died after 665) was an Indian mathematician and
astronomer;
• Invented the rule of signs (including to compute with zero);
• We explain his rule of sign as an abstract interpretation;
• Probably the very first example of abstract interpretation.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 55/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

https://en.wikipedia.org/wiki/Brahmagupta

Structural collecting semantics
• Semantics

𝓐JAK ∈ (V → Z) → Z

𝓐J1K𝜌 ≜ 1
𝓐JxK𝜌 ≜ 𝜌(x)

𝓐JA1 - A2K𝜌 ≜ 𝓐JA1K𝜌 −𝓐JA2K𝜌
• Collecting semantics

𝓢ℂJAK ∈ ℘((V → Z) → Z)
𝓢ℂJ1K = {𝜆 𝜌 ∈ . 1}
𝓢ℂJxK = {𝜆 𝜌 ∈ (V → Z) . 𝜌(x)}

𝓢ℂJA1 - A2K = {𝜆 𝜌 ∈ (V → Z) .𝑓1(𝜌) − 𝑓2(𝜌) ∣ 𝑓1 ∈ 𝓢ℂJA1K ∧ 𝑓2 ∈ 𝓢ℂJA2K}

𝜆𝑥 . 𝑡 is the function 𝑓 such that for parameter 𝑥, the value 𝑓(𝑥) of 𝑓 at 𝑥 is equal to the
value of the term 𝑡 (depending upon 𝑥). 𝜆𝑥 ∈ 𝑋 . 𝑡 states that 𝑓 is undefined when 𝑥 ∉ 𝑋.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 56/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 57/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign property (of an individual variable)

∅

{𝑧 ∣ 𝑧 < 0} {0} {𝑧 ∣ 𝑧 > 0}

{𝑧 ∣ 𝑧 ⩽ 0} {𝑧 ∣ 𝑧 ≠ 0} {𝑧 ∣ 𝑧 ⩾ 0}

Z

ℙ± =

Example of Hasse diagram.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 58/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Encoding of sign properties (of an individual variable)

⊥±

<0 =0 >0

⩽0 ≠0 ⩾0

⊤±

ℙ± =

Concretization function:
𝛾±(⊥±) ≜ ∅ 𝛾±(⩽0) ≜ {𝑧 ∣ 𝑧 ⩽ 0}
𝛾±(<0) ≜ {𝑧 ∣ 𝑧 < 0} 𝛾±(≠0) ≜ {𝑧 ∣ 𝑧 ≠ 0}
𝛾±(=0) ≜ {0} 𝛾±(⩾0) ≜ {𝑧 ∣ 𝑧 ⩾ 0}
𝛾±(>0) ≜ {𝑧 ∣ 𝑧 > 0} 𝛾±(⊤±) ≜ Z

“Abstract Interpretation, Semantics, Verification, and Analysis” – 59/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Encoding of sign properties (of an individual variable)

⊥±

<0 =0 >0

⩽0 ≠0 ⩾0

⊤±

ℙ± =

⊑ is the partial order in ℙ±

⨆ is the least upper bound in ℙ±
e.g. ⨆{⩽0, ≠0} = ⊤±, ⨆∅ = ⊥±

⨅ is the greatest lower bound in ℙ±
e.g. ⨅{⩽0, ≠0} = <0, ⨅∅ = ⊤±

Abstraction function: 𝛼±(𝑃) ≜ (𝑃 ⊆ ∅ ? ⊥± (3.28)
| 𝑃 ⊆ {𝑧 ∣ 𝑧 < 0} ? <0
| 𝑃 ⊆ {0} ? =0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 > 0} ? >0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ⩽ 0} ? ⩽0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ≠ 0} ? ≠0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ⩾ 0} ? ⩾0
: ⊤±)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 60/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois connection
• The pair ⟨𝛼±, 𝛾±⟩ of functions satisfies 𝛼±(𝑃) ⊑ 𝑄 ⇔ 𝑃 ⊆ 𝛾±(𝑄)
𝛼±(𝑃) ⊑ 𝑄
⇔ 𝛼±(𝑃) ⊑ ≠0 Hin case 𝑄 = ≠0, other cases are similarI
⇔ 𝛼±(𝑃) ∈ {⊥±, <0, ≠0, >0} Hdef. I
⇔ 𝑃 ⊆ ∅ ∨ 𝑃 ⊆ {𝑧 ∣ 𝑧 < 0} ∨ 𝑃 ⊆ {𝑧 ∣ 𝑧 > 0} ∨ 𝑃 ⊆ {𝑧 ∣ 𝑧 ≠ 0} Hdef. 𝛼±I
⇔ 𝑃 ⊆ {𝑧 ∣ 𝑧 ≠ 0} Hdef. ⊆I
⇔ 𝑃 ⊆ 𝛾±(≠0) Hdef. 𝛾±I
⇔ 𝑃 ⊆ 𝛾±(𝑄) Hcase 𝑄 = ≠0I

• This is the definition of a Galois connection

• We write ⟨℘(Z), ⊆⟩ −−−−−→←−−−−−𝛼±
𝛾±
⟨ℙ±, ⊑⟩

• This will be further generalized.
“Abstract Interpretation, Semantics, Verification, and Analysis” – 61/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign abstract semantics
SJAK ∈ (V → ℙ±) → ℙ±

SJ1K𝑃 ≜ >0
SJxK𝑃 ≜ 𝑃(x)

SJA1 - A2K𝑃 ≜ SJA1K𝑃 -± SJA2K𝑃}
𝑥 -± 𝑦 𝑦

⊥± <0 =0 >0 ⩽0 ≠0 ⩾0 ⊤±
⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥± ⊥±
<0 ⊥± ⊤± <0 <0 ⊤± ⊤± <0 ⊤±
=0 ⊥± >0 =0 <0 ⩾0 ≠0 ⩽0 ⊤±

𝑥 >0 ⊥± >0 >0 ⊤± >0 ⊤± ⊤± ⊤±
⩽0 ⊥± >0 ⩽0 ⊤± ⊤± ⊤± ⩽0 ⊤±
≠0 ⊥± ⊤± ≠0 ⊤± ⊤± ⊤± ⊤± ⊤±
⩾0 ⊥± >0 ⩾0 ⊤± ⩾0 ⊤± ⊤± ⊤±
⊤± ⊥± ⊤± ⊤± ⊤± ⊤± ⊤± ⊤± ⊤±

“Abstract Interpretation, Semantics, Verification, and Analysis” – 62/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design of the rule of signs

>0 -± ⩽0
≜ 𝛼±({𝑥 − 𝑦 ∣ 𝑥 ∈ 𝛾±(>0) ∧ 𝑦 ∈ 𝛾±(⩽0)}
= 𝛼±({𝑥 − 𝑦 ∣ 𝑥 > 0 ∧ 𝑦 ⩽ 0})
= 𝛼±({𝑥 − 𝑦 ∣ 𝑥 > 0 ∧ −𝑦 ⩾ 0})
⊆ 𝛼±({𝑥 − 𝑦 ∣ 𝑥 − 𝑦 > 0})
= 𝛼±({𝑧 ∣ 𝑧 > 0})
= >0

Same calculus for all other cases (can be automated with a theorem prover, so called
predicate abstraction).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 63/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign abstract semantics (revisited)
• If a variable y has sign ⊥±, then 𝛾±(⊥±) = ∅ so the expression is not evaluated hence

returns no value
• Define ↧±[𝑃]𝑠 ≜ (∃y ∈ V . 𝑃(y) = ⊥± ? ⊥± : 𝑠) to force returning ⊥± if a variable has

abstract value ⊥±
• The following sign abstract semantics is more precise:

𝓢±J1K𝑃 = ↧±[𝑃](>0) (3.19)
𝓢±JxK𝑃 = ↧±[𝑃](𝑃(x))

𝓢±JA1 - A2K𝑃 = (𝓢±JA1K𝑃) -± (𝓢±JA2K𝑃)
• It follows that ∃x ∈ V . 𝑃(x) = ⊥± implies 𝓢±JAK𝑃 = ⊥±.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 64/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Soundness

“Abstract Interpretation, Semantics, Verification, and Analysis” – 65/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign concretization
• Sign

𝛾±(⊥±) ≜ ∅ 𝛾±(⩽0) ≜ {𝑧 ∈ Z ∣ 𝑧 ⩽ 0} (3.21)
𝛾±(<0) ≜ {𝑧 ∈ Z ∣ 𝑧 < 0} 𝛾±(≠0) ≜ {𝑧 ∈ Z ∣ 𝑧 ≠ 0}
𝛾±(=0) ≜ {0} 𝛾±(⩾0) ≜ {𝑧 ∈ Z ∣ 𝑧 ⩾ 0}
𝛾±(>0) ≜ {𝑧 ∈ Z ∣ 𝑧 > 0} 𝛾±(⊤±) ≜ Z

• Sign environment

̇𝛾±(±𝜌) ≜ {𝜌 ∈ V → Z ∣ ∀x ∈ V . 𝜌(x) ∈ 𝛾±(±𝜌(x))} (3.22)

• Sign abstract property

̈𝛾±(𝑃) ≜ {𝓢 ∈ (V → Z) → Z ∣ ∀ ±𝜌 ∈ V → ℙ± . ∀𝜌 ∈ ̇𝛾±(±𝜌) . 𝓢(𝜌) ∈ 𝛾±(𝑃(±𝜌))} (3.23)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 66/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sign abstraction
• Value property

𝛼±(𝑃) ≜ (𝑃 ⊆ ∅ ? ⊥± (3.28)
| 𝑃 ⊆ {𝑧 ∣ 𝑧 < 0} ? <0
| 𝑃 ⊆ {0} ? =0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 > 0} ? >0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ⩽ 0} ? ⩽0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ≠ 0} ? ≠0
| 𝑃 ⊆ {𝑧 ∣ 𝑧 ⩾ 0} ? ⩾0
: ⊤±)

• Environment property
�̇�±(𝑃) ≜ 𝜆 x ∈V .𝛼±({𝜌(x) ∣ 𝜌 ∈ 𝑃}) (3.31)

• Semantics property
�̈�±(𝑃) ≜ 𝜆 ±𝜌 ∈V → ℙ± .𝛼±({𝓢(𝜌) ∣ 𝓢 ∈ 𝑃 ∧ 𝜌 ∈ ̇𝛾±(±𝜌)}) (3.32)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 67/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of environment property abstraction
• The property of environments such that x is equal to 1:

{𝜌 ∈ V → Z ∣ 𝜌(x) = 1}
• Sign abstraction:
�̇�±({𝜌 ∈ V → Z ∣ 𝜌(x) = 1})
≜ 𝜆 y ∈V .𝛼±({𝜌(y) ∣ 𝜌 ∈ {𝜌 ∈ V → Z ∣ 𝜌(x) = 1}})
= 𝜆 y ∈V . (y = x ? 𝛼±({1}) : 𝛼±(Z))
= 𝜆 y ∈V . (y = x ? >0 : ⊤±)

• Sign concretization:
̇𝛾±(𝜆 y ∈V . (y = x ? >0 : ⊤±))

≜ {𝜌 ∈ V → Z ∣ ∀z ∈ V . 𝜌(z) ∈ 𝛾±(𝜆 y ∈V . (y = x ? >0 : ⊤±)(z))}
= {𝜌 ∈ V → Z ∣ 𝜌(x) > 0}

“Abstract Interpretation, Semantics, Verification, and Analysis” – 68/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois connections
• Value to sign

⟨℘(Z), ⊆⟩ −−−−−→←−−−−−𝛼±
𝛾±
⟨ℙ±, ⊑⟩

• Value environment to sign environment
⟨℘(V → Z), ⊆⟩ −−−−−→←−−−−−�̇�±

̇𝛾±
⟨V → ℙ±, ⊑̇±⟩

• Semantic to sign abstract semantic property
⟨℘((V → Z) → Z), ⊆⟩ −−−−−→←−−−−−�̈�±

̈𝛾±
⟨(V → ℙ±) → ℙ±, ⊑̇±⟩

“Abstract Interpretation, Semantics, Verification, and Analysis” – 69/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Soundness of the abstract sign semantics
• The abstract sign semantics is an abstraction of the collecting property

𝓢ℂJAK ⊆ ̈𝛾±(𝓢±JAK)
⇔ �̈�±(𝓢ℂJAK) ⊑̈ 𝓢±JAK

• Precision loss: if the sign of x is ⩽0 then the sign of x - x is ⊤± not =0
• The absolute value is abstracted away
• No precision loss for multiplication ×

“Abstract Interpretation, Semantics, Verification, and Analysis” – 70/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design of the sign semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 71/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Case when ∃x ∈ V . ±𝜌(x) = ⊥± so that ̇𝛾±(±𝜌) = ∅

�̈�±(𝓢ℂJAK) ±𝜌
= 𝛼±({𝓢(𝜌) ∣ 𝓢 ∈ 𝓢ℂJAK ∧ 𝜌 ∈ ̇𝛾±(±𝜌)}) Hdef. (3.32) of �̈�±I
= 𝛼±({𝓐JAK(𝜌) ∣ 𝜌 ∈ ̇𝛾±(±𝜌)}) Hdef. (3.11) of 𝓢ℂJAKI
= 𝛼±(∅) H∃x ∈ V . ±𝜌(x) = ⊥± so that ̇𝛾±(±𝜌) = ∅I
= ⊥± Hdef. (3.28) of 𝛼±I
≜ 𝓢±JAK ±𝜌Hin accordance with (3.19) such that ∃x ∈ V . ±𝜌(x) = ⊥± implies 𝓢±JAK ±𝜌 = ⊥±.I

“Abstract Interpretation, Semantics, Verification, and Analysis” – 72/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Homework: Case of a variable x
�̈�±(𝓢ℂJxK) ±𝜌

= 𝛼±({𝓢(𝜌) ∣ 𝓢 ∈ 𝓢ℂJxK ∧ 𝜌 ∈ ̇𝛾±(±𝜌)}) Hdef. (3.32) of �̈�±I
= 𝛼±({𝓐JxK(𝜌) ∣ 𝜌 ∈ ̇𝛾±(±𝜌)}) Hdef. (3.11) of 𝓢ℂJxKI
= 𝛼±({𝜌(x) ∣ 𝜌 ∈ ̇𝛾±(±𝜌)}) Hdef. (3.4) of 𝓐JxKI
= 𝛼±({𝜌(x) ∣ ∀y ∈ V . 𝜌(y) ∈ 𝛾±(±𝜌(y))}) Hdef. (3.22) of ̇𝛾±I
= 𝛼±({𝜌(x) ∣ 𝜌(x) ∈ 𝛾±(±𝜌(x))})Hsince 𝛾±(±𝜌(y)) is not empty so for y ≠ x, 𝜌(y) can be chosen arbitrarily to

satisfy 𝜌(y) ∈ 𝛾±(±𝜌(y))I
= 𝛼±({𝑥 ∣ 𝑥 ∈ 𝛾±(±𝜌(x))}) Hletting 𝑥 = 𝜌(x)I
= 𝛼±(𝛾±(±𝜌(x))) Hsince 𝑆 = {𝑥 ∣ 𝑧 ∈ 𝑆} for any set 𝑆I
= ±𝜌(x) Hby (3.35), 𝛼± ∘ 𝛾± is the identityI
≜ 𝓢±JxK ±𝜌 Hin accordance with (3.19) when ∀y ∈ V . ±𝜌(y) ≠ ⊥±I

“Abstract Interpretation, Semantics, Verification, and Analysis” – 73/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Other cases
• similar for �̈�±(𝓢ℂJ1K) ±𝜌
• by structural induction for �̈�±(𝓢ℂJA1 - A2K)
• See the course notes in the appendix.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 74/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Chapter 11

Galois Connections and Abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 75/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois connections
• Given posets ⟨C, ⊑⟩ (the concrete domain) and ⟨A, ≼⟩ (the abstract domain), the

pair ⟨𝛼, 𝛾⟩ of functions 𝛼 ∈ C→ A (the lower adjoint or abstraction) and 𝛾 ∈ A→ C
(the upper-adjoint or concretization) is a Galois connection (GC) if and only if

∀𝑃 ∈ C . ∀𝑃 ∈ A . 𝛼(𝑃) ≼ 𝑃 ⇔ 𝑃 ⊑ 𝛾(𝑃) (11.1)

which we write

⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩ .

“Abstract Interpretation, Semantics, Verification, and Analysis” – 76/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example: homomorphic/partition abstraction
• Let 𝐶 and 𝐴 be sets, ℎ ∈ 𝐶 → 𝐴
• 𝛼ℎ(𝑆) ≜ {ℎ(𝑒) ∣ 𝑒 ∈ 𝑆}
• 𝛾ℎ(𝑆) ≜ {𝑒 ∈ 𝑆 ∣ ℎ(𝑒) ∈ 𝑆}
• ⟨℘(𝐶), ⊆⟩ −−−−−→←−−−−−𝛼ℎ

𝛾ℎ ⟨℘(𝐴), ⊆⟩

Proof
𝛼ℎ(𝑆) ⊆ 𝑆
⇔ {ℎ(𝑒) ∣ 𝑒 ∈ 𝑆} ⊆ 𝑆 Hdef. 𝛼ℎI
⇔ ∀𝑒 ∈ 𝑆 . ℎ(𝑒) ∈ 𝑆 Hdef. ⊆I
⇔ 𝑆 ⊆ {𝑒 ∣ ℎ(𝑒) ∈ 𝑆} Hdef. ⊆I
⇔ 𝑆 ⊆ 𝛾ℎ(𝑆) Hdef. 𝛾ℎI �

“Abstract Interpretation, Semantics, Verification, and Analysis” – 77/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Duality in order theory
• The properties derived for ⊑, ⊥, ⊤, ⊔, max, ⊓, min, etc. are valid for the dual ⊒, ⊤,
⊥, ⊓, min, ⊔, max, etc.

• Intuition:

⟘

s
⨆S

min S

⟙

⨅S
s

max S⟙

⟘

!

!

“Abstract Interpretation, Semantics, Verification, and Analysis” – 78/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dual of a Galois connection
• The dual of a Galois connection ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ is the Galois connection ⟨A,

≼⟩ −−−−→←−−−−𝛾
𝛼 ⟨C, ⊑⟩

Proof ⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩

⇔ 𝛼(𝑥) ≼ 𝑦 ⇔ 𝑥 ⊑ 𝛾(𝑦) Hdef. Galois connectionI
𝛼(𝑥) ≽ 𝑦 ⇔ 𝑥 ⊒ 𝛾(𝑦) Hdual statementI
⇔ 𝛾(𝑦) ⊑ 𝑥 ⇔ 𝑦 ≼ 𝛼(𝑥) Hinverse order 𝑥 ⊒ 𝑦 ⇔ 𝑦 ⊑ 𝑥I
⇔ 𝛾(𝑥) ⊑ 𝑦 ⇔ 𝑥 ≼ 𝛼(𝑦) Hdummy variable renamingI
⇔ ⟨A, ≼⟩ −−−−→←−−−−𝛾

𝛼 ⟨C, ⊑⟩ Hdef. Galois connectionI �
• Dualization of a statement involving Galois connections consists in exchanging the

adjoints
• If an adjoint has a property, its adjoint has the dual property

“Abstract Interpretation, Semantics, Verification, and Analysis” – 79/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of dualization
Lemma 1 If ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ then 𝛼 is increasing. �

Proof Assume 𝑃 ⊑ 𝑃′. By 𝛼(𝑃′) ≼ 𝛼(𝑃′) we have 𝑃′ ⊑ 𝛾(𝛼(𝑃′)) so 𝑃 ⊑ 𝛾(𝛼(𝑃′)) by
transitivity hence 𝛼(𝑃) ⊑ 𝛼(𝑃′) by definition of a GC, proving that 𝛼 is increasing. �
Lemma 2 If ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ then 𝛾 is increasing. �

Proof By duality (increasing is self-dual so the dual of “𝛼 is increasing” is “𝛾 is
increasing”). �

“Abstract Interpretation, Semantics, Verification, and Analysis” – 80/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of dualization
• In a Galois connection ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ we have 𝛼 ∘ 𝛾 ∘ 𝛼 = 𝛼

Proof homework For all 𝑥 ∈ C and 𝑦 ∈ A,
𝛼(𝑥) ≼ 𝛼(𝑥) HreflexivityI
⇒ 𝑥 ⊑ 𝛾(𝛼(𝑥)) Hdef. GCI
⇒ 𝛼(𝑥) ≼ 𝛼(𝛾(𝛼(𝑥))) H𝛼 increasingI
𝛾(𝑦) ⊑ 𝛾(𝑦) HreflexivityI
⇒ 𝛼(𝛾(𝑦)) ≼ 𝑦 Hdef. GCI
⇒ 𝛼(𝛾(𝛼(𝑥))) ≼ 𝛼(𝑥) Hfor 𝑦 = 𝛼(𝑥)I
𝛼(𝑥) = 𝛼(𝛾(𝛼(𝑥))) HantisymmetryI �

• The dual is 𝛾 ∘ 𝛼 ∘ 𝛾 = 𝛾.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 81/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Equivalent definition of Galois connections
• ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ if and only if 𝛼 ∈ C→ A and 𝛾 ∈ A→ C satisfy

(1) 𝛼 is increasing;
(2) 𝛾 is increasing;
(3) ∀𝑥 ∈ C . 𝑥 ⊑ 𝛾 ∘ 𝛼(𝑥) (i.e. 𝛾 ∘ 𝛼 is extensive)
(4) ∀𝑦 ∈ A . 𝛼 ∘ 𝛾(𝑦) ≼ 𝑦 (i.e. 𝛼 ∘ 𝛾 is reductive) �

“Abstract Interpretation, Semantics, Verification, and Analysis” – 82/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

𝛼 preserves existing lubs

Lemma 3 If ⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩ then 𝛼 preserves lubs that may exist in Ci.e.

let ⊔ be the partially defined lub for ⊑ in C and ⋎ be the partially defined lub
for ≼ in A. Let 𝑆 ∈ ℘(C) be any subset of C. If ⨆𝑆 exists in C then the upper
bound ⋎{𝛼(𝑒) ∣ 𝑒 ∈ 𝑆} exists in C and is equal to 𝛼(⨆ 𝑆). �

Proof By existence and definition of the lub ⨆𝑆, we have ∀𝑒 ∈ 𝑆 . 𝑒 ⊑ ⨆ 𝑆 so
𝛼(𝑒) ≼ 𝛼(⨆ 𝑆) since 𝛼 is increasing. It follows that 𝛼(⨆ 𝑆) is an upper bound of
{𝛼(𝑒) ∣ 𝑒 ∈ 𝑆}. Let 𝑢 be any upper bound of this set {𝛼(𝑒) ∣ 𝑒 ∈ 𝑆} so that
∀𝑒 ∈ 𝑆 . 𝛼(𝑒) ≼ 𝑢. By definition of a GC, ∀𝑒 ∈ 𝑆 . 𝑒 ⊑ 𝛾(𝑢). So 𝛾(𝑢) is an upper
bound of 𝑆. By existence and definition of the lub ⨆𝑆, ⨆𝑆 ⊑ 𝛾(𝑢) so 𝛼(⨆ 𝑆) ≼ 𝑢
proving that 𝛼(⨆ 𝑆), which exists since 𝛼 is a total function, is the lub of
{𝛼(𝑒) ∣ 𝑒 ∈ 𝑆} denoted ⋎{𝛼(𝑒) ∣ 𝑒 ∈ 𝑆}. �

• By duality 𝛾 preserves existing meets.
“Abstract Interpretation, Semantics, Verification, and Analysis” – 83/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

lub-preserving 𝛼

Lemma 4 If 𝛼 preserves existing lubs and 𝛾(𝑦) ≜ ⨆{𝑥 ∈ C ∣ 𝛼(𝑥) ≼ 𝑦} is well-
defined then ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩. �

Proof 𝑥 ⊑ 𝛾(𝑦)
⇒ 𝑥 ⊑ ⨆{𝑥′ ∈ C ∣ 𝛼(𝑥′) ≼ 𝑦} Hdef. 𝛾I
⇒ 𝛼(𝑥) ≼ 𝛼(⨆{𝑥′ ∈ C ∣ 𝛼(𝑥′) ≼ 𝑦}) H𝛼 preserves existing lubs so is increasingI
⇒ 𝛼(𝑥) ≼⋎{𝛼(𝑥′) ∣ 𝑥′ ∈ C ∧ 𝛼(𝑥′) ≼ 𝑦}) H𝛼 preserves existing lubsI
⇒ 𝛼(𝑥) ≼ 𝑦Hsince 𝑦 is an upper bound of {𝛼(𝑥′) ∣ 𝛼(𝑥′) ≼ 𝑦} greater than or equal to the

lub ⋎{𝛼(𝑥′) ∣ 𝛼(𝑥′) ≼ 𝑦}I
⇒ 𝑥 ≼ ⨆{𝑥′ ∈ C ∣ 𝛼(𝑥′) ≼ 𝑦} Hsince 𝑥 ∈ {𝑥′ ∈ C ∣ 𝛼(𝑥′) ≼ 𝑦}I
⇒ 𝑥 ≼ 𝛾(𝑦) Hdef. 𝛾I �

“Abstract Interpretation, Semantics, Verification, and Analysis” – 84/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Uniqueness of adjoints

Lemma 5 In a Galois connection one adjoint uniquely determines the other. �
Proof Observe that ∀𝑃 ∈ C . 𝛼(𝑃) = ⊓{𝑃 ∣ 𝛼(𝑃) ≼ 𝑃} so, by definition of a GC,
𝛼(𝑃) = ⊓{𝑃 ∣ 𝑃 ⊑ 𝛾(𝑃)} i.e. 𝛾 uniquely determines 𝛼. Dually 𝛼 uniquely determines 𝛾
since ∀𝑃 ∈ A . 𝛾(𝑃) = ⊔{𝑃 ∣ 𝛼(𝑃) ≼ 𝑃}. �

• This lemma is useful in situations where only one adjoint is defined explicitly since
then the other is also uniquely determined.

• Note: for given concrete and abstract partial orders

“Abstract Interpretation, Semantics, Verification, and Analysis” – 85/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois retraction (surjection/insertion)
• If ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ then

• 𝛼 is surjective, if and only if
• 𝛾 is injective, if and only if
• ∀𝑃 ∈ A . 𝛼 ∘ 𝛾(𝑃) = 𝑃.

• This is denoted ⟨C, ⊑⟩ −−−−→⟶←−−−−−−𝛼
𝛾
⟨A, ≼⟩ and called a Galois retraction (Galois

surjection, insertion, etc.).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 86/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 87/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sound abstraction
• Assume ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩

• We say that 𝑃 ∈ A is a sound abstraction of 𝑃 ∈ C if and only if
𝑃 ⊑ 𝛾(𝑃)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 88/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of sound abstractions

⊥±

⩽0 ⩾0

⊤±

⟨ℙ±, ⊑±⟩ =

𝛾±(⊥±) ≜ ∅
𝛾±(⩽0) ≜ {𝑧 ∣ 𝑧 ⩽ 0}
𝛾±(⩾0) ≜ {𝑧 ∣ 𝑧 ⩾ 0}
𝛾±(⊤±) ≜ Z

property sound abstractions best abstraction
{1, 42} ⩾0 and ⊤± ⩾0

{0} ⩽0, ⩾0, and ⊤± none

• There is no Galois connection between ⟨℘(Z), ⊆⟩ and ⟨ℙ±, ⊑±⟩.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 89/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Better abstraction
• Assume ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩

• Let 𝑃1, 𝑃2 ∈ A be sound abstractions of the concrete property 𝑃 ∈ C.
• We say that 𝑃1 is better/more precise/stronger/less abstract than 𝑃2 if and only if
𝑃1 ≼ 𝑃2.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 90/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Best abstraction
• Assume ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩

• Then 𝛼(𝑃) is the best/most precise/strongest/least abstract property which is a
sound abstraction of the concrete property 𝑃.

Proof
• 𝛼(𝑃) is a sound abstraction of 𝑃 since 𝑃 ⊑ 𝛾(𝛼(𝑃)).
• 𝛼(𝑃) is the least sound abstraction of 𝑃 since 𝛼(𝑃) = ⨅{𝑃 ∣ 𝑃 ⊑ 𝛾(𝑃)}. �

“Abstract Interpretation, Semantics, Verification, and Analysis” – 91/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of best abstractions

⊥±

⩽0 ⩾0

⊤±

⟨ℙ±, ⊑±⟩ =

𝛾±(⊥±) ≜ ∅
𝛾±(⩽0) ≜ {𝑧 ∣ 𝑧 ⩽ 0}
𝛾±(⩾0) ≜ {𝑧 ∣ 𝑧 ⩾ 0}
𝛾±(⊤±) ≜ Z

property sound abstractions best abstraction
{1, 42} ⩾0 and ⊤± ⩾0

{0} ⩽0, ⩾0, and ⊤± none

• There is no Galois connection between ⟨℘(Z), ⊆⟩ and ⟨ℙ±, ⊑±⟩.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 92/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Combination of Galois connections

“Abstract Interpretation, Semantics, Verification, and Analysis” – 93/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Composition of Galois connections
• The composition of Galois connections ⟨P1, ⊑⟩ −−−−−→←−−−−−𝛼1

𝛾1 ⟨P2, ≼⟩ and ⟨P2,

≼⟩ −−−−−→←−−−−−
𝛼2

𝛾2
⟨P3, ⊴⟩ is the Galois connection ⟨P1, ⊑⟩ −−−−−−−→←−−−−−−−

𝛼2∘𝛼1

𝛾1∘𝛾2 ⟨P3, ⊴⟩.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 94/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Galois connections pairs
• Let ⟨C1, ⊑1⟩ −−−−−→←−−−−−𝛼1

𝛾1 ⟨A1, ≼1⟩ and ⟨C2, ⊑2⟩ −−−−−→←−−−−−𝛼2
𝛾2 ⟨A, ≼2⟩;

• ⟨C1 × C2, ⊑̇⟩ −−−−→←−−−−𝛼
𝛾
⟨A1 ×A2, ≼̇⟩, where

• 𝛼(⟨𝑥, 𝑦⟩) = ⟨𝛼1(𝑥), 𝛼2(𝑦)⟩,
• 𝛾(⟨𝑥, 𝑦⟩) = ⟨𝛾1(𝑥), 𝛾2(𝑦)⟩, and

• ⊑̇ and ≼̇ are componentwise.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 95/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Higher-order Galois connections
• Let ⟨C1, ⊑1⟩ −−−−−→←−−−−−𝛼1

𝛾1 ⟨A1, ≼1⟩ and ⟨C2, ⊑2⟩ −−−−−→←−−−−−𝛼2
𝛾2 ⟨A, ≼2⟩;

• ⟨C1 ↗⟶C2, ⊑̇2⟩ −−−−→←−−−−𝛼
𝛾
⟨A1 ↗⟶A2, ≼̇2⟩, where

• 𝛼 = 𝜆𝑓 .𝛼2 ∘ 𝑓 ∘ 𝛾1, and
• 𝛾 = 𝜆𝑓 . 𝛾2 ∘ 𝑓 ∘ 𝛼1.

C1

A1

C2

A2

𝑓

𝑓

𝛾1 𝛼1 𝛾2 𝛼2

“Abstract Interpretation, Semantics, Verification, and Analysis” – 96/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Conclusion on abstraction by Galois connections
• We can represent abstract program properties by posets and establish the

correspondence with the concrete properties using a Galois connection.
• The concrete order structure is preserved in the abstract and inversely.
• Otherwise stated concrete and abstract implications coincide up to the Galois

connection.
• So proofs in the abstract domain ⟨A, ≼⟩ using the abstract implication/order ≼ is

valid in the concrete ⟨C, ⊑⟩ for ⊑, up to this GC.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 97/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Bibliography on abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 98/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References I
Bertrane, Julien, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,

Antoine Miné, and Xavier Rival (2015). “Static Analysis and Verification of
Aerospace Software by Abstract Interpretation”. Foundations and Trends in
Programming Languages 2.2-3, pp. 71–190.

Blanchet, Bruno, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival (2003). “A static analyzer for large
safety-critical software”. In: PLDI. ACM, pp. 196–207.

Cousot, Patrick (Mar. 1978). “Méthodes itératives de construction et d’approximation
de points fixes d’opérateurs monotones sur un treillis, analyse sémantique de
programmes (in French)”. Thèse d’État ès sciences mathématiques. Grenoble,
France: Université de Grenoble Alpes.

– (1981). “Semantic foundations of program analysis”. In: S.S. Muchnick and
N.D. Jones, eds. Program Flow Analysis: Theory and Applications. Englewood Cliffs,
New Jersey, usa: Prentice-Hall, Inc. Chap. 10, pp. 303–342.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 99/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References II
Cousot, Patrick (1997). “Types as Abstract Interpretations”. In: POPL. ACM Press,

pp. 316–331.
– (1999). “The Calculational Design of a Generic Abstract Interpreter”. In: M. Broy

and R. Steinbrüggen, eds. Calculational System Design. NATO ASI Series F. IOS
Press, Amsterdam.

– (2000). “Partial Completeness of Abstract Fixpoint Checking”. In: SARA. Vol. 1864.
Lecture Notes in Computer Science. Springer, pp. 1–25.

– (2015). “Abstracting Induction by Extrapolation and Interpolation”. In: VMCAI.
Vol. 8931. Lecture Notes in Computer Science. Springer, pp. 19–42.

Cousot, Patrick and Radhia Cousot (1976). “Static determination of dynamic
properties of programs”. In: Proceedings of the Second International Symposium on
Programming. Dunod, Paris, France, pp. 106–130.

– (1977a). “Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints”. In: POPL. ACM,
pp. 238–252.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 100/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References III
Cousot, Patrick and Radhia Cousot (1977b). “Static Determination of Dynamic

Properties of Generalized Type Unions”. In: Language Design for Reliable Software,
pp. 77–94.

– (1977c). “Static determination of dynamic properties of recursive procedures”. In:
E.J. Neuhold, ed. IFIP Conf. on Formal Description of Programming Concepts,
St-Andrews, N.B., CA. North-Holland Pub. Co., pp. 237–277.

– (1979). “Systematic Design of Program Analysis Frameworks”. In: POPL. ACM
Press, pp. 269–282.

– (1992a). “Abstract Interpretation Frameworks”. J. Log. Comput. 2.4, pp. 511–547.
– (1992b). “Comparing the Galois Connection and Widening/Narrowing Approaches

to Abstract Interpretation”. In: PLILP. Vol. 631. Lecture Notes in Computer Science.
Springer, pp. 269–295.

– (1994). “Higher Order Abstract Interpretation (and Application to Comportment
Analysis Generalizing Strictness, Termination, Projection, and PER Analysis”. In:
ICCL. IEEE Computer Society, pp. 95–112.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 101/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References IV
Cousot, Patrick and Radhia Cousot (1995). “Formal Language, Grammar and

Set-Constraint-Based Program Analysis by Abstract Interpretation”. In: FPCA.
ACM, pp. 170–181.

– (2000). “Temporal Abstract Interpretation”. In: POPL. ACM, pp. 12–25.
– (2002). “Modular Static Program Analysis”. In: CC. Vol. 2304. Lecture Notes in

Computer Science. Springer, pp. 159–178.
– (2004). “Basic Concepts of Abstract Interpretation”. In: René Jacquard, ed. Building

the Information Society. Springer, pp. 359–366.
– (2012). “An abstract interpretation framework for termination”. In: POPL. ACM,

pp. 245–258.
– (2014). “A Galois connection calculus for abstract interpretation”. In: POPL. ACM,

pp. 3–4.
Cousot, Patrick, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,

David Monniaux, and Xavier Rival (2005). “The Astrée Analyzer”. In: ESOP.
Vol. 3444. Lecture Notes in Computer Science. Springer, pp. 21–30.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 102/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References V
Cousot, Patrick, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,

David Monniaux, and Xavier Rival (2006). “Combination of Abstractions in the
Astrée Static Analyzer”. In: ASIAN. Vol. 4435. Lecture Notes in Computer Science.
Springer, pp. 272–300.

Cousot, Patrick, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, and
Xavier Rival (2009). “Why does Astrée scale up?” Formal Methods in System
Design 35.3, pp. 229–264.

Cousot, Patrick, Roberto Giacobazzi, and Francesco Ranzato (2018). “Program
Analysis Is Harder Than Verification: A Computability Perspective”. In: CAV (2).
Vol. 10982. Lecture Notes in Computer Science. Springer, pp. 75–95.

– (Jan. 2019). “A2I: Abstract2 Interpretation”. PACMPL (POPL conference) 3, article
42. doi: 10.1145/3290355.

Cousot, Patrick and Nicolas Halbwachs (1978). “Automatic Discovery of Linear
Restraints Among Variables of a Program”. In: POPL. ACM Press, pp. 84–96.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 103/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

https://doi.org/10.1145/3290355

The End of Part 2, 30mn break

“Abstract Interpretation, Semantics, Verification, and Analysis” – 104/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Part 3

Verification and proofs

“Abstract Interpretation, Semantics, Verification, and Analysis” – 105/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Verification and proofs
• We show that verification methods and program logics are (non-computable)

abstractions of the program collecting semantics.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 106/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Program properties

“Abstract Interpretation, Semantics, Verification, and Analysis” – 107/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Program semantic properties
• The entities are semantics of program P i.e. sets of maximal traces 𝔈 = ℘(𝕋+∞)
• The properties are sets of semantics of program P i.e. sets of sets of maximal traces
℘(𝔈) = ℘(℘(𝕋+∞))2

2also called “hyperproperties”
“Abstract Interpretation, Semantics, Verification, and Analysis” – 108/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of program semantic property (Cont’d)
𝑃 ≜ ℘({𝜋 ∈ 𝕋+ ∣ 𝝆(𝜋)x = 0}) ∪ ℘({𝜋 ∈ 𝕋+ ∣ 𝝆(𝜋)x = 1}) ∈ ℘(℘(𝕋+∞))

• 𝑃 means “all executions of P always terminate with x = 0 or all executions of P
always terminate with x = 1”.

𝑃 =

x=1
x=1

x=1……x=0x=0
x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… ……

“Abstract Interpretation, Semantics, Verification, and Analysis” – 109/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of program semantic property (Cont’d)

𝑃 =

x=1
x=1

x=1……x=0x=0
x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… ……

• Assume program P has this property 𝑃 so 𝓢+∞JPK ∈ 𝑃.
• Executing program P once, we know the result of all other executions.
• If the execution terminates with x = 0 (respectively x = 1) the property 𝑃 implies

that all other possible executions will always terminate with x = 0 (respectively
x = 1).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 110/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Collecting semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 111/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Collecting semantics (for maximal traces)
• The strongest semantic property of program P

𝓢ℂJPK ≜ {𝓢+∞JPK} . (8.5)

• Program P has property 𝑃 ∈ ℘(℘(𝕋+∞)) is
• 𝓢+∞JPK ∈ 𝑃, or equivalently
• {𝓢+∞JPK} ⊆ 𝑃 i.e. 𝑃 is implied by the collecting semantics of program P.

• So we can use implication ⊆ (⇒) instead of ∈ (with no direct equivalent for
predicates in logic).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 112/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Trace properties

“Abstract Interpretation, Semantics, Verification, and Analysis” – 113/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Trace properties
• By “program property” or “semantic property” most computer scientists refer to

“trace properties”
• elements 𝔈 = 𝕋+∞, traces
• trace properties ℘(𝔈) = ℘(𝕋+∞)
• safety and liveness are trace properties

“Abstract Interpretation, Semantics, Verification, and Analysis” – 114/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of trace properties
• the program trace semantics 𝓢+∞JPK ∈ ℘(𝕋+∞) is a trace property.
• {𝜋 ∈ 𝕋+ ∣ 𝝆(𝜋)x = 0} ∈ ℘(𝕋+∞) is the trace property of “terminating with x=0”.
• 𝑃 = {𝜋 ∈ 𝕋+ ∣ 𝝆(𝜋)x ∈ {0, 1}} ∈ ℘(𝕋+∞) is the trace property of “terminating with

x=0 or x=1”.

𝑃 =

x=1
x=1

x=1……x=0x=0
x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… ……

• Trace properties in ℘(𝕋+∞) are less expressive than semantic properties in
℘(℘(𝕋+∞))

“Abstract Interpretation, Semantics, Verification, and Analysis” – 115/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of a semantic property into a trace property (Cont’d)
• Any semantic property 𝑃 can be abstracted into a less precise trace property 𝛼𝕋(𝑃)

defined as
𝛼𝕋 ∈ ℘(℘(𝕋+∞)) → ℘(𝕋+∞) 𝛾𝕋 ∈ ℘(𝕋+∞) → ℘(℘(𝕋+∞))
𝛼𝕋(𝑃) = ⋃𝑃 𝛾𝕋(𝑃) = ℘(𝑃)

𝑃 =
x=1

x=1
x=1……x=0x=0

x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… …… 𝑃=𝛼𝕋(𝑃) =
x=1

x=1
x=1……x=0x=0

x=0……

x=0
x=0

x=0……
x=1

x=1
x=1……

……

……

……

…… ……

• 𝑃 and 𝑃 both express that program executions always terminate with a boolean
value for x.

• 𝑃 is stronger since it expresses that the result is always the same while 𝑃 doesn’t.
“Abstract Interpretation, Semantics, Verification, and Analysis” – 116/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of a semantic property into a trace property (Cont’d)

• Galois connection ⟨℘(℘(𝕋+∞)), ⊆⟩ −−−−−→⟶←−−−−−−−
𝛼𝕋

𝛾𝕋
⟨℘(𝕋+∞), ⊆⟩

• Proof:
𝛼𝕋(𝑃) ⊆ 𝑃
⇔ ⋃𝑃 ⊆ 𝑃 Hdef. 𝛼𝕋I
⇔ {𝑥 ∣ ∃𝑋 ∈ 𝑃 . 𝑥 ∈ 𝑋} ⊆ 𝑃 Hdef. ⋃I
⇔ ∀𝑋 ∈ 𝑃 . ∀𝑥 ∈ 𝑋 . 𝑥 ∈ 𝑃 Hdef. ⊆I
⇔ ∀𝑋 ∈ 𝑃 . 𝑋 ⊆ 𝑃 Hdef. ⊆I
⇔ 𝑃 ⊆ {𝑋 ∣ 𝑋 ⊆ 𝑃} Hdef. ⊆I
⇔ 𝑃 ⊆ ℘(𝑃) Hdef. ℘I
⇔ 𝑃 ⊆ 𝛾𝕋(𝑃) Hdef. 𝛾𝕋.I

• 𝛼𝕋 is surjective (since 𝛼𝕋({𝑃}) = 𝑃).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 117/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability properties

“Abstract Interpretation, Semantics, Verification, and Analysis” – 118/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability property
A relation I(ℓ) between values of variables attached to each program point ℓ that holds
whenever the program point ℓ is reached during execution
ℓ1 /* 𝑥 = 0 */

x = x + 1 ;
while ℓ2 (tt) /* 1 ⩽ 𝑥 ⩽ 2 */ {

ℓ3 /* 1 ⩽ 𝑥 ⩽ 2 */
x = x + 1 ;
if ℓ4 (x > 2) /* 2 ⩽ 𝑥 ⩽ 3 */

ℓ5 /* 𝑥 = 3 */
break ;

}
ℓ6 /* 𝑥 = 3 */

;
ℓ7 /* 𝑥 = 3 */

I(ℓ1)≜{𝜌 ∈ Ev ∣ ∀y ∈ V . 𝜌(y) = 0}
I(ℓ2)≜I(ℓ3)≜{𝜌 ∈ Ev ∣ 1 ⩽ 𝜌(x) ⩽ 2 ∧ ∀y ∈ V ⧵ {x} . 𝜌(y) = 0}

I(ℓ4)≜{𝜌 ∈ Ev ∣ 2 ⩽ 𝜌(x) ⩽ 3 ∧ ∀y ∈ V ⧵ {x} . 𝜌(y) = 0}
I(ℓ5)≜I(ℓ6)≜I(ℓ7)≜{𝜌 ∈ Ev ∣ 𝜌(x) = 3 ∧ ∀y ∈ V ⧵ {x} . 𝜌(y) = 0}

“Abstract Interpretation, Semantics, Verification, and Analysis” – 119/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of a trace property into a reachability property (Cont’d)

𝛼𝕀 ∈ ℘(𝕋+∞) → (L→ ℘(Ev)) (8.12)
𝛼𝕀(Π) ≜ 𝜆 ℓ . {𝝆(𝜋ℓ) ∣ ∃𝜋′ . 𝜋ℓ𝜋′ ∈ Π}

collects at each program point ℓ of each trace the possible values of the variables at
that point.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 120/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of a trace property into a reachability property (Cont’d)

• Galois connection ⟨℘(𝕋+∞), ⊆⟩ −−−−−→←−−−−−
𝛼𝕀

𝛾𝕀
⟨(L→ ℘(Ev)), ⊆̇⟩

• Proof:
𝛼𝕀(Π) ⊆̇ I
⇔ 𝜆 ℓ . {𝝆(𝜋ℓ) ∣ ∃𝜋′ . 𝜋ℓ𝜋′ ∈ Π} ⊆̇ I Hdef. 𝛼𝕀I
⇔ ∀ℓ . {𝝆(𝜋ℓ) ∣ ∃𝜋′ . 𝜋ℓ𝜋′ ∈ Π} ⊆ I(ℓ) Hpointwise def. ⊆̇I
⇔ ∀ℓ . {𝝆(𝜋ℓ) ∣ ∃𝜋 ∈ Π . ∃𝜋′ . 𝜋 = 𝜋ℓ𝜋′} ⊆ I(ℓ) Hdef. ∈I
⇔ ∀ℓ . ∀𝜋 ∈ Π . ∀𝜋′ . 𝜋 = 𝜋ℓ𝜋′ ⇒ 𝝆(𝜋ℓ) ∈ I(ℓ) Hdef. ⊆I
⇔ ∀𝜋 ∈ Π . ∀𝜋′ . ∀ℓ . 𝜋 = 𝜋ℓ𝜋′ ⇒ 𝝆(𝜋ℓ) ∈ I(ℓ) Hdef. ∀I
⇔ Π ⊆ {𝜋 ∣ ∀𝜋′ . ∀ℓ . 𝜋 = 𝜋ℓ𝜋′ ⇒ 𝝆(𝜋ℓ) ∈ I(ℓ)} Hdef. ⊆I
⇔ Π ⊆ 𝛾𝕀(I)
by defining 𝛾𝕀(I) ≜ {𝜋 ∣ ∀𝜋′ . ∀ℓ . 𝜋 = 𝜋ℓ𝜋′ ⇒ 𝝆(𝜋ℓ) ∈ I(ℓ)}.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 121/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Hierarchy of program properties

“Abstract Interpretation, Semantics, Verification, and Analysis” – 122/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Hierarchy of program properties/semantics

•
℘(℘(𝕋+∞)) 𝓢ℂJPK ≜ {𝓢+∞JPK}, collecting semantics

• ℘(𝕋+∞) 𝓢𝕋JPK = 𝓢+∞JPK
= 𝛼𝕋(𝓢ℂJPK) trace semantics

• L→ ℘(Ev)
𝓢𝕀JPK = 𝛼𝕀(𝓢𝕋JPK)
= 𝛼𝕀 ∘ 𝛼𝕋(𝓢ℂJPK) invariance/

reachability
semantics

𝛾𝕋 𝛼𝕋

𝛾𝕀 𝛼𝕀

𝛼𝕀 ∘ 𝛼𝕋

𝛾𝕋 ∘ 𝛾𝕀

“Abstract Interpretation, Semantics, Verification, and Analysis” – 123/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Chapter 16

Fixpoint abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 124/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint abstraction
• C is a concrete domain
• 𝑓 ∈ C ↗⟶C is an increasing concrete transformer
• ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ is an abstraction into A

• Problem: abstract lfp⊑ 𝑓
• first abstract the concrete transformer 𝑓 into an abstract transformer
𝑓 ∈ A ↗⟶A

• then abstract 𝛼(lfp⊑ 𝑓) into lfp≼ 𝑓.
• This abstraction may be

• exact i.e. 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓
• or sound but imprecise, in which case we get an overapproximation
𝛼(lfp⊑ 𝑓) ≼ lfp≼ 𝑓.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 125/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example of fixpoint abstraction
f

…

f 0=⊥
f 1

f 2
f 3

f ∞ = ⨆i f i

f ∞+1

f 4

…

α

γ
α

α

α

γ

γ

f 0=α (⊥)

f 1

f 2
f 3 =f (f 3

)

f

γ

f

f

C A

exact fixpoint abstraction

f

…

f 0=⊥
f 1

f 2
f 3

f ∞ = ⨆i f i

f ∞+1

f 4

…

α

γ
α

α

α

γ

γ

f 0=α (⊥)

f 2 =f (f 2
)

f 1

f

γ

f

f

C A

imprecise fixpoint abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 126/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Transformer abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 127/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Transformer abstraction
• To abstract a fixpoint 𝛼(lfp⊑ 𝑓), we first abstract its transformer 𝑓.

f

α

y

x0

f

y

x0

γ

α

γC A

Theorem (16.1, transformer abstraction) If ⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩ then ⟨C ↗⟶

C, ⊑̇⟩ −−−−→←−−−−⃗𝛼
⃗𝛾 ⟨A ↗⟶A, ≼̇⟩ where ⊑̇ and ≼̇ are pointwise (i.e. 𝑓 ⊑̇ 𝑔 if and only if

∀𝑥 ∈ C . 𝑓(𝑥) ⊑ 𝑔(𝑥)), �⃗�(𝑓) = 𝛼 ∘ 𝑓 ∘ 𝛾, and �⃗�(𝑓) = 𝛾 ∘ 𝑓 ∘ 𝛼.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 128/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint over-approximation

“Abstract Interpretation, Semantics, Verification, and Analysis” – 129/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint over-approximation (cont’d)
• In general abstracting the fixpoint transformer by a larger one yields a fixpoint

over-approximation.

x
0 1

!"# f

f

α

α

α (!"# f) f

!"# f

y y

x
0 1

f

f α

α

!"# f
α (!"# f)

!"# f

x
0 1

!"# f
f

α

α

α (!"# f)
!"# f

f

y

𝑓 ⊑̇ 𝑓 ∀𝑥 . 𝑓(𝑥) ⊑ 𝑥 ⇒ 𝑓(𝑥) ⊑ 𝑥 ∀𝑥 ⊑ lfp⊑ 𝑓 . 𝑓(𝑥) ⊑ 𝑓(𝑥)

fixpoint over-approximation

“Abstract Interpretation, Semantics, Verification, and Analysis” – 130/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Fixpoint over-approximation (cont’d)
Theorem (16.3, pointwise fixpoint over-approximation) Assume that ⟨C, ⊑,
⊥, ⊤, ⊔, ⊓⟩ is a complete lattice, 𝑓, 𝑔 ∈ C ↗⟶C are increasing, and 𝑓 ⊑̇ 𝑔 then
lfp⊑ 𝑓 ⊑ lfp⊑ 𝑔.

• Also valid for cpos.

x
0 1

!"# f

f

α

α

α (!"# f) f

!"# f

y

“Abstract Interpretation, Semantics, Verification, and Analysis” – 131/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sound fixpoint abstraction (cont’d)
• An abstract fixpoint lfp≼ 𝑓 is a sound fixpoint abstraction of a concrete fixpoint

lfp⊑ 𝑓 whenever 𝛼(lfp⊑ 𝑓) ≼ lfp≼ 𝑓.

Theorem (16.6, fixpoint over-approximation in a complete lattice) Assume
that ⟨C, ⊑, ⊥, ⊤, ⊔, ⊓⟩ and ⟨A, ≼, 0, 1, ⋎, ⋏⟩ are complete lattices, ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A,

≼⟩, and 𝑓 ∈ C ↗⟶C is increasing. Then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝛼 ∘ 𝑓 ∘ 𝛾).

f

…

f 0=⊥
f 1

f 2
f 3

f ∞ = ⨆i f i

f ∞+1

f 4

…

α

γ
α

α

α

γ

γ

f 2 =f (f 2)

f 1

f
f 0=α (⊥)

γ

f

f

C A

“Abstract Interpretation, Semantics, Verification, and Analysis” – 132/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Sound fixpoint abstraction (cont’d)

Corollary (16.8, fixpoint approximation by transformer over-approximation)
Assume that ⟨C, ⊑, ⊥, ⊤, ⊔, ⊓⟩ and ⟨A, ≼, 0, 1, ⋎, ⋏⟩ are complete lattices, ⟨C,
⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩, 𝑓 ∈ C ↗⟶C and 𝑓 ∈ A ↗⟶A are increasing, and 𝛼 ∘ 𝑓 ∘ 𝛾 ≼̇ 𝑓.

Then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝑓).

f

…

f 0=⊥
f 1

f 2
f 3

f ∞ = ⨆i f i

f ∞+1

f 4

…

α

γ
α

α

α

γ

γ

f 0=α (⊥)

f 2 =f (f 2
)

f 1

f

γ

f

f

C A

also in a cpo

“Abstract Interpretation, Semantics, Verification, and Analysis” – 133/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Theorem (16.12, fixpoint over-approximation in a cpo) Assume that ⟨C, ⊑,
⊥, ⊔⟩ is a cpo and ⟨A, ≼, 0, ⋏⟩ are cpos, ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩, and 𝑓 ∈ C 𝑢𝑐−−−→ C

is upper continuous.
Then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝛼 ∘ 𝑓 ∘ 𝛾).

f

…

f 0=⊥
f 1

f 2
f 3

f ∞ = ⨆i f i

f ∞+1

f 4

…

α

γ
α

α

α

γ

γ

f 0=α (⊥)

f 2 =f (f 2
)

f 1

f

γ

f

f

C A

“Abstract Interpretation, Semantics, Verification, and Analysis” – 134/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Corollary (16.10, fixpoint approximation by semi-commuting transformer)
Under the hypotheses of Corollary 16.8 assume instead that 𝛼 ∘ 𝑓 ≼̇ 𝑓 ∘ 𝛼 (semi-
commutation). Then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝑓).

f

…

f 0=⊥
f 1

f 2
f 3

f ∞ = ⨆i f i

f ∞+1

f 4

…

α

γ
α

α

α

γ

γ

f 0=α (⊥)

f 2 =f (f 2
)

f 1

f

γ

f

f

C A

“Abstract Interpretation, Semantics, Verification, and Analysis” – 135/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Exact fixpoint abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 136/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Exact versus sound fixpoint abstraction
• A sound fixpoint abstraction 𝛼(lfp⊑ 𝑓) ≼ lfp≼ 𝑓 is

• exact when 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓.
• It is sound but approximate (or imprecise) when 𝛼(lfp⊑ 𝑓) ≺ lfp≼ 𝑓.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 137/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Exact fixpoint abstraction (cont’d)
Theorem (16.15, exact fixpoint abstraction in a complete lattice) Assume
that ⟨C, ⊑, ⊥, ⊤, ⊔, ⊓⟩ and ⟨A, ≼, 0, 1, ⋎, ⋏⟩ are complete lattices, 𝑓 ∈ C ↗⟶C

is increasing, ⟨C, ⊑⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ≼⟩, 𝑓 ∈ A ↗⟶A is increasing, and 𝛼 ∘ 𝑓 = 𝑓 ∘ 𝛼

(commutation property). Then 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓.

f

…

f 0=⊥
f 1

f 2
f 3

f ∞ = ⨆i f i

f ∞+1

f 4

…

α

γ
α

α

α

γ

γ

f 0=α (⊥)

f 1

f 2
f 3 =f (f 3

)

f

γ

f

f

C A

“Abstract Interpretation, Semantics, Verification, and Analysis” – 138/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Exact fixpoint abstraction (cont’d)
Theorem (16.16, exact fixpoint abstraction in a cpo) Assume that ⟨C, ⊑,
⊥, ⊔⟩ is a cpo, 𝑓 ∈ C 𝑢𝑐−−−→ C is upper continuous, ⟨C, ⊑⟩ −−−−→⟶←−−−−−−𝛼

𝛾
⟨A, ≼⟩ is a Galois

retraction, and 𝑓 ∈ A→ A satisfies the commutation property 𝛼 ∘ 𝑓 = 𝑓 ∘ 𝛼.
Then 𝑓 = 𝛼 ∘ 𝑓 ∘ 𝛾 is increasing and 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓 = ⋎

𝑛∈N
𝑓 𝑛(𝛼(⊥)).

f

…

f 0=⊥
f 1

f 2
f 3

f ∞ = ⨆i f i

f ∞+1

f 4

…

α

γ
α

α

α

γ

γ

f 0=α (⊥)

f 1

f 2
f 3 =f (f 3

)

f

γ

f

f

C A
“Abstract Interpretation, Semantics, Verification, and Analysis” – 139/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 140/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 141/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Assertional abstraction

post ⃗r(𝓢)R0 ℓ ≜ {𝝆(𝜋0ℓ0𝜋1ℓ′) ∣ 𝝆(𝜋0ℓ0) ∈ R0 ∧
ℓ0𝜋1ℓ′ ∈ 𝓢(𝜋0ℓ0) ∧ ℓ′ = ℓ}

(18.1)

𝜋0

∈ 𝓢(𝜋0ℓ0)
⏞⏞⏞
ℓ0
| 𝜋1

ℓ

| 𝜋2

𝝆(𝜋0ℓ0) ∈ R0 𝝆(𝜋0ℓ0𝜋1ℓ) ∈ post ⃗r(𝓢)R0 ℓ

⟨𝕋+ → ℘(𝕋+), ⊆̇⟩ −−−−−−−→←−−−−−−−
post ⃗r
𝛾 ⃗r
⟨℘(Ev) → L↦ ℘(Ev), ⊆̇⟩

“Abstract Interpretation, Semantics, Verification, and Analysis” – 142/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Assertional abstraction, Example
ℓ1 x = x + 1 ; (4.4)
while ℓ2 (tt) {
ℓ3 x = x + 1 ;
if ℓ4 (x > 2) ℓ5 break ;}ℓ6;ℓ7

We assume that all variables are initialized to 0. Maximal trace semantics

𝓢 ≜ {ℓ1 x = 1−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = 2−−−−−−−−−−→ ℓ4
¬(x > 2)
−−−−−−−−−−−−−−→ ℓ2 tt−−−−→ ℓ3 x = 3−−−−−−−−−−→ ℓ4 x > 2−−−−−−−−−−→

ℓ5
break−−−−−−−−−−−→ ℓ6

skip
−−−−−−−−→ ℓ7}

(6.1)

The reachable states are
ℓ post ⃗r(𝓢)R0 ℓ
ℓ1 R0 = {𝜌 ∈ Ev ∣ ∀y ∈ V . 𝜌(y) = 0}
ℓ2, ℓ3 {𝜌[𝑥 ← 𝑖] ∣ 𝜌 ∈ R0 ∧ 𝑖 ∈ [1, 2]}
ℓ4 {𝜌[𝑥 ← 𝑖] ∣ 𝜌 ∈ R0 ∧ 𝑖 ∈ [2, 3]}

ℓ5, ℓ6, ℓ7 {𝜌[𝑥 ← 3] ∣ 𝜌 ∈ R0} �
“Abstract Interpretation, Semantics, Verification, and Analysis” – 143/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design of
the reachability semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 144/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design of the reachability semantics
• by structural induction
• by calculating the exact reachability transformer from the prefix trace transformer
• by applying the exact fixpoint abstraction 16.15 for the iteration

“Abstract Interpretation, Semantics, Verification, and Analysis” – 145/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics of the assignment

Reachability of an assignment statement S ∶∶= x = A ;

�̂� ⃗rJSKR0 ℓ = (ℓ = atJSK ? R0 (17.10)
| ℓ = afterJSK ? assign ⃗rJx, AKR0
: ∅)

assign ⃗rJx, AKR0 ≜ {𝜌[x←𝓐JAK𝜌] ∣ 𝜌 ∈ R0}

“Abstract Interpretation, Semantics, Verification, and Analysis” – 146/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics of the conditional

Reachability of a conditional statement S ∶∶= if (B) S𝑡

�̂� ⃗rJSKR0 ℓ = (ℓ = atJSK ? R0 (17.18)
| ℓ ∈ inJS𝑡K ? �̂� ⃗rJS𝑡K (test ⃗rJBKR0) ℓ
| ℓ = afterJSK ? �̂� ⃗rJS𝑡K (test ⃗rJBKR0) ℓ ∪ (test ⃗rJBKR0)
: ∅)

test ⃗rJBKR0 ≜ {𝜌 ∈ R0 ∣𝓑JBK𝜌 = tt}
test ⃗rJBKR0 ≜ {𝜌 ∈ R0 ∣𝓑JBK𝜌 = ff}

“Abstract Interpretation, Semantics, Verification, and Analysis” – 147/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics of the statement list

Reachability of a statement list Sl ∶∶= Sl′ S

�̂� ⃗rJSlKR0 ℓ = (ℓ ∈ labsJSl′K ⧵ {atJSK} ? �̂� ⃗rJSl′KR0 ℓ (17.20)
| ℓ ∈ labsJSK ? �̂� ⃗rJSK(�̂� ⃗rJSl′KR0 atJSK) ℓ
: ∅)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 148/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Reachability semantics of the iteration

Reachability of an iteration statement S ∶∶= while ℓ (B) S𝑏

�̂� ⃗rJSKR0 ℓ′ = (lfp ⊆̇𝓕 ⃗rJwhile ℓ (B) S𝑏KR0) ℓ′ (17.14)
𝓕 ⃗rJwhile ℓ (B) S𝑏KR0 𝑋 ℓ′ =

(ℓ′ = ℓ ? R0 ∪ �̂� ⃗rJS𝑏K (test ⃗rJBK𝑋(ℓ)) ℓ
| ℓ′ ∈ inJS𝑏K ⧵ {ℓ} ? �̂� ⃗rJS𝑏K (test ⃗rJBK𝑋(ℓ)) ℓ′
| ℓ′ = afterJSK ? test ⃗rJBK(𝑋(ℓ)) ∪ ⋃

ℓ″∈breaks-ofJS𝑏K
�̂� ⃗rJS𝑏K (test ⃗rJBK𝑋(ℓ)) ℓ″

: ∅)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 149/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstract domain and abstract interpreter

“Abstract Interpretation, Semantics, Verification, and Analysis” – 150/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstract domain

“Abstract Interpretation, Semantics, Verification, and Analysis” – 151/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The domain of properties, inclusion (i.e. logical implication), and the structural
definitions of the semantics have the following common structure.

semantics prefix trace �̂� ∗̇ reachability �̂� ⃗r abstract �̂�¤

℘(𝕋+) ↗⟶ (L → ℘(𝕋+)) ℘(Ev) ↗⟶ (L → ℘(Ev)) ℙ¤ ↗⟶ (L → ℙ¤)

domain ℘(𝕋+) ℘(Ev) ℙ¤

inclusion ⊆ ⊆ ⊑¤
abstraction 1℘(𝕋+)

3 �̈�𝝆 𝛼¤
infimum ∅ ∅ ⊥¤
join ∪ ∪ ⊔¤

assignment assign∗̇Jx, AK assign ⃗rJx, AK assign¤Jx, AK
test test∗̇JBK test ⃗rJBK test¤JBK

test∗̇JBK test ⃗rJBK test¤JBK

31𝑆 ≜ 𝜆𝑥∈ 𝑆 .𝑥 is the identity function on the set 𝑆.
“Abstract Interpretation, Semantics, Verification, and Analysis” – 152/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Definition (19.1, Domain well-definedness) We say that a domain

𝔻¤ ≜ ⟨ℙ¤, ⊑¤, ⊥¤, ⊔¤, assign¤Jx, AK, test¤JBK, test¤JBK⟩
is well-defined when ⟨ℙ¤, ⊑¤⟩ is a poset of properties with infimum ⊥¤, the lub ⊔¤ is
well-defined for pairs of properties, and ⊑¤-increasing chains (so ⟨ℙ¤, ⊑¤⟩ is a join-
lattice and a cpo), the assignment assign¤ is well-defined in (V ×E) → ℙ¤ ↗⟶ℙ¤,
and the tests test¤JBK and test¤JBK are well-defined in B→ ℙ¤ ↗⟶ℙ¤.

The abstract domain 𝔻¤ is an algebra while the domain of abstract properties ℙ¤ is a
set. So the mathematical structures are different. However, following mathematicians
that call Z the “ring of integers” where a ring is an algebraic structure and Z is a set,
we often say, by abuse of language, that ℙ¤ an abstract domain.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 153/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstract structural semantics/interpreter

“Abstract Interpretation, Semantics, Verification, and Analysis” – 154/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The semantics can be implemented as instances of a generic abstract interpreter
defined below.

• Abstract semantics of a statement list Sl ∶∶= Sl′ S

�̂�¤JSlKR0 ℓ ≜ (ℓ ∈ labsJSl′K ⧵ {atJSK} ? �̂�¤JSl′KR0 ℓ (19.5)
| ℓ ∈ labsJSK ? �̂�¤JSK(�̂�¤JSl′KR0 atJSK) ℓ
: ⊥¤)

• Abstract semantics of an empty statement list Sl ∶∶= 𝜖

�̂�¤JSlKR0 ℓ ≜ (ℓ = atJSlK ? R0 : ⊥¤) (19.6)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 155/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

• Abstract semantics of an assignment statement S ∶∶= x = A ;

�̂�¤JSKR0 ℓ = (ℓ = atJSK ? R0 (19.7)
| ℓ = afterJSK ? assign¤Jx, AKR0
: ⊥¤)

where assignJx, AK ∘ 𝛾 ⊑ 𝛾 ∘ assign¤Jx, AK.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 156/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

• Abstract semantics of a conditional statement S ∶∶= if (B) S𝑡

�̂�¤JSKR0 ℓ = (ℓ = atJSK ? R0 (19.9)
| ℓ ∈ inJS𝑡K ? �̂�¤JS𝑡K (test¤JBKR0) ℓ
| ℓ = afterJSK ?

�̂�¤JS𝑡K (test¤JBKR0) ℓ ⊔¤ test¤JBKR0
: ⊥¤)

where testJBK ∘ 𝛾 ⊑ 𝛾 ∘ test¤JBK and testJBK ∘ 𝛾 ⊑ 𝛾 ∘ test¤JBK.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 157/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

• Abstract semantics of an iteration statement S ∶∶= while ℓ (B) S𝑏

�̂�¤JSKR0 ℓ′ = lfp ⊑̇¤ (𝓕¤Jwhile ℓ (B) S𝑏KR0) ℓ′ (19.11)
𝓕¤Jwhile ℓ (B) S𝑏K ∈ ℙ¤ → ((L→ ℙ¤) → (L→ ℙ¤))
𝓕¤Jwhile ℓ (B) S𝑏KR0 𝑋 ℓ′ =

(ℓ′ = ℓ ? R0 ⊔¤ �̂�¤JS𝑏K (test¤JBK𝑋(ℓ)) ℓ
| ℓ′ ∈ inJS𝑏K ⧵ {ℓ} ? �̂�¤JS𝑏K (test¤JBK𝑋(ℓ)) ℓ′
| ℓ′ = afterJSK ? test¤JBK𝑋(ℓ) ⊔¤ ⨆¤

ℓ″∈breaks-ofJS𝑏K
�̂�¤JS𝑏K (test¤JBK𝑋(ℓ)) ℓ″

: ⊥¤)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 158/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

• Abstract semantics of a break statement S ∶∶= ℓ break ;

�̂�¤JSKR0 ℓ = (ℓ = atJSK ? R0 : ⊥¤) (19.12)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 159/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Proof methods

“Abstract Interpretation, Semantics, Verification, and Analysis” – 160/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Invariance proof methods
• Invariance proof methods derive from the reachability semantics

• abstraction to verification conditions → Turing/Floyd/Naur proof method
• abstraction to Hoare triples → Hoare logic
• Fixpoints:

Theorem (22.1, Fixpoint induction) Let 𝑓 ∈ L ↗⟶ L be an increasing
function on a complete lattice ⟨L, ⊑, ⊥, ⊤, ⊓, ⊔⟩ and 𝑃 ∈ L.
We have lfp⊑ 𝑓 ⊑ 𝑃 ⇔ ∃𝐼 ∈ L . 𝑓(𝐼) ⊑ 𝐼 ∧ 𝐼 ⊑ 𝑃.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 161/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Bibliography on verification and proofs

“Abstract Interpretation, Semantics, Verification, and Analysis” – 162/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References I
Alglave, Jade and Patrick Cousot (2017). “Ogre and Pythia: an invariance proof

method for weak consistency models”. In: POPL. ACM, pp. 3–18.
Cousot, Patrick (1990). “Methods and Logics for Proving Programs”. In: Handbook of

Theoretical Computer Science, Volume B: Formal Models and Sematics (B). MIT
Press Cambridge, MA, USA ©1990, pp. 841–994.

– (2002). “Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation”. Theor. Comput. Sci. 277.1-2, pp. 47–103.

– (2003). “Verification by Abstract Interpretation”. In: Verification: Theory and
Practice. Vol. 2772. Lecture Notes in Computer Science. Springer, pp. 243–268.

Cousot, Patrick, Roberto Giacobazzi, and Francesco Ranzato (2018). “Program
Analysis Is Harder Than Verification: A Computability Perspective”. In: CAV (2).
Vol. 10982. Lecture Notes in Computer Science. Springer, pp. 75–95.

Floyd, Robert W. (1967). “Assigning meaning to programs”. In: J.T. Schwartz, ed.
Proc. Symp. in Applied Math. Vol. 19. Amer. Math. Soc., pp. 19–32.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 163/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References II
Hoare, C. A. R. (1978). “Some Properties of Predicate Transformers”. J. ACM 25.3,

pp. 461–480.
Naur, Peter (1966). “Proofs of algorithms by general snapshots”. BIT 6, pp. 310–316.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 164/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The End of Part 3

“Abstract Interpretation, Semantics, Verification, and Analysis” – 165/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Part 4

Symbolic abstraction:
dependency analysis

“Abstract Interpretation, Semantics, Verification, and Analysis” – 166/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Motivation

“Abstract Interpretation, Semantics, Verification, and Analysis” – 167/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency
Found in many reasonings on programs:

• Non-interference (confidentiality, integrity)
• Security, privacy
• Program slicing
• Temporal dependencies in synchronous languages (Esterelle, Lustre, Signal, …

called causality there)
• etc.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 168/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency
The existing definitions

• are given a priori (e.g. Cheney, Ahmed, and Acar, 2011; D. E. Denning and
P. J. Denning, 1977),

• without semantics justification (except Assaf, Naumann, Signoles, Totel, and
Tronel, 2017 (“hyper-collecting semantics”), Urban and Müller, 2018)

• are dependencies on program exit only
Our objective is to study principles, not to get a new powerful dependency analysis

“Abstract Interpretation, Semantics, Verification, and Analysis” – 169/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency, informally

“Abstract Interpretation, Semantics, Verification, and Analysis” – 170/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Functional dependency
• A function 𝑓(… , 𝑥,…) depends on its parameter 𝑥 if and only if changing only this

parameter changes the result

∃𝑥1, 𝑥2 . 𝑓(… , 𝑥1,…) ≠ 𝑓(… , 𝑥2,…)

• Example: 𝑓(𝑥, 𝑦) = 𝑥 − (𝑦 − 𝑦) depends on 𝑥 but not on 𝑦
• Definition:

ℱ𝒹𝑛𝑖 ≜ {𝑓 ∣ ∃𝑥1,… , 𝑥𝑛, 𝑥𝑖′ . 𝑓(𝑥1,… , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1,… , 𝑥𝑛) ≠
𝑓(𝑥1,… , 𝑥𝑖−1, 𝑥𝑖′, 𝑥𝑖+1,… , 𝑥𝑛)}. (44.1)

ℱ𝒹 ≜ ⋃
𝑛∈N∗
⋃
1⩽𝑖⩽𝑛

ℱ𝒹𝑛𝑖

“Abstract Interpretation, Semantics, Verification, and Analysis” – 171/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Non-interference
• Given low variables 𝐿 (e.g. “public” respectively “untainted”) and high variables 𝐻

(“private/conf” respectively “tainted”)
• Non-interference (Cohen, 1977; Goguen and Meseguer, 1982, 1984; Mantel, 2003)

is defined as “if executions start with the same values of the low variables then,
upon termination, if ever, the low variables are equal (so changing initial high
variables cannot change final low variables)

• The non-interference property is therefore

𝒩𝒾(𝐿,𝐻) = {Π ∈ ℘(𝕋+ × 𝕋∞) ∣ ∀⟨𝜋0, 𝜋⟩, ⟨𝜋′0, 𝜋′⟩ ∈ Π ∩ (𝕋+ × 𝕋+) .
(∀x ∈ 𝐿 . 𝝆(𝜋0)x = 𝝆(𝜋′0)x) ⇒ (∀x ∈ 𝐿 . 𝝆(𝜋0 ⌢⋅ 𝜋)x = 𝝆(𝜋′0 ⌢⋅ 𝜋′)x)}

• Interference during the computation and non termination are not taken into
account.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 172/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

General idea of dependency
• y depends on the initial value 𝑥0 of x at ℓ if and only if changing 𝑥0 changes the

future observations of y at ℓ
• We consider dependency on initial values of variables

More generally, changing an abstraction of the past at ℓ changes an abstraction of
the future after ℓ

“Abstract Interpretation, Semantics, Verification, and Analysis” – 173/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency is local
• ℓ1 y = 0 ;ℓ2 y = x ;ℓ3

• the value of y at ℓ1 is the initial value 𝑦0 of y at ℓ1
Changing the initial value of x does not change the value of y at ℓ1 so
y does not depend on the initial value of x at ℓ1

• the value of y at ℓ2 is 0.
Changing the initial value of x does not change the value of y at ℓ2 so
y does not depend on the initial value of x at ℓ2

• the value of y at ℓ3 is the initial value 𝑥0 of x.
Changing the initial value of x changes the value of y at ℓ3 so
y depends on the initial value of x at ℓ3

⇒ dependency upon the initial value of variables is local (may be different at different
program points).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 174/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency depends on values of variables
{if (x=0) y=x; else y=0;} ℓ

• The value of y at ℓ is always 0, no dependency

{if (x=0) y=x; else y=1;} ℓ
• The value of y at ℓ is

• if 𝑥0 = 0 then “0”
• if 𝑥0 ≠ 0 then “1”

• y at ℓ depends on 𝑥0 (unless (𝑥0 = 0 ∧ 𝑦0 = 0) ∨ (𝑥0 ≠ 0 ∧ 𝑦0 = 1))

⇒ dependency of y upon the initial value 𝑥0 of x depends on the initial and current
values of x and y
⇒ this is ignored in D. E. Denning and P. J. Denning, 1977’s dataflow analysis

“Abstract Interpretation, Semantics, Verification, and Analysis” – 175/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency depends on sequences of observations of values of variables
P𝑢 ≜ while ℓ (0==0) x=x+1;

• One can observe 𝑥0 ⋅ 𝑥0 + 1 ⋅ 𝑥0 + 2 ⋅ 𝑥0 + 17 ⋅ 𝑥0 + 18 ⋅ …𝑥0 + 42 ⋅ 𝑥0 + 43 ⋅ … at ℓ
• changing the initial value 𝑥0 of x changes this observation
• x at ℓ depends upon 𝑥0

P0 ≜ x=0; while ℓ (0==0) x=x+1;
• One can observe 0 ⋅ 1 ⋅ 2 ⋅ …17 ⋅ 18 ⋅ … ⋅ 42 ⋅ 43 ⋅ … at ℓ
• changing the initial value 𝑥0 of x does not change this observation
• x at ℓ does not depend upon 𝑥0

⇒ We must observe the maximal sequence of values successively taken by a variable at
a program point

“Abstract Interpretation, Semantics, Verification, and Analysis” – 176/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Counterfactual dependency: absence of observation
int x,y; if (x=0) { y=x; ℓ}

• Observation of y at ℓ:
• if 𝑥0 = 0 then “0”
• if 𝑥0 ≠ 0 then “” (empty observations: no execution ever reaches ℓ)

⇒ Dependency if empty observations are taken into account
⇒ No dependency if empty observations are not taken into account
⇒ The choice is completely arbitrary!

“Abstract Interpretation, Semantics, Verification, and Analysis” – 177/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Counterfactual value dependency: absence of observation
int x,y,z; if (x=0) { y=x; ℓ}

• Assume that empty observations are taken into account (so y depends on 𝑥0)
• Observation of z at ℓ:

• if 𝑥0 = 0 then “𝑧0” (initial value of z)
• if 𝑥0 ≠ 0 then “” (empty observations: no execution ever reaches ℓ)

• Two different observations at ℓ!
• Should z depends on 𝑥0 at ℓ?
⇒ The choice is completely arbitrary!

• No
• Yes
• Yes if the value of z at ℓ is different from 𝑧0 (D. E. Denning and P. J. Denning,

1977)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 178/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Timing dependency
while ℓ (x > 0) x = x - 1 ;

• Does variable y (s.t. y ≠ x) at ℓ depends on the initial value 𝑥0 of x?
• The observation of y at ℓ is 𝑦0 ⋅ 𝑦0 ⋅ … ⋅ 𝑦0 repeated 𝑥0 + 1 times.
• So changing 𝑥0 changes the observation of y at ℓ

⇒ This is a covert/side channel (Lampson, 1973; Mulder, Eisenbarth, and Schaumont,
2018), more precisely, a timing channel (Russo, Hughes, Naumann, and Sabelfeld,
2006; Sabelfeld and Myers, 2003)

⇒ The choice of ignoring timing channel is arbitrary
⇒ Ignored in the classical definition of dependency D. E. Denning and P. J. Denning,

1977
⇒ One way of ignoring timing channels is to require that observation sequences must

differ by at least one data

“Abstract Interpretation, Semantics, Verification, and Analysis” – 179/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Counterfactual timing dependency
/* x�{0,1} */ while (x != 0) ℓ y = x ;

• If 𝑥0 = 1, the infinite sequence of values of y observed at ℓ is 𝑦0 ⋅ 1 ⋅ 1⋯.
• If 𝑥0 = 0, then the observation at ℓ is the empty sequence ϶.
• Does y at ℓ depends on the initial value 𝑥0 of x?
• This depends on hypotheses on observables. Is an infinite sequence of values

observable? Is the empty sequence ϶ of values observable?
• This is debatable and problem-specific
• For example if a program terminates it is easy to check on program termination

that a program point is never reached. This may be considered impossible with
non-termination.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 180/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency, formally

“Abstract Interpretation, Semantics, Verification, and Analysis” – 181/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Future observations
• initialisation trace 𝜋0 ∈ 𝕋+
• (non empty) continuation trace 𝜋 ∈ 𝕋+∞
• futureJyKℓ(𝜋0, 𝜋) is the sequence of values of y successively observed at program

point point ℓ in the trace 𝜋 continuing 𝜋0 4

futureJyKℓ(𝜋0, ℓ) ≜ 𝝆(𝜋0)y
futureJyKℓ(𝜋0, ℓ′) ≜ ϶

futureJyKℓ(𝜋0, ℓ 𝑎−−−−→ ℓ″𝜋) ≜ 𝝆(𝜋0)y ⋅ futureJyKℓ(𝜋0 ⌢⋅ ℓ 𝑎−−−−→ ℓ″, ℓ″𝜋)
futureJyKℓ(𝜋0, ℓ′ 𝑎−−−−→ ℓ″𝜋) ≜ futureJyKℓ(𝜋0 ⌢⋅ ℓ′ 𝑎−−−−→ ℓ″, ℓ″𝜋)

• futureJyKℓ(𝜋0, 𝜋) is the empty sequence ϶ if ℓ does not appear in 𝜋

4this should be understood as a bi-inductive definition of P. Cousot and R. Cousot, 2009 to properly handle non-termination

“Abstract Interpretation, Semantics, Verification, and Analysis” – 182/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Observations
• An observation ⟨𝜈, 𝜔⟩ of a variable at a program point is a pair of

• an initial value 𝜈 of the variable
• the future observation 𝜔 of this variable from that program point on

“Abstract Interpretation, Semantics, Verification, and Analysis” – 183/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Differences between future observations ⟨𝜈, 𝜔⟩ and ⟨𝜈′, 𝜔′⟩ (I)
(1) Counterfactual timing dependency:

ctdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ 𝜔 ≠ 𝜔′

(empty observations are allowed)

(2) Timing dependency:

tdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ 𝜔 ≠ 𝜔′ ∧ 𝜔 ≠ ϶ ∧ 𝜔′ ≠ ϶

(empty observations are disallowed)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 184/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Differences between future observations ⟨𝜈, 𝜔⟩ and ⟨𝜈′, 𝜔′⟩ (II)
(3) Value dependency:

vdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ ∃𝜔0, 𝜔1, 𝜔′1, 𝜈, 𝜈′ .
𝜔 = 𝜔0 ⋅ 𝜈 ⋅ 𝜔1 ∧ 𝜔′ = 𝜔0 ⋅ 𝜈′ ⋅ 𝜔′1 ∧ 𝜈 ≠ 𝜈′

(different values of the variable must be observed)

Example 6 if ℓ0 (x == 1) { ℓ1 y = x ; ℓ2 } ℓ3
y does not depend on x at ℓ0, ℓ1, and ℓ2 but y depends on x at ℓ3 (unless y = 1 at ℓ0).�

“Abstract Interpretation, Semantics, Verification, and Analysis” – 185/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Differences between future observations ⟨𝜈, 𝜔⟩ and ⟨𝜈′, 𝜔′⟩ (III)
(4) counterfactual value dependency:

cvdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ vdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ∨
(𝜔 = ϶ ∧ 𝜔′ ≠ ϶) ∨ (𝜔 ≠ ϶ ∧ 𝜔′ = ϶)

(an empty observation is allowed)

Example 7 if ℓ0 (x == 1) { ℓ1 y = x ; ℓ2 } ℓ3
y depends on x at ℓ2 (unless y = 1 at ℓ0).
Any variable depends on the initial value of x at ℓ1 and ℓ2. �

“Abstract Interpretation, Semantics, Verification, and Analysis” – 186/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Differences between future observations ⟨𝜈, 𝜔⟩ and ⟨𝜈′, 𝜔′⟩ (IV)
(5) Counterfactual multi-values dependency:

cmvdp(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ≜ vdep(⟨𝜈, 𝜔⟩, ⟨𝜈′, 𝜔′⟩) ∨
(𝜔 = ϶ ∧ ∃𝜔′0, 𝜈′, 𝜔′1 . 𝜔′ = 𝜔′0 ⋅ 𝜈′ ⋅ 𝜔′1 ∧ 𝜈′ ≠ 𝜈′) ∨
(𝜔′ = ϶ ∧ ∃𝜔0, 𝜈, 𝜔1 . 𝜔 = 𝜔0 ⋅ 𝜈 ⋅ 𝜔1 ∧ 𝜈 ≠ 𝜈)

(an empty observation is allowed for variables which value has changed)

Example 8 if ℓ0 (x == 1) { ℓ1 y = x ; ℓ2 } ℓ3
No variable depends on the initial value of x at ℓ1 and only y at ℓ2 (unless y is
initially 1).
This is D. E. Denning and P. J. Denning, 1977. �

“Abstract Interpretation, Semantics, Verification, and Analysis” – 187/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Formal definition of dependency
• Dependency property:

𝒟dep ℓ⟨x, y⟩ ≜ {Π ∈ ℘(𝕋+ × 𝕋+∞) ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ Π .
(∀z ∈ V ⧵ {x} . 𝝆(𝜋0)z = 𝝆(𝜋′0)z) ∧

dep(⟨𝝆(𝜋0)y, futureJyKℓ(𝜋0, 𝜋1)⟩, ⟨𝝆(𝜋′0)y, futureJyKℓ(𝜋′0, 𝜋′1)⟩)}
• choose dep ∈ {vdep, cmvdp, cvdep, tdep, ctdep} to get 5 different definitions
• y depends on the initial value of x at point ℓ of program P is:

�̂�+∞JPK ∈ 𝒟dep ℓ⟨x, y⟩

• No necessary distinction between explicits and implicits flows as in D. E. Denning
and P. J. Denning, 1977

“Abstract Interpretation, Semantics, Verification, and Analysis” – 188/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency lattice

𝒟vdep

𝒟cmvdp

𝒟cvdep 𝒟tdep

𝒟ctdep

⊆

(??)

• The more differences between observed futures, the more dependencies;
• Not clear with postulated definitions (such as the hydraulic model where

dependency depends on the rules to mix colors)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 189/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Why maximal traces?
• For prefix traces, if a trace is in the semantics, all of its prefixes are also in the

semantics, which introduces artificial timing channels

“Abstract Interpretation, Semantics, Verification, and Analysis” – 190/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Prefix traces for dependency on values
• For value dependencies, the maximal trace semantics can be replaced by the prefix

trace semantics withou problem:

Lemma 𝓢+∞JPK ∈ 𝒟vdep ℓ⟨x, y⟩ ⇔ 𝓢∗JPK ∈ 𝒟vdep ℓ⟨x, y⟩

• Idem if we include empty observations (the prefixes of 𝓢∗JPK𝜋0 are never empty, so
no possible confusion)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 191/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency abstraction

“Abstract Interpretation, Semantics, Verification, and Analysis” – 192/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Abstraction of data dependency
• The abstraction of a semantic property S ∈ ℘(℘(𝕋+ × 𝕋+∞)) into a data dependency

property 𝛼vdep(S) ∈ L→ ℘(V × V) is:

𝛼vdep((S)ℓ ≜ {⟨x, y⟩ ∣ S ∈ 𝒟vdep ℓ⟨x, y⟩}

• This is a Galois connection:

Lemma 10 ⟨℘(℘(𝕋+ × 𝕋+∞)), ⊆⟩ −−−−−−−→←−−−−−−−
𝛼vdep

𝛾vdep

⟨L→ ℘(V × V), ⊇ᶁ⟩ where the
concretization of a dependency property 𝐃 ∈ L→ ℘(V × V) is:

𝛾vdep(𝐃) ≜ ⋂
ℓ∈L
⋂

⟨x, y⟩∈𝐃(ℓ)
𝒟vdep ℓ⟨x, y⟩

(the more semantics, the less dependencies)
“Abstract Interpretation, Semantics, Verification, and Analysis” – 193/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Value dependency static analysis

“Abstract Interpretation, Semantics, Verification, and Analysis” – 194/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential value dependency
• 𝛼vdep({𝓢+∞JSK}) = 𝛼vdep({𝓢∗JSK}) is not computable (Rice theorem)
• We design an over-approximation:

Potential value dependency semantics �̂� vdep
∃ :

𝛼vdep({𝓢+∞JSK}) ⊆̇ �̂� vdep
∃ JSK

• The abstraction of D. E. Denning and P. J. Denning, 1977 is purely syntactic (in
dataflow analysis style)

• We do slightly better, by taking values into account, in a very simple way

“Abstract Interpretation, Semantics, Verification, and Analysis” – 195/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example

if ℓ0 (x == 1) { ℓ1 y = z ;ℓ2 };ℓ3

• we have the potential value dependency:
ℓ ℓ0 ℓ1 ℓ2 ℓ3

�̂�vdep
∃ JSK ℓ {⟨x, x⟩, ⟨y, y⟩, {⟨y, y⟩, {⟨z, y⟩, {⟨x, x⟩, ⟨x, y⟩, ⟨y, y⟩,

⟨z, z⟩} ⟨z, z⟩} ⟨z, z⟩} ⟨z, y⟩, ⟨z, z⟩}

• this is an over-approximation since e.g. z flows to y at ℓ3 only when x = 1 at ℓ0.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 196/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Calculational design
• By calculus (in principle, can be checked with Coq like Jourdan, Laporte, Blazy,

Leroy, and Pichardie, 2015)
• By structural induction on the program syntax
• By fixpoint over-approximation for iterations:

Theorem (over-approximation of fixpoints) If ⟨C, ⊑, ⊥, ⊤, ⊔, ⊓⟩ and ⟨A, ≼, 0,
1, ⋎, ⋏⟩ are complete lattices, ⟨C, ⊑⟩ −−−−→←−−−−𝛼

𝛾
⟨A, ≼⟩ is a Galois connection,

𝑓 ∈ C ↗⟶C and 𝑓 ∈ A ↗⟶A are increasing and 𝛼 ∘ 𝑓 ≼̇ 𝑓 ∘ 𝛼 (semi-commutation)
then lfp⊑ 𝑓 ⊑ 𝛾(lfp≼ 𝑓).

• Finite domain, no widening needed

“Abstract Interpretation, Semantics, Verification, and Analysis” – 197/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential dependency semantics of assignment S ∶∶= x = A ;

�̂� vdep
∃ JSK ℓ = (ℓ = atJSK ? 1V

| ℓ = afterJSK ? {⟨y, x⟩ ∣ y ∈ �̂� vdep
∃ JAK} ∪

{⟨y, y⟩ ∣ y ≠ x}
: ∅)

�̂� vdep
∃ JAK ≜ {y ∣ ∃𝜌 ∈ Ev . ∃𝜈 ∈ 𝕍 .𝓐JAK𝜌 ≠𝓐JAK𝜌[y← 𝜈]}
⊆ 𝕧𝕒𝕣𝕤JAK

Example:
• after x = y - y ;, x depends on y.
• after x = y ; x = y - x ;, x depends on the initial values of x and y
• To be more precise we would have to preserve information on the values of

variables (eg. x = y)
“Abstract Interpretation, Semantics, Verification, and Analysis” – 198/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Proof (don’t read ⌣) I
The cases ℓ = atJSK was handled in (44.38) and ℓ ∉ labxJSK in (44.39). It remains the case
ℓ = afterJSK.
𝛼vdep({𝓢+∞JSK}) afterJSK

= 𝛼vdep({𝓢∗JSK}) afterJSK HLemma 44.25I
= {⟨x′, y⟩ ∣ 𝓢∗JSK ∈ 𝒟vdep (afterJSK)⟨x′, y⟩} Hdef. (44.29) of 𝛼vdep and def. ⊆I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ 𝓢∗JSK . ∀z ∈ V ⧵ {x′} . 𝝆(𝜋0)z = 𝝆(𝜋′0)z ∧ vdep(⟨𝝆(𝜋0)y,

futureJyK(afterJSK)(𝜋0, 𝜋1)⟩, ⟨𝝆(𝜋′0)y, futureJyK(afterJSK)(𝜋′0, 𝜋′1)⟩)}Hdef. ∈ and (44.20) of 𝒟vdep ℓ⟨x′, y⟩I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ {⟨𝜋atJSK, atJSK x=𝓐JAK𝝆(𝜋atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩ ∣ 𝜋atJSK ∈
𝕋+} . ∀z ∈ V ⧵ {x′} . 𝝆(𝜋0)z = 𝝆(𝜋′0)z ∧ vdep(⟨𝝆(𝜋0)y, futureJyK(afterJSK)(𝜋0, 𝜋1)⟩, ⟨𝝆(𝜋′0)y,
futureJyK(afterJSK)(𝜋′0, 𝜋′1)⟩)} Hdef. (15.1) of the assignment prefix finite trace semanticsI

“Abstract Interpretation, Semantics, Verification, and Analysis” – 199/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Proof (don’t read ⌣) II
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩, ⟨𝜋′0atJSK, atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→

afterJSK⟩ . ∀z ∈ V ⧵ {x′} . 𝝆(𝜋0atJSK)z = 𝝆(𝜋′0atJSK)z ∧
vdep(⟨𝝆(𝜋0)y, futureJyK(afterJSK)(𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)⟩, ⟨𝝆(𝜋′0)y,
futureJyK(afterJSK)(𝜋′0atJSK, atJSK x=𝓐JAK𝝆(𝜋′0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)⟩)} Hdef. ∈I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩, ⟨𝜋′0atJSK,
atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩ . (∀z ∈ V ⧵{x′} . 𝝆(𝜋0atJSK)z = 𝝆(𝜋′0atJSK)z)∧vdep(⟨𝝆(𝜋0)y,

𝝆(𝜋0atJSK x=𝓐JAK𝝆(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)y⟩, ⟨𝝆(𝜋′0)y, 𝝆(𝜋′0atJSK x=𝓐JAK𝝆(𝜋′0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)y)⟩}Hdef. (44.14) of the future futureJyKI
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩, ⟨𝜋′0atJSK,
atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩ . (∀z ∈ V ⧵ {x′} . 𝝆(𝜋0atJSK)z = 𝝆(𝜋′0atJSK)z) ∧

((𝝆(𝜋0atJSK)y ≠ 𝝆(𝜋′0atJSK)y) ∨ (𝝆(𝜋0atJSK)y = 𝝆(𝜋′0atJSK)y ∧ 𝝆(𝜋0atJSK x=𝓐JAK𝝆(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→

afterJSK)y ≠ 𝝆(𝜋′0atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK)y)}

“Abstract Interpretation, Semantics, Verification, and Analysis” – 200/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Proof (don’t read ⌣) III
H(44.18) so that vdep(⟨𝑥, 𝑎 ⋅ 𝑏⟩, ⟨𝑦, 𝑐 ⋅ 𝑑⟩) if and only if (1) 𝑎 ≠ 𝑐 or (2) 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑑.I

= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝆(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩, ⟨𝜋′0atJSK,

atJSK x=𝓐JAK𝝆(𝜋′0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−→ afterJSK⟩ . (∀z ∈ V ⧵ {x′} . 𝝆(𝜋0atJSK)z = 𝝆(𝜋′0atJSK)z) ∧ ((y =

x′) ∨ (y = x ∧𝓐JAK𝝆(𝜋0atJSK) ≠𝓐JAK𝝆(𝜋′0atJSK)))} Hdef. (6.2) of 𝝆I
⊆ {⟨x′, y⟩ ∣ ((y = x′) ∨ (y = x ∧ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]))} (11)

Hletting 𝜌 = 𝝆(𝜋0atJSK) and 𝜈 = 𝝆(𝜋′0atJSK)(x′) so that ∀z ∈ V ⧵ {x′} . 𝝆(𝜋0atJSK)z =
𝝆(𝜋′0atJSK)z implies that 𝝆(𝜋′0atJSK) = 𝜌[x′ ← 𝜈].I

= {⟨x′, x′⟩ ∣ x′ ≠ x} ∪ {⟨x′, x⟩ ∣ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]} Hcase analysisI
= {⟨x′, x′⟩ ∣ x′ ≠ x} ∪ {⟨x′, x⟩ ∣ x′ ∈ �̂�vdep

∃ JAK}
Hby defining the functional dependency of an expression A as �̂�vdep

∃ JAK ≜ {x′ ∣ ∃𝜌, 𝜈 .
𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]} in (44.41)I �

“Abstract Interpretation, Semantics, Verification, and Analysis” – 201/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential dependency semantics of the conditional S ∶∶= if (B) S𝑡
�̂�vdep
∃ JSK ℓ = (ℓ = atJSK ? 1V (a)

| ℓ ∈ inJS𝑡K ? �̂�vdep
∃ JS𝑡K ℓ ⌉ nondet(B, B) (b)

| ℓ = afterJSK ?

(c.1)
(c.2)
(c.3)

�̂�vdep
∃ JS𝑡K afterJS𝑡K ⌉ nondet(B, B)
∪ 1V ⌉ nondet(¬B, ¬B)
∪ nondet(¬B, ¬B) ×modJS𝑡K

: ∅) (d)
det(B1, B2) ⊆ {x ∣ ∀𝜌, 𝜌′ . (𝓑JB1K𝜌 ∧𝓑JB2K𝜌′) ⇒ (𝜌(x) = 𝜌′(x))} determinacy

nondet(B1, B2) ⊇ V ⧵ det(B1, B2) non-determinacy
modJx = E ;K ≜ {x} modified variables

modJ;K ≜ modJ 𝜖 K ≜ modJbreak ;K ≜ ∅
modJwhile (B) SK = modJif (B) SK ≜ modJSK

modJif (B) S𝑡 else S𝑓K ≜ modJS𝑡K ∪modJS𝑓K
modJ{ Sl }K ≜ modJSlK

modJSl SK ≜ modJSlK ∪modJSK
“Abstract Interpretation, Semantics, Verification, and Analysis” – 202/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

• On entry (a), variables in V only depend upon themselves as specified by the
identity relation 1V .

• The reasoning in (b) is that if a variable y depends at ℓ on the initial value of a
variable x at atJS𝑡K, it depends in the same way on that initial value of the variable
x at atJSK since the test B has no side effect.
However, (b) also takes into account that if S𝑡 can only be reached for a unique
value of the variable x and the branch is not taken for all other values of x then the
variable y does not depend on x in S𝑡 since empty observations are disallowed by
vdep.

• (c) determines dependencies after S so compare two possible executions of that
statement. In case (c.1) both executions go through the true branch. In case (c.2)
both executions go through the false branch, while in case (c.3) the executions take
different branches.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 203/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

• In case (c.1) when the test is true tt for both executions, the executions of the true
branch S𝑡 terminate and control after S𝑡 reaches the program point after S (recall
that afterJS𝑡K = afterJSK). The dependencies after S𝑡 propagate after S but only in
case of non-determinism, e.g. for variables that are not constant.

• The second case in (c.2) is for those executions for which the test B is false ff.
Variables depend on themselves atJSK and control moves to afterJSK so that
dependencies are the same there, but only for variables that can reach afterJSK with
different values on different executions as indicated by the restriction to
nondet(¬B, ¬B).

• The third case in (c.3) is for pairs of executions, one through the true branch and
the other through the false branch. In that case y depends on x only if x does not
force execution to always take the same branch, meaning that x ∈ nondet(¬B, ¬B). If
y is not modified by the execution through S𝑡 then its value after S is always the
same as its value atJSK (since y is not modified on the false branch either). In that
case changing y atJSK would not change y after S so that, in that situation, y does
not depend on x. Therefore (c.3) requires that y ∈ modJS𝑡K.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 204/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Note on the potential dependency semantics of the conditional
S ∶∶= if (B) S𝑡

• Empty observations are not taken into account
• ℓ0 if (x=0) { y=x; ℓ1} ℓ2

• y does not depend on x at ℓ0 neither at ℓ1
• y depends on x at ℓ2

• As already stated, this is different from D. E. Denning and P. J. Denning, 1977
implicitly allowing for counterfactual multi-values dependency cmvdp.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 205/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential dependency semantics of the statement list Sl ∶∶= Sl′ S

�̂� vdep
∃ JSlK ℓ ≜ (ℓ ∈ labxJSl′K ? �̂� vdep

∃ JSl′K ℓ (a)
| ℓ ∈ labxJSK ⧵ {atJSK} ?

�̂� vdep
∃ JSl′K atJSK # �̂� vdep

∃ JSK ℓ (b)
: ∅)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 206/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Potential dependency semantics of the iteration S ∶∶= while ℓ (B) S𝑏

�̂� vdep
∃ JSK ℓ′ = (lfp ⊆̇𝓕vdepJwhile ℓ (B) S𝑏K) ℓ′

𝓕vdepJwhile ℓ (B) S𝑏K𝑋 ℓ′ =
(ℓ′ = ℓ ?

1V ∪ (𝑋(ℓ) # (�̂� vdep
∃ JS𝑏K ℓ ⌉ nondet(B, B))) (a)

| ℓ′ ∈ inJS𝑏K ?

𝑋(ℓ) # (�̂� vdep
∃ JS𝑏K ℓ′ ⌉ nondet(B, B)) (b)

| ℓ′ = afterJSK ?
𝑋(ℓ) ∪ (𝑋(ℓ) # (V ×modJS𝑏K)) ∪ (c)

𝑋(ℓ) # ((⋃
ℓ″∈breaks-ofJS𝑏K

�̂� vdep
∃ JS𝑏K ℓ″) ⌉ nondet(B, B))

: ∅) (d)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 207/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Example
S = while ℓ0 (tt) { ℓ1 y = z ;ℓ2 z = x ; }ℓ3.

The system of equations 𝑋 =𝓕ᶁJSK(𝑋) is
{{{
{{{
{

𝑋(ℓ0) = {⟨v, v⟩ ∣ v ∈ V } ∪ (𝑋(ℓ2) # {⟨x, x⟩, ⟨x, z⟩, ⟨y, y⟩})
𝑋(ℓ1) = 𝑋(ℓ0)
𝑋(ℓ2) = 𝑋(ℓ2) ∪ (𝑋(ℓ1) # {⟨x, x⟩, ⟨z, y⟩, ⟨z, z⟩})
𝑋(ℓ3) = ∅

The chaotic iterations are
ℓ ℓ0, ℓ1 ℓ2 ℓ3

𝑋0(ℓ) ∅ ∅ ∅
𝑋1(ℓ) {⟨x, x⟩, ⟨y, y⟩, ⟨z, z⟩} {⟨x, x⟩, ⟨z, y⟩, ⟨z, z⟩} ∅
𝑋2(ℓ) {⟨x, x⟩, ⟨x, z⟩, ⟨y, y⟩, ⟨z, y⟩, ⟨z, z⟩} {⟨x, x⟩, ⟨x, y⟩, ⟨x, z⟩, ⟨z, y⟩, ⟨z, z⟩} ∅
𝑋3(ℓ) {⟨x, x⟩, ⟨x, y⟩, ⟨x, z⟩, ⟨y, y⟩, ⟨z, y⟩, ⟨z, z⟩} {⟨x, x⟩, ⟨x, y⟩, ⟨x, z⟩, ⟨z, y⟩, ⟨z, z⟩} ∅
𝑋4(ℓ) 𝑋3(ℓ0) = 𝑋3(ℓ1) 𝑋3(ℓ2) ∅

• The initial value 𝑥0 of x flows to x at ℓ0 on iteration entry, to z after the first iteration and so to y after the first iteration.• The initial value 𝑦0 of y flows only to y at ℓ0 on iteration entry.• The initial value 𝑧0 of z flows to z at ℓ0 on iteration entry and then to y after the first iteration.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 208/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The potential dependency semantics is not purely structural 5

• Separate analysis of statements:
ℓ0 y = x ; x and y at ℓ1 depend on x at ℓ0.
ℓ1

ℓ1 y = y - x ; x and y at ℓ2 depend on x at ℓ1.
ℓ2

• Dependency analysis of the statement list:

ℓ0 y = x ;
ℓ1 y = y - x ;
ℓ2

y at ℓ2 depends on x at ℓ1 which depends on x at ℓ0 so,
by composition, y at ℓ2 depends on x at ℓ0.

• Yet, y = 0 at ℓ2 and so y at ℓ2 do not depend on x at ℓ0.
• A purely syntactic structural definition of dependency like �̂� vdep

∃ JSK is necessarily
imprecise (since values of variables are not taken into account)

5one would say compositional in denotational semantics.
“Abstract Interpretation, Semantics, Verification, and Analysis” – 209/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Improving precision
• To be more precise, values of variables must be taken into account
• Reduced product with a reachability analysis (for example Cortesi, Ferrara, Halder,

and Zanioli, 2018; Zanioli and Cortesi, 2011)

“Abstract Interpretation, Semantics, Verification, and Analysis” – 210/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of derived depen-
dency semantics and analyzes

“Abstract Interpretation, Semantics, Verification, and Analysis” – 211/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dye instrumented semantics

“Abstract Interpretation, Semantics, Verification, and Analysis” – 212/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Postulated definition of dependency (I)
• dye-tracer tests in hydrology: determine the possible origins of spring discharges or

resurgences by water source coloring and flow tracing
• dye instrumented semantics: decorate the initial values of variables with labels such

as color annotations and to track their diffusion and mixtures to determine
dependencies Cheney, Ahmed, and Acar, 2011.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 213/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Postulated definition of dependency (II)
• This postulated definition of dependency can be proved sound by observing that the

initial color of variables can be designated by the name of these variables and that
the color mix at point ℓ for variable y is

{x ∣ 𝓢+∞JPK ∈ 𝒟dep ℓ⟨x, y⟩}

• Note that in the postulated instrumented semantics, the choice of dep remains
implicit as defined by the arbitrarily selected color mixing rules.

• Like all instrumented semantics Jones and Nielson, 1995, it must be semantically
justified with respect to the non-instrumented semantics, in which case the
non-instrumented semantics can be used as well to justify dependency, as we do.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 214/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Tracking analysis

“Abstract Interpretation, Semantics, Verification, and Analysis” – 215/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

• Assume the initial values of variables (more generally inputs) are partitioned into
tracked T and untracked U variables,

V = T ∪U and T ∩U = ∅

• The tracking abstraction 𝛼𝜏(𝐃) of a dependency property 𝐃 ∈ L→ ℘(V × V)
attaches to each program point ℓ the set of variables y which, at that program
point ℓ, depend upon the initial value of at least one tracked variable x ∈ T .

𝛼𝜏(𝐃)ℓ ≜ {y ∣ ∃x ∈ T . ⟨x, y⟩ ∈ 𝐃(ℓ)}

• A tracking analysis is an over-approximation of the abstract tracking semantics

𝓢𝜏JSK ⊇ 𝛼𝜏(𝛼dep({𝓢+∞JSK}))
assigning the each program point ℓ, a set 𝓢𝜏JSKℓ ∈ ℘(V) of variables potentially
depending on tracked variables.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 216/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Examples of tracking analyses
• taint analysis in privacy/security checks Ferrara, Olivieri, and Spoto, 2018; Li,

Bissyandé, Papadakis, Rasthofer, Bartel, Octeau, Klein, and Traon, 2017 (tracked is
tainted, untracked is untainted);

• binding time analysis in offline partial evaluation Hatcliff, 1998; Jones, Sestoft, and
Søndergaard, 1989 (tracked is dynamic, untracked is static)

• absence of interference Bowman and Ahmed, 2015; Cohen, 1977; Goguen and
Meseguer, 1982, 1984; Volpano, Irvine, and Smith, 1996 (tracked is high
(private/untrusted), untracked is low (public/trusted)).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 217/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Conclusion

“Abstract Interpretation, Semantics, Verification, and Analysis” – 218/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Dependency is an abstract interpretation of the program semantics
• Dependency analysis is an abstract interpretation of the program semantics
• This include non-interference, “taint” analysis, etc.
• Data dependency analysis to detect parallelism in sequential codes Padua and

Wolfe, 1986 is also an abstract interpretation Tzolovski, 1997, Tzolovski, 2002,
Ch. 5.

• We have considered particular cases of dependency.

“Abstract Interpretation, Semantics, Verification, and Analysis” – 219/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Conjecture: all dependencies are abstract interpretations
• The semantics is a set of computations ⟨𝜋ℓ, ℓ𝜋′⟩ (where ℓ ∉ 𝜋).
• We define an abstraction of the past 𝜋ℓ (the initial state in our case)
• We define an abstraction of the future (the sequence of values of a variable y

observées dans ℓ𝜋′ à each point ℓ dans ℓ𝜋′).
• We define a difference on pasts (changing the value of only one variable in our case)
• We define a difference on futures (tdep, ctdep, vdep or cvdep in our case)
• Dependency is then the future abstraction depends on the past abstraction iff a

change of the past changing its abstraction change the abstraction of the future.
• By varying abstractions and the difference we change the notions of dependency

(and we should be able to recover the whole literature in that way).
• Good examples are Giacobazzi and Mastroeni, 2018 for non-interference and

Barthe, Grégoire, and Laporte, 2017 for the protection against side channels attacks

“Abstract Interpretation, Semantics, Verification, and Analysis” – 220/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Bibliography on dependency

“Abstract Interpretation, Semantics, Verification, and Analysis” – 221/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References I
Assaf, Mounir, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel

(2017). “Hypercollecting semantics and its application to static analysis of
information flow”. In: POPL. ACM, pp. 874–887 (176).

Barthe, Gilles, Benjamin Grégoire, and Vincent Laporte (2017). “Provably secure
compilation of side-channel countermeasures”. IACR Cryptology ePrint Archive
2017, p. 1233 (227).

Bowman, William J. and Amal Ahmed (2015). “Noninterference for free”. In: ICFP.
ACM, pp. 101–113 (224).

Cheney, James, Amal Ahmed, and Umut A. Acar (2011). “Provenance as dependency
analysis”. Mathematical Structures in Computer Science 21.6, pp. 1301–1337 (176,
220).

Cohen, Ellis S. (1977). “Information Transmission in Computational Systems”. In:
SOSP. ACM, pp. 133–139 (179, 224).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 222/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References II
Cortesi, Agostino, Pietro Ferrara, Raju Halder, and Matteo Zanioli (2018). “Combining

Symbolic and Numerical Domains for Information Leakage Analysis”. Trans.
Computational Science 31, pp. 98–135 (217).

Cousot, Patrick and Radhia Cousot (2009). “Bi-inductive structural semantics”. Inf.
Comput. 207.2, pp. 258–283 (189).

Denning, Dorothy E. and Peter J. Denning (1977). “Certification of Programs for
Secure Information Flow”. Commun. ACM 20.7, pp. 504–513 (176, 182, 185, 186,
194, 195, 202, 212).

Ferrara, Pietro, Luca Olivieri, and Fausto Spoto (June 2018). “Tailoring Taint Analysis
to GDPR”. In: Privacy Technologies and Policy. 6th Annual Privacy Forum, APF
2018, Barcelona, Spain, June 13-14, 2018, Revised Selected Papers. doi:
10.1007/978-3-030-02547-2_4 (224).

Giacobazzi, Roberto and Isabella Mastroeni (2018). “Abstract Non-Interference: A
Unifying Framework for Weakening Information-flow”. ACM Trans. Priv. Secur. 21.2,
9:1–9:31 (227).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 223/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

https://doi.org/10.1007/978-3-030-02547-2_4

References III
Goguen, Joseph A. and José Meseguer (1982). “Security Policies and Security Models”.

In: IEEE Symposium on Security and Privacy. IEEE Computer Society, pp. 11–20 (
179, 224).

– (1984). “Unwinding and Inference Control”. In: IEEE Symposium on Security and
Privacy. IEEE Computer Society, pp. 75–87 (179, 224).

Hatcliff, John (1998). “An Introduction to Online and Offline Partial Evaluation using
a Simple Flowchart Language”. In: Partial Evaluation. Vol. 1706. Lecture Notes in
Computer Science. Springer, pp. 20–82 (224).

Jones, Neil D. and Flemming Nielson (1995). “Abstract Interpretation: a
Semantics-Based Tool for Program Analysis”. In: Samson Abramsky and
Dov M. Gabbay, eds. Handbook of Logic in Computer Science. Vol. 4, Semantic
Modelling. Oxford University Press, pp. 527–636 (221).

Jones, Neil D., Peter Sestoft, and Harald Søndergaard (1989). “Mix: A Self-Applicable
Partial Evaluator for Experiments in Compiler Generation”. Lisp and Symbolic
Computation 2.1, pp. 9–50 (224).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 224/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References IV
Jourdan, Jacques-Henri, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and

David Pichardie (2015). “A Formally-Verified C Static Analyzer”. In: POPL. ACM,
pp. 247–259 (204).

Lampson, Butler W. (1973). “A Note on the Confinement Problem”. Commun. ACM
16.10, pp. 613–615 (186).

Li, Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel,
Damien Octeau, Jacques Klein, and Yves Le Traon (2017). “Static analysis of
Android apps: A systematic literature review”. Information & Software Technology
88, pp. 67–95 (224).

Mantel, Heiko (July 2003). “A Uniform Framework for the Formal Specification and
Verification of Information Flow Security”. Dr.-Ing. Thesis. Saarbrücken, Germany:
Fakultät I der Universität des Saarlandes (179).

Mulder, Elke De, Thomas Eisenbarth, and Patrick Schaumont (2018). “Identifying and
Eliminating Side-Channel Leaks in Programmable Systems”. IEEE Design & Test
35.1, pp. 74–89 (186).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 225/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References V
Padua, David A. and Michael Wolfe (1986). “Advanced Compiler Optimizations for

Supercomputers”. Commun. ACM 29.12, pp. 1184–1201 (226).
Russo, Alejandro, John Hughes, David A. Naumann, and Andrei Sabelfeld (2006).

“Closing Internal Timing Channels by Transformation”. In: ASIAN. Vol. 4435.
Lecture Notes in Computer Science. Springer, pp. 120–135 (186).

Sabelfeld, Andrei and Andrew C. Myers (2003). “Language-based information-flow
security”. IEEE Journal on Selected Areas in Communications 21.1, pp. 5–19 (186).

Tzolovski, Stanislav (1997). “Data Dependence as Abstract Interpretations”. In: SAS.
Vol. 1302. Lecture Notes in Computer Science. Springer, p. 366 (226).

– (15 June 2002). “Raffinement d’analyses par interprétation abstraite”. Thèse de
doctorat. Palaiseau, France: École polytechnique (226).

Urban, Caterina and Peter Müller (2018). “An Abstract Interpretation Framework for
Input Data Usage”. In: ESOP. Vol. 10801. Lecture Notes in Computer Science.
Springer, pp. 683–710 (176).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 226/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

References VI
Volpano, Dennis M., Cynthia E. Irvine, and Geoffrey Smith (1996). “A Sound Type

System for Secure Flow Analysis”. Journal of Computer Security 4.2/3, pp. 167–188
(224).

Zanioli, Matteo and Agostino Cortesi (2011). “Information Leakage Analysis by
Abstract Interpretation”. In: SOFSEM. Vol. 6543. Lecture Notes in Computer
Science. Springer, pp. 545–557 (217).

“Abstract Interpretation, Semantics, Verification, and Analysis” – 227/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

The End, Thank you

“Abstract Interpretation, Semantics, Verification, and Analysis” – 228/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

Appendix

“Abstract Interpretation, Semantics, Verification, and Analysis” – 229/228 – © P. Cousot, NYU, CIMS, CS, Friday, 01/11/2019

	Bibliography
	Bibliography
	Bibliography
	Bibliography

